[5]
Ohloff, G. Classification and genesis of food flavours. Flavour Ind., 1972, 3, 501-508.
[8]
Yadav, G.D. Friedel-Crafts reactions in fragrance and flavour industry:current practices and scope for heterogeneous acid catalysis; Perfum. Flavours Assoc.: India, 1994, pp. 13-20.
[10]
Zaijun, L. Recent development in green synthesis. Synth. Catal., 2016, 1, 1-2.
[13]
Erman, W.E. Chemistry of the Monoterpenes, An Encyclopedic Handbook; Marcel Dekker: New York, 1985.
[15]
Comelli, N.; Avila, M.C.; Volzone, C.; Ponzi, M. Hydration of α-pinene catalyzed by acid clays. Cent. Eur. J. Chem., 2013, 11(5), 689-697.
[16]
van der Waal. Jan C.; van Bekkum, H.; Vital, J. M. The hydration and isomerization of α-pinene over zeolite beta. A new coupling reaction betwen α-pinene and ketones. J. Mol. Cataiysis. A. Chem, 1996, 105, 185-192.
[30]
Castanheiro, M.C.S.P.E. Alkoxylation of terpenes over tungstophosphoric acid immobilised on silica support.Environmentally Benign Catalysts; Springer: Dordrecht, 2013, pp. 153-164.
[31]
Sell, D. P. and C. The Chemistry of Fragrances; Royal Society of Chemistry: London; Royal Society of Chemistry: London, 1999.
[32]
Gscheidmeier, M.; Haberlein, H.; Haberlein, J.; Christian, H. Process
for the preparation of camphene by the rearrangement of apinene U.S. Patent, 5,826,202. 1998.
[34]
Ponzi, E.; Masini, O.; Comelli, N.; Grzona, L.; Carrascull, A.M.P. Isomerization of a -pinen. Influence of the concentration of iron in sulphate circonious oxide. Bull. Chil. Soc. Chem., 1999, 44(3), 271-277.
[40]
Li, Y.; Wang, C.; Chen, H.; Hua, W.; Yue, Y.; Gao, Z. Isomerization of α-pinene over porous phosphate heterostructure materials: Effects of porosity and acidity. Catal. Lett., 2009, 131(3-4), 560-565.
[41]
Tzompantzi, F.; Valverde, M.; Pérez-Larios, A.; Rico, J.L.; Mantilla, A.; Gómez, R. Synthesis of camphene by α-pinene isomerization using W2O3-Al2O3 catalysts. Top. Catal., 2010, 53(15-18), 1176-1178.
[42]
Davis, C.B. and J. J. M. Catalytic Isomerization of α-pinene. U.S.
Patent 3,824 135 1974.
[43]
Nora, A. Comelli, Liliana M. Grzona, Omar Masini, E. N. P. and M. I. P. Obtention of camphene with H3PW12O40 catalysts supported on TiO2, SiO2 and ZrO2nH2O. J. Chil. Chem. Soc., 2004, 49(3), 245-250.
[44]
Frattini, L.; Isaacs, M.A.; Parlett, C.M.A.; Wilson, K.; Kyriakou, G.; Lee, A.F. Support enhanced α-pinene isomerization over HPW/SBA-15. Appl. Catal. B Environ, 2017, 200, 10-18.
[59]
Eggersdorfer, M. Ullmann’s Encyclopedia of Industrial Chemistry, Terpenes.Ullmann’s encyclopedia of industrial chemistry, Terpenes; Wiley-VCH: Weinheim, 2012, pp. 419-460.
[86]
Carey, F.A.; Sundberg, R.J. Advanced Organic Chemisty Part B:Reactions and Synthesis; Springer: US, 1990.
[94]
Yadav, G.D. Synergism of clay and heteropoly acids as nano-catalysts for the development of green processes with potential industrial applications. Catal. Surv. from Asia, 2005, 9(2), 117-137.
[95]
Alimelzci, A.; Halit, B.L.H. Synthesis of isobutyl propionate using amberlyst 15 is as a catalyst. Proceeding Eur. Congr. Chem. Eng. EccE-6, Copenhagen, 16-20 September 2007.
[98]
Fang, M.; Chen, K.; Zhang, J.; Yan, W.; Tang, X.; Han, X. Synthesis of isoamyl acetate using polyoxometalate-based sulfonated ionic liquid as catalyst. Indian J. Chem A., 2014, 53, 1485-1492.
[101]
Xu, M.; Yuan, H.; Liu, W.; Wang, J.; Yang, F.Z. Catalytic synthesis of isoamyl acetate catalyzed by (NH4)6 [MnMo9O32 8H2O supported activated carbon with waugh structure. Adv. Mat. Res., 2013, 781-784, 190-193.
