Evaluation of Stemness Maintenance Properties of the Recombinant Human Laminin α2 LG1-3 Domains in Human Mesenchymal Stem Cells

Page: [785 - 791] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Laminin, a member of the Extracellular Matrix (ECM), is a glycoprotein that is used as a factor that affects cell adhesion, proliferation, survival, and differentiation. Of these, five globular domains (LG domains) of the alpha chain play an important role in influencing the cell by binding to the integrin.

Objective: This study aimed to evaluate the ability of globular domains 1-3 of laminin alpha2 (rhLAMA2LG1-3) in maintaining the pluripotency of human Mesenchymal Stem Cells (hMSCs), which are widely used in regenerative medicine.

Methods: hMSCs were grown in the medium supplemented with rhLAMA2LG1-3, then the effect of the protein on hMSCs were confirmed through cell adhesion assay, proliferation assay and RTPCR.

Results: rhLAMA2LG1-3 expressed in Escherichia coli has a molecular weight of 70 kDa, at 1 µg/ml concentration of rhLAMA2LG1-3, the attachment and proliferation of hMSCs were approximately 3.18-fold and 1.67-fold, respectively, more efficient than those of untreated controls. In addition, the undifferentiated state and degree of stemness of hMSCs were measured, on the basis of CD90 and CD105 levels. In the rhLAMA2LG1-3-treated hMSCs, the expression levels of CD90 and CD105 increased by 2.83-fold and 1.62-fold, respectively, compared to those in untreated controls.

Conclusions: rhLAMA2LG1-3 can be potentially used in stem cell therapy to improve the viability and maintain the undifferentiated state of hMSCs.

Keywords: Cell adhesion, cell proliferation, laminin, mesenchymal stem cells, stemness, stem cell therapy.

