Three Bacteriocin Peptides from a Lactic Acid Bacterium Weissella confusa MBF8-1 with Spermicidal Activity

Page: [766 - 771] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Background: The development of antibiotic resistance amongst bacterial pathogens and a population explosion, e.g. in countries such as Indonesia, are two issues the world is facing today. These issues have stimulated interest in the development of new antimicrobial therapeutic agents and contraceptive strategies, such as novel spermicides. Bacteriocins, which are bacterially-derived antimicrobial peptides, may fulfill some of the criteria for these new agents.

Methods: Weissella confusa MBF8-1, originally isolated from a homemade soy product, exhibits antibacterial activity that was subsequently found to be plasmid-encoded, presumably by three peptides Bac1, Bac2 and Bac3. In the present study, we tested cell-free MBF8-1 bacteriocin preparations and chemically-synthesized versions of Bac1, Bac2 and Bac3 peptides for (i) its antibacterial activity against the indicator bacterium Leuconostoc mesenteroides and (ii) its ability to affect the motility of spermatozoa. Nisin, a known lantibiotic bacteriocin, was used as the control.

Results: Here, we demonstrate that synthetic Bac1, in combination with synthetic Bac2, was sufficient to inhibit the growth of L. mesenteroides and affect sperm motility. However, the presence of all three synthetic peptides, s-Bac1, s-Bac2 and s-Bac3, was required for full potency.

Conclusion: In summary, the bacteriocin-like peptides of W. confusa MBF8-1 have the potential to be developed as a narrow-spectrum antimicrobial agent and a novel spermicidal agent.

Keywords: Antibacterial activity, bacteriocin, Weissela confusa, weissellicin MBF, Sander-Cramer, spermicidal activity.

