Proteome Based de novo Sequencing of Novel Conotoxins from Marine Molluscivorous Cone Snail Conus amadis and Neurological Activities of Its Natural Venom in Zebrafish Model

Page: [819 - 833] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Conus amadis is a carnivorous snail found abundantly in coastal waters of India. Despite its abundance in southern coastal waters of India and the fact that most of the conotoxin act in neuronal system, research work on Conus amadis venom was not much focused. So we have made a brief study on the venom complex of Conus amadis to identify the library of novel conotoxins and to screen the natural venom for neurological function.

Objective: De novo sequencing of novel conopeptides from the venom cocktail of Conus amadis and to screen its natural venom for the presence of biological activities in zebrafish model.

Methods: Proteome based MALDI-TOF and LC-MS-MS analysis for identification of novel conotoxins and subsequent sequencing. Due to the complex disulfide rich nature of the venom peptides, the study also involves global chemical modification experiments of the venom extract to unambiguously determine the sequence of novel conotoxins. Biological function analysis of natural venom was tested in zebrafish model to ascertain anti-epileptic properties.

Results: In this study, we have identified 19 novel conotoxins containing 1, 2 & 3 disulfides, belonging to different classes. Among them, 2 novel contryphans, 3 T-superfamily conotoxins, 2 A-superfamily conotoxins and 2 Mini M-Superfamily conotoxins were sequenced to its amino acid level from the fragmented spectrum of singly and doubly charged parent ions using de novo sequencing strategies. ama1054, a contryphan peptide toxin, possesses post translationally modified bromo tryptophan at its seventh position. Except ama1251, all the sequenced peptide toxins possess modified C-terminal amidation. Crude venom exhibited anticonvulsant properties in pentylenetetrazole-induced seizure in zebrafish larvae, which suggested anti-epileptic property of the venom cocktail. Acetylcholinesterase activity was also identified in the venom complex.

Conclusion: Based on the preliminary evidence, if this study is extended further through bioassay guided purification, could possibly yield peptide toxins with anticonvulsant and other neurologically active molecules.

Keywords: Conus amadis, conotoxin, antiepileptic drug, mass spectrometry, zebrafish, acetylcholinesterase activity.