Graphical Abstract

[1]
Gimble, J.M.; Katz, A.J.; Bunnell, B.A. Adipose-derived stem cells for regenerative medicine. Circ. Res., 2007, 100(9), 1249-1260.
[http://dx.doi.org/10.1161/01.RES.0000265074.83288.09] [PMID: 17495232]
[2]
Kariminekoo, S.; Movassaghpour, A.; Rahimzadeh, A.; Talebi, M.; Shamsasenjan, K.; Akbarzadeh, A. Implications of mesenchymal stem cells in regenerative medicine. Artif. Cells Nanomed. Biotechnol., 2016, 44(3), 749-757.
[http://dx.doi.org/10.3109/21691401.2015.1129620] [PMID: 26757594]
[3]
Molofsky, A.V.; Pardal, R.; Morrison, S.J. Diverse mechanisms regulate stem cell self-renewal. Curr. Opin. Cell Biol., 2004, 16(6), 700-707.
[http://dx.doi.org/10.1016/j.ceb.2004.09.004] [PMID: 15530784]
[4]
Rozario, T.; DeSimone, D.W. The extracellular matrix in development and morphogenesis: a dynamic view. Dev. Biol., 2010, 341(1), 126-140.
[http://dx.doi.org/10.1016/j.ydbio.2009.10.026] [PMID: 19854168]
[5]
Tzu, J.; Marinkovich, M.P. Bridging structure with function: structural, regulatory, and developmental role of laminins. Int. J. Biochem. Cell Biol., 2008, 40(2), 199-214.
[http://dx.doi.org/10.1016/j.biocel.2007.07.015] [PMID: 17855154]
[6]
Kuhn, N.Z.; Tuan, R.S. Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis. J. Cell. Physiol., 2010, 222(2), 268-277.
[http://dx.doi.org/10.1002/jcp.21940] [PMID: 19847802]
[7]
Miner, J.H.; Yurchenco, P.D. Laminin functions in tissue morphogenesis. Annu. Rev. Cell Dev. Biol., 2004, 20(1), 255-284.
[http://dx.doi.org/10.1146/annurev.cellbio.20.010403.094555] [PMID: 15473841]
[8]
Belkin, A.M.; Stepp, M.A. Integrins as receptors for laminins. Microsc. Res. Tech., 2000, 51(3), 280-301.
[http://dx.doi.org/10.1002/1097-0029(20001101)51:3<280:AID-JEMT7>3.0.CO;2-O] [PMID: 11054877]
[9]
Yamada, M.; Sekiguchi, K. Molecular basis of laminin-integrin interactions. Curr. Top. Membr., 2015, 76, 197-229.
[http://dx.doi.org/10.1016/bs.ctm.2015.07.002] [PMID: 26610915]
[10]
Aumailley, M.; Bruckner-Tuderman, L.; Carter, W.G.; Deutzmann, R.; Edgar, D.; Ekblom, P.; Engel, J.; Engvall, E.; Hohenester, E.; Jones, J.C.; Kleinman, H.K.; Marinkovich, M.P.; Martin, G.R.; Mayer, U.; Meneguzzi, G.; Miner, J.H.; Miyazaki, K.; Patarroyo, M.; Paulsson, M.; Quaranta, V.; Sanes, J.R.; Sasaki, T.; Sekiguchi, K.; Sorokin, L.M.; Talts, J.F.; Tryggvason, K.; Uitto, J.; Virtanen, I.; von der Mark, K.; Wewer, U.M.; Yamada, Y.; Yurchenco, P.D. A simplified laminin nomenclature. Matrix Biol., 2005, 24(5), 326-332.
[http://dx.doi.org/10.1016/j.matbio.2005.05.006] [PMID: 15979864]
[11]
Colognato, H.; Yurchenco, P.D. Form and function: the laminin family of heterotrimers. Dev. Dyn., 2000, 218(2), 213-234.
[http://dx.doi.org/10.1002/(SICI)1097-0177(200006)218:2<213:AID-DVDY1>3.0.CO;2-R] [PMID: 10842354]
[12]
Suzuki, N.; Yokoyama, F.; Nomizu, M. Functional sites in the laminin alpha chains. Connect. Tissue Res., 2005, 46(3), 142-152.
[http://dx.doi.org/10.1080/03008200591008527] [PMID: 16147852]
[13]
Song, J.; Zhang, X.; Buscher, K.; Wang, Y.; Wang, H.; Di Russo, J.; Li, L.; Lütke-Enking, S.; Zarbock, A.; Stadtmann, A.; Striewski, P.; Wirth, B.; Kuzmanov, I.; Wiendl, H.; Schulte, D.; Vestweber, D.; Sorokin, L. Endothelial basement membrane laminin 511 contributes to endothelial junctional tightness and thereby inhibits leukocyte transmigration. Cell Rep., 2017, 18(5), 1256-1269.
[http://dx.doi.org/10.1016/j.celrep.2016.12.092] [PMID: 28147279]
[14]
Givant-Horwitz, V.; Davidson, B.; Reich, R. Laminin-induced signaling in tumor cells. Cancer Lett., 2005, 223(1), 1-10.
[http://dx.doi.org/10.1016/j.canlet.2004.08.030] [PMID: 15890231]
[15]
Carafoli, F.; Clout, N.J.; Hohenester, E. Crystal structure of the LG1-3 region of the laminin α2 chain. J. Biol. Chem., 2009, 284(34), 22786-22792.
[http://dx.doi.org/10.1074/jbc.M109.026658] [PMID: 19553699]
[16]
Lotfinegad, P.; Shamsasenjan, K.; Movassaghpour, A.; Majidi, J.; Baradaran, B. Immunomodulatory nature and site specific affinity of mesenchymal stem cells: a hope in cell therapy. Adv. Pharm. Bull., 2014, 4(1), 5-13.
[PMID: 24409403]
[17]
Ben-Ami, E.; Berrih-Aknin, S.; Miller, A. Mesenchymal stem cells as an immunomodulatory therapeutic strategy for autoimmune diseases. Autoimmun. Rev., 2011, 10(7), 410-415.