Graphical Abstract

[1]
Heng, N.C.K.; Wescombe, P.A.; Burton, J.P.; Jack, R.W.; Tagg, J.R. Bacteriocins: Ecology and Evolution; Springer: New York, 2007, Vol. 4, pp. 45-92.
[http://dx.doi.org/10.1007/978-3-540-36604-1_4]
[2]
Martinez, B.; Rodriguez, A.; Suarez, E. Antimicrobial peptides produced by bacteria: The bacteriocins; New Weapons Control Bacterial Growth, 2016, pp. 15-38.
[http://dx.doi.org/10.1007/978-3-319-28368-5_2]
[3]
Perez, R.H.; Zendo, T.; Sonomoto, K. Novel bacteriocins from lactic acid bacteria (LAB): Various structures and applications. Microb. Cell Fact., 2014, 13(1)(Suppl. 1), S3.
[http://dx.doi.org/10.1186/1475-2859-13-S1-S3] [PMID: 25186038]
[4]
Cotter, P.D.; Hill, C.; Ross, R.P. Bacterial lantibiotics: Strategies to improve therapeutic potential. Curr. Protein Pept. Sci., 2005, 6(1), 61-75.
[http://dx.doi.org/10.2174/1389203053027584] [PMID: 15638769]
[5]
Oscáriz, J.C.; Pisabarro, A.G. Classification and mode of action of membrane-active bacteriocins produced by gram-positive bacteria. Int. Microbiol., 2001, 4(1), 13-19.https://www.ncbi.nlm.nih.gov/pubmed/11770815
[PMID: 11770815]
[6]
Grazia, S.E.; Sumayyah, S.; Haiti, F.S.; Sahlan, M.; Heng, N.C.K.; Malik, A. Bacteriocin-like inhibitory substance (BLIS) activity of Streptococcus macedonicus MBF10-2 and its synergistic action in combination with antibiotics. Asian Pac. J. Trop. Med., 2017, 10(12), 1140-1145.
[http://dx.doi.org/10.1016/j.apjtm.2017.11.001] [PMID: 29268969]
[7]
Sutyak, K.E.; Anderson, R.A.; Dover, S.E.; Feathergill, K.A.; Aroutcheva, A.A.; Faro, S.; Chikindas, M.L. Spermicidal activity of the safe natural antimicrobial peptide subtilosin. . Infect Dis Obstet Gynecol, 2008, Article ID. 540758, 6.
[http://dx.doi.org/10.1155/2008/540758]
[8]
Tanphaichitr, N.; Srakaew, N.; Alonzi, R.; Kiattiburut, W.; Kongmanas, K.; Zhi, R.; Li, W.; Baker, M.; Wang, G.; Hickling, D. Potential use of antimicrobial peptides as vaginal spermicides/microbicides. Pharmaceuticals (Basel), 2016, 9(1), 13.http://www.mdpi.com/1424-8247/9/1/13
[http://dx.doi.org/10.3390/ph9010013] [PMID: 26978373]
[9]
Aranha, C.; Gupta, S.; Reddy, K.V. Contraceptive efficacy of antimicrobial peptide Nisin: in vitro and in vivo studies. Contraception, 2004, 69(4), 333-338.https://www.ncbi.nlm.nih.gov/pubmed/15033410
[http://dx.doi.org/10.1016/j.contraception.2003.11.002] [PMID: 15033410]
[10]
Malik, A.; Sumayyah, S.; Yeh, C.W.; Heng, N.C.K. Identification and sequence analysis of pWcMBF8-1, a bacteriocin-encoding plasmid from the lactic acid bacterium Weissella confusa. FEMS Microbiol. Lett., 2016, 363(8), fnw059.
[http://dx.doi.org/10.1093/femsle/fnw059] [PMID: 26976853]
[11]
Heng, N.C.K.; Yeh, C.W.; Malik, A. Draft genome sequence of Weissella confusa MBF8-1, A glucansucrase-and bacteriocin-producing strain isolated from a homemade soy product. Genome Announc., 2017, 5(4), e01497-e16.
[http://dx.doi.org/10.1128/genomeA.01497-16] [PMID: 28126938]
[12]
De Man, J.; Rogosa, D.; Sharpe, M.E. A medium for the cultivation of lactobacilli. J. Appl. Bacteriol., 1960, 23(1), 130-135.
[http://dx.doi.org/10.1111/j.1365-2672.1960.tb00188.x]
[13]
Wescombe, P.A.; Upton, M.; Renault, P.; Wirawan, R.E.; Power, D.; Burton, J.P.; Chilcott, C.N.; Tagg, J.R. Salivaricin 9, a new lantibiotic produced by Streptococcus salivarius. Microbiology, 2011, 157(Pt 5), 1290-1299.
[http://dx.doi.org/10.1099/mic.0.044719-0] [PMID: 21310787]
[14]
Makler, A. A new chamber for rapid sperm count and motility estimation. Fertil. Steril., 1978, 30(3), 313-318.
[http://dx.doi.org/10.1016/S0015-0282(16)43518-1] [PMID: 710602]
[15]
WHO Laboratory Manual for the Examination and Processing of Human Semen, , ( 5th ed. ) World Health Organization (WHO) Press: Geneva, Switzerland, . 2010, 247-250.
[16]
Goh, H.F.; Philip, K. Purification and characterization of bacteriocin produced by Weissella confusa A3 of dairy origin. PLoS One, 2015, 10(10), e0140434.https://www.ncbi.nlm.nih.gov/pubmed/26474074
[http://dx.doi.org/10.1371/journal.pone.0140434] [PMID: 26474074]
[17]
Anderssen, E.L.; Diep, D.B.; Nes, I.F.; Eijsink, V.G.; Nissen-Meyer, J. Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl. Environ. Microbiol., 1998, 64(6), 2269-2272.
[PMID: 9603847]
[18]
Oppegård, C.; Rogne, P.; Emanuelsen, L.; Kristiansen, P.E.; Fimland, G.; Nissen-Meyer, J. The two-peptide class II bacteriocins: structure, production, and mode of action. J. Mol. Microbiol. Biotechnol., 2007, 13(4), 210-219.
[http://dx.doi.org/10.1159/000104750] [PMID: 17827971]
[19]
Gibbs, G.M.; Davidson, B.E.; Hillier, A.J. Novel expression system for large-scale production and purification of recombinant class IIa bacteriocins and its application to piscicolin 126. Appl. Environ. Microbiol., 2004, 70(6), 3292-3297.
[http://dx.doi.org/10.1128/AEM.70.6.3292-3297.2004] [PMID: 15184123]
[20]
Kumar, B.; Balgir, P.P.; Kaur, B.; Mittu, B.; Chauhan, A. In vitro cytotoxicity of native and rec-pediocin CP2 against cancer cell lines: a comparative study. Pharm. Anal. Acta, 2012, 1(6), 1-5.
[http://dx.doi.org/10.4172/2153-2435.1000183]