Graphical Abstract

[1]
Vijayasarathy, M.; Basheer, S.M.; Franklin, J.B.; Balaram, P. Contryphan genes and mature peptides in the venom of nine cone snail species by transcriptomic and mass spectrometric analysis. J. Proteome Res., 2017, 16(2), 763-772.
[http://dx.doi.org/10.1021/acs.jproteome.6b00776] [PMID: 28152596]
[2]
Jensen, A.A.; Frølund, B.; Liljefors, T.; Krogsgaard-Larsen, P. Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. J. Med. Chem., 2005, 48(15), 4705-4745.
[http://dx.doi.org/10.1021/jm040219e] [PMID: 16033252]
[3]
Daly, N.L.; Craik, D.J. Structural studies of conotoxins. IUBMB Life, 2009, 61(2), 144-150.
[http://dx.doi.org/10.1002/iub.158] [PMID: 19165896]
[4]
Kaas, Q.; Yu, R.; Jin, A.H.; Dutertre, S.; Craik, D.J. ConoServer: updated content, knowledge, and discovery tools in the conopeptide database. Nucleic Acids Res., 2012, 40(Database issue), D325-D330.
[http://dx.doi.org/10.1093/nar/gkr886] [PMID: 22058133]
[5]
Akondi, K.B.; Muttenthaler, M.; Dutertre, S.; Kaas, Q.; Craik, D.J.; Lewis, R.J.; Alewood, P.F. Discovery, synthesis, and structure-activity relationships of conotoxins. Chem. Rev., 2014, 114(11), 5815-5847.
[http://dx.doi.org/10.1021/cr400401e] [PMID: 24720541]
[6]
Dao, F.Y.; Yang, H.; Su, Z.D.; Yang, W.; Wu, Y.; Hui, D.; Chen, W.; Tang, H.; Lin, H. Recent advances in conotoxin classification by using machine learning methods. Molecules, 2017, 22(7), 1057.
[http://dx.doi.org/10.3390/molecules22071057] [PMID: 28672838]
[7]
Vincent, A.; Beeson, D.; Lang, B. Molecular targets for autoimmune and genetic disorders of neuromuscular transmission. Eur. J. Biochem., 2000, 267(23), 6717-6728.
[http://dx.doi.org/10.1046/j.1432-1033.2000.01785.x] [PMID: 11082182]
[8]
Lamthanh, H.; Jegou-Matheron, C.; Servent, D.; Ménez, A.; Lancelin, J.M. Minimal conformation of the alpha-conotoxin ImI for the alpha7 neuronal nicotinic acetylcholine receptor recognition: Correlated CD, NMR and binding studies. FEBS Lett., 1999, 454(3), 293-298.
[http://dx.doi.org/10.1016/S0014-5793(99)00831-5] [PMID: 10431825]
[9]
Sudarslal, S.; Majumdar, S.; Ramasamy, P.; Dhawan, R.; Pal, P.P.; Ramaswami, M.; Lala, A.K.; Sikdar, S.K.; Sarma, S.P.; Krishnan, K.S.; Balaram, P. Sodium channel modulating activity in a δ-conotoxin from an Indian marine snail. FEBS Lett., 2003, 553(1-2), 209-212.
[http://dx.doi.org/10.1016/S0014-5793(03)01016-0] [PMID: 14550575]
[10]
Sarma, S.P.; Senthil, K.; Sudarslal, G.; Prathima, I.; Ramasamy, P.; Sikdar, S.K.; Krishnan, K.S.; Balaram, P. Solution structure of Am2766: a highly hydrophobic d-conotoxin from Conus amadis that inhibits inactivation of brain voltage gated sodium channels. Chem. Biodivers., 2005, 2(4), 535-556.
[http://dx.doi.org/10.1002/cbdv.200590035] [PMID: 17192003]
[11]
Sabareesh, V.; Gowd, K.H.; Ramasamy, P.; Sudarslal, S.; Krishnan, K.S.; Sikdar, S.K.; Balaram, P. Characterization of contryphans from Conus loroisii and Conus amadis that target calcium channels. Peptides, 2006, 27(11), 2647-2654.
[http://dx.doi.org/10.1016/j.peptides.2006.07.009] [PMID: 16945451]
[12]
Vijayasarathy, M.; Basheer, S.M.; Balaram, P. Cone snail glutaminyl cyclase sequences from transcriptomic analysis and mass spectrometric characterization of two pyroglutamyl conotoxins. J. Proteome Res., 2018, 17(8), 2695-2703.
[http://dx.doi.org/10.1021/acs.jproteome.8b00132] [PMID: 29947227]
[13]
Thurman, D.J.; Beghi, E.; Begley, C.E.; Berg, A.T.; Buchhalter, J.R.; Ding, D.; Hesdorffer, D.C.; Hauser, W.A.; Kazis, L.; Kobau, R.; Kroner, B.; Labiner, D.; Liow, K.; Logroscino, G.; Medina, M.T.; Newton, C.R.; Parko, K.; Paschal, A.; Preux, P.M.; Sander, J.W.; Selassie, A.; Theodore, W.; Tomson, T.; Wiebe, S. Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia, 2011, 52(Suppl. 7), 2-26.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03121.x] [PMID: 21899536]
[14]
Romanelli, P.; Striano, P.; Barbarisi, M.; Coppola, G.; Anschel, D.J. Non-resective surgery and radiosurgery for treatment of drug-resistant epilepsy. Epilepsy Res., 2012, 99(3), 193-201.
[http://dx.doi.org/10.1016/j.eplepsyres.2011.12.016] [PMID: 22245137]
[15]
Feng, W.H.; Zan, J.B.; Zhu, Y.P. Advances in study of structures and functions of conantokins. Zhejiang Univ. Med. Sci., 2007, 36, 204-208.
[16]
Jackson, H.C.; Scheideler, M.A. Behavioural and anticonvulsant effects of Ca2+ channel toxins in DBA/2 mice. Psychopharmacology (Berl.), 1996, 126(1), 85-90.
[http://dx.doi.org/10.1007/BF02246415] [PMID: 8853221]
[17]
Dooley, K.; Zon, L.I. Zebrafish: a model system for the study of human disease. Curr. Opin. Genet. Dev., 2000, 10(3), 252-256.
[http://dx.doi.org/10.1016/S0959-437X(00)00074-5] [PMID: 10826982]