[http://dx.doi.org/10.1016/j.autrev.2011.01.005] [PMID: 21256250]
[18]
Wen, J.; Zhao, Z.; Tong, R.; Huang, L.; Miao, Y.; Wu, J. Prussian blue nanoparticle-labeled mesenchymal stem cells: evaluation of cell viability, proliferation, migration, differentiation, cytoskeleton, and protein expression in vitro. Nanoscale Res. Lett., 2018, 13(1), 329.
[http://dx.doi.org/10.1186/s11671-018-2730-z] [PMID: 30350300]
[19]
Schellekens, H.; Casadevall, N. Immunogenicity of recombinant human proteins: causes and consequences. J. Neurol., 2004, 251(Suppl. 2), II4-II9.
[http://dx.doi.org/10.1007/s00415-004-1202-9] [PMID: 15264106]
[20]
Redwan, R.M.; Redwan, M. Animal-derived pharmaceutical proteins. J. Immunoassay Immunochem., 2009, 30(3), 262-290.
[http://dx.doi.org/10.1080/15321810903084400] [PMID: 19591041]
[21]
ExPASyBioinfomaticsResourde Portal – ProtParam. web.expasy.org/protparam.html (Accessed April 17, 2019).
[22]
Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc., 2008, 3(6), 1101-1108.
[http://dx.doi.org/10.1038/nprot.2008.73] [PMID: 18546601]
[23]
Yun, Y.R.; Lee, S.; Jeon, E.; Kang, W.; Kim, K.H.; Kim, H.W.; Jang, J.H. Fibroblast growth factor 2-functionalized collagen matrices for skeletal muscle tissue engineering. Biotechnol. Lett., 2012, 34(4), 771-778.
[http://dx.doi.org/10.1007/s10529-011-0812-4] [PMID: 22160363]
[24]
Hall, P.E.; Lathia, J.D.; Caldwell, M.A.; Ffrench-Constant, C. Laminin enhances the growth of human neural stem cells in defined culture media. BMC Neurosci., 2008, 9, 71.
[http://dx.doi.org/10.1186/1471-2202-9-71] [PMID: 18651950]
[25]
Martin, M.J.; Muotri, A.; Gage, F.; Varki, A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat. Med., 2005, 11(2), 228-232.
[http://dx.doi.org/10.1038/nm1181] [PMID: 15685172]
[26]
Domogatskaya, A.; Rodin, S.; Boutaud, A.; Tryggvason, K. Laminin-511 but not -332, -111, or -411 enables mouse embryonic stem cell self-renewal in vitro. Stem Cells, 2008, 26(11), 2800-2809.
[http://dx.doi.org/10.1634/stemcells.2007-0389] [PMID: 18757303]
[27]
Moraes, D.A.; Sibov, T.T.; Pavon, L.F.; Alvim, P.Q.; Bonadio, R.S.; Da Silva, J.R.; Pic-Taylor, A.; Toledo, O.A.; Marti, L.C.; Azevedo, R.B.; Oliveira, D.M. A reduction in CD90 (THY-1) expression results in increased differentiation of mesenchymal stromal cells. Stem Cell Res. Ther., 2016, 7(1), 97.
[http://dx.doi.org/10.1186/s13287-016-0359-3] [PMID: 27465541]
[28]
Rege, T.A.; Hagood, J.S. Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis. FASEB J., 2006, 20(8), 1045-1054.
[http://dx.doi.org/10.1096/fj.05-5460rev] [PMID: 16770003]
[29]
Aslan, H.; Zilberman, Y.; Kandel, L.; Liebergall, M.; Oskouian, R.J.; Gazit, D.; Gazit, Z. Osteogenic differentiation of noncultured immunoisolated bone marrow-derived CD105+ cells. Stem Cells, 2006, 24(7), 1728-1737.
[http://dx.doi.org/10.1634/stemcells.2005-0546] [PMID: 16601078]
[30]
Maleki, M.; Ghanbarvand, F.; Reza Behvarz, M.; Ejtemaei, M.; Ghadirkhomi, E. Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int. J. Stem Cells, 2014, 7(2), 118-126.
[http://dx.doi.org/10.15283/ijsc.2014.7.2.118] [PMID: 25473449]
[31]
Nakamoto, T.; Dulińska-Molak, I.; Kawazoe, N.; Wang, X.; Chen, G. Regulating the stemness of mesenchymal stem cells by tuning micropattern features. J. Mater. Chem. B Mater. Biol. Med., 2015, 4(1), 37-45.
[32]
Li, K.; Wu, D.; Chen, X.; Zhang, T.; Zhang, L.; Yi, Y.; Miao, Z.; Jin, N.; Bi, X.; Wang, H.; Xu, J.; Wang, D. Current and emerging biomarkers of cell death in human disease. BioMed Res. Int., 2014, 2014690103
[http://dx.doi.org/10.1155/2014/690103] [PMID: 24949464]
[33]
Konstantinidou, A.E.; Givalos, N.; Gakiopoulou, H.; Korkolopoulou, P.; Kotsiakis, X.; Boviatsis, E.; Agrogiannis, G.; Mahera, H.; Patsouris, E. Caspase-3 immunohistochemical expression is a marker of apoptosis, increased grade and early recurrence in intracranial meningiomas. Apoptosis, 2007, 12(4), 695-705.
[http://dx.doi.org/10.1007/s10495-006-0001-4] [PMID: 17143787]
[34]
McClung, J.M.; Kavazis, A.N.; DeRuisseau, K.C.; Falk, D.J.; Deering, M.A.; Lee, Y.; Sugiura, T.; Powers, S.K. Caspase-3 regulation of diaphragm myonuclear domain during mechanical ventilation-induced atrophy. Am. J. Respir. Crit. Care Med., 2007, 175(2), 150-159.
[http://dx.doi.org/10.1164/rccm.200601-142OC] [PMID: 17082496]