[18]
Baraban, S.C.; Taylor, M.R.; Castro, P.A.; Baier, H. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience, 2005, 131(3), 759-768.
[http://dx.doi.org/10.1016/j.neuroscience.2004.11.031] [PMID: 15730879]
[19]
Baraban, S.C. Emerging epilepsy models: insights from mice, flies, worms and fish. Curr. Opin. Neurol., 2007, 20(2), 164-168.
[http://dx.doi.org/10.1097/WCO.0b013e328042bae0] [PMID: 17351486]
[20]
Franklin, B.J.; Subramanian, K.A.; Fernando, A.S.; Krishnan, K.S. Diversity and distribution of conidae from the Tamil Nadu coast of India (Mollusca: Caenogastropoda: Conidae). Zootaxa, 2009, 2250, 1-6.
[21]
Thakur, S.S.; Balaram, P. Rapid mass spectral identification of contryphans. Detection of characteristic peptide ions by fragmentation of intact disulfide-bonded peptides in crude venom. Rapid Commun. Mass Spectrom., 2007, 21(21), 3420-3426.
[http://dx.doi.org/10.1002/rcm.3225] [PMID: 17902199]
[22]
Rajesh, R.P. Novel M-Superfamily and T-Superfamily conotoxins and contryphans from the vermivorous snail Conus figulinus. J. Pept. Sci., 2015, 21(1), 29-39.
[http://dx.doi.org/10.1002/psc.2715] [PMID: 25420928]
[23]
Franklin, J.B.; Rajesh, R.P. A sleep-inducing peptide from the venom of the Indian cone snail Conus araneosus. Toxicon, 2015, 103, 39-47.
[http://dx.doi.org/10.1016/j.toxicon.2015.06.017] [PMID: 26100663]
[24]
Franklin, J.B.; Rajesh, R.P.; Vinithkumar, N.V.; Kirubagaran, R. Identification of short single disulfide-containing contryphans from the venom of cone snails using de novo mass spectrometry-based sequencing methods. Toxicon, 2017, 132, 50-54.
[http://dx.doi.org/10.1016/j.toxicon.2017.04.003] [PMID: 28400262]
[25]
Berghmans, S.; Hunt, J.; Roach, A.; Goldsmith, P. Zebrafish offer the potential for a primary screen to identify a wide variety of potential anticonvulsants. Epilepsy Res., 2007, 75(1), 18-28.
[http://dx.doi.org/10.1016/j.eplepsyres.2007.03.015] [PMID: 17485198]
[26]
Solnica-Krezel, L.; Schier, A.F.; Neuhauss, S.C.; Malicki, J.; Stemple, D.L.; Stainier, D.Y.; Zwartkruis, F.; Abdelilah, S.; Rangini, Z.; Belak, J.; Boggs, C. A genetic screen for mutations affecting embryogenesis in zebrafish. Development, 1996, 123, 37-46.
[PMID: 9007227]
[27]
Ferreira, A.; Proença, C.; Serralheiro, M.L.; Araújo, M.E. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J. Ethnopharmacol., 2006, 108(1), 31-37.
[http://dx.doi.org/10.1016/j.jep.2006.04.010] [PMID: 16737790]
[28]
Mathew, M.; Subramanian, S. In vitro screening for anti-cholinesterase and antioxidant activity of methanolic extracts of ayurvedic medicinal plants used for cognitive disorders. PLoS One, 2014, 9(1)e86804
[http://dx.doi.org/10.1371/journal.pone.0086804] [PMID: 24466247]
[29]
Fainzilber, M.; Nakamura, T.; Gaathon, A.; Lodder, J.C.; Kits, K.S.; Burlingame, A.L.; Zlotkin, E. A new cysteine framework in sodium-channel blocking conotoxins. Biochemistry, 1995, 34, 8649-8656.
[30]
Hasson, A.; Fainzilber, M.; Zlotkin, E.; Spira, M. Electro-physiological characterization of a novel conotoxin that blocks molluscan sodium channels. Eur. J. Neurosci., 1995, 7(4), 815-818.
[31]
Vijayasarathy, M.; Balaram, P. Mass spectrometric identification of bromotryptophan containing conotoxin sequences from the venom of C. amadis. Toxicon, 2018, 144, 68-74.
[http://dx.doi.org/10.1016/j.toxicon.2018.02.005] [PMID: 29447903]
[32]
Jakubowski, J.A.; Kelley, W.P.; Sweedler, J.V. Screening for post-translational modifications in conotoxins using liquid chromatography/mass spectrometry: an important component of conotoxin discovery. Toxicon, 2006, 47(6), 688-699.
[http://dx.doi.org/10.1016/j.toxicon.2006.01.021] [PMID: 16574181]
[33]
Craig, A.G.; Jimenéz, E.C.; Dykert, J.; Nielsen, D.B.; Gulyas, J.; Abogadie, F.C.; Porter, J.; Rivier, J.E.; Cruz, L.J.; Olivera, B.M.; McIntosh, J.M. A novel post-translational modification involving bromination of tryptophan. Identification of the residue, L-6-bromotryptophan, in peptides from Conus imperialis and Conus radiatus venom. J. Biol. Chem., 1997, 272(8), 4689-4698.
[http://dx.doi.org/10.1074/jbc.272.8.4689] [PMID: 9030520]
[34]
Bittner, S.; Scherzer, R.; Harlev, E. The five bromotryptophans. Amino Acids, 2007, 33(1), 19-42.
[http://dx.doi.org/10.1007/s00726-006-0441-8] [PMID: 17031473]
[35]
Whittaker, V.P. The contribution of drugs and toxins to understanding of cholinergic function. Trends Pharmacol. Sci., 1990, 11(1), 8-13.
[http://dx.doi.org/10.1016/0165-6147(90)90034-6] [PMID: 2408211]
[36]
Conus geographus Linnaeus, 1758. Available from: http://penelope.uchicago.edu/~grout/encyclopaedia_romana/aconite/geographus.html (accessed on Nov 15, 2018).