[102]
Liu, S.H.; Wang, L.X.; Guo, L.L.; Yuan, H.; Yang, F.Z. Catalytic synthesis of benzyl acetate by anion exchange resin supported Waugh-type (NH4)6 [MnMo9O32]•8H2O. Adv. Mat. Res., 2013, 750–752, 1227-1230.
[105]
Yadav, G.D.; Sharma, M.M. Kinetics of reaction of benzyl chloride with sodium acetate/benzoate: Phase transfer catalysis in solid-liquid system. Ind. Eng. Chem. Process Des. Dev., 1981, 20(2), 385-390.
[106]
D’Souza, J.; Nagaraju, N. Esterification of salicylic acid with methanol/dimethyl carbonate over anion-modified metal oxides. Indian J. Chem. Technol., 2007, 14(3), 292-300.
[108]
Ramishvili, T.; Tsitsishvili, V.; Chedia, R.; Sanaia, E.; Gabunia, V.; Kokiashvili, N. Preparation of ultradispersed crystallites of modified natural clinoptilolite with the use of ultrasound and its application as a catalyst in the synthesis of methyl salicylate. Am. J. Nano Res. App., 2017, 5, 26-32.
[109]
Molleti, J.; Yadav, G.D. Green synthesis of methyl salicylate using novel sulfated iron oxide–zirconia catalyst. Clean Technol. Environ. Policy, 2019, 21(3), 533-545.
[111]
Yadav, G.D.; Mehta, P.H. Solid acid catalyzed esterification of cyclohexanol with acetic acid. Indian Chem. Eng., 1993, 35(4), 179-185.
[113]
Yadav, G.D.; Krishnan, M.S. An ecofriendly catalytic route for the preparation of perfumery grade methyl anthranilate from anthranilic acid and methanol. Org. Process Res. Dev., 1998, 2(2), 86-95.
[114]
Yadav, G.D.; Rahuman, M.S.M.M. Activities of clays and ion exchange resins in the synthesis of phthalate esters. Clean Technol. Environ. Policy, 2004, 6(2), 114-119.
[116]
Yadav, G.D.; Pujari, A.A. Kinetics of acetalization of perfumery aldehydes with alkanols over solid acid catalysts. Can. J. Chem. Eng., 1999, 77(3), 489-496.
[117]
Yadav, G.D.; Kadam, A.A. Selective engineering using Mg-Al calcined hydrotalcite and microwave irradiation in mono-transesterification of diethyl malonate with cyclohexanol. Chem. Eng. J., 2013, 230, 547-557.
[118]
Yadav, G.D.; Murkute, A.D. Kinetics of synthesis of perfumery grade p-tert-butylcyclohexyl acetate over ion exchange resin. Int. J. Chem. React. Eng., 2003, 1, 1-11.
[127]
Bhanawase, S.L.; Yadav, G.D. Novel alkali-promoted hydrotalcite for selective synthesis of 2-methoxy phenyl benzoate from guaiacol and benzoic anhydride. Clean Technol. Environ. Policy, 2017, 19(4), 1169-1180.
[128]
Horchani, H.; Ben Salem, N.; Zarai, Z.; Sayari, A.; Gargouri, Y.; Chaâbouni, M. Enzymatic Synthesis of eugenol benzoate by immobilized Staphylococcus aureus lipase: Optimization using response surface methodology and determination of antioxidant activity. Bioresour. Technol., 2010, 101(8), 2809-2817.
[129]
Manan, F.M.A.; Attan, N.; Zakaria, Z.; Keyon, A.S.A.; Wahab, R.A. Enzymatic esterification of eugenol and benzoic acid by a novel chitosan-chitin nanowhiskers supported Rhizomucor miehei lipase: Process optimization and kinetic assessments. Enzyme Microb. Technol., 2018, 108, 42-52.
[130]
Yadav, G.D.; Yadav, A.R. Insight into esterification of eugenol to eugenol benzoate using a solid super acidic modified zirconia catalyst UDCaT-5. Chem. Eng. J., 2012, 192, 146-155.
[131]
Tiwari, M.S.; Yadav, G.D. Kinetics of Friedel-Crafts benzoylation of veratrole with benzoic anhydride using Cs2.5H0.5PW12O40/K-10 solid acid catalyst. Chem. Eng. J., 2015, 266, 64-73.
[132]
Yadav, G.D.; George, G. Single step synthesis of 4-hydroxybenzophenone via esterification and Fries rearrangement: Novelty of cesium substituted heteropoly acid supported on clay. J. Mol. Catal. A. Chem., 2008, 292(1–2), 54-61.
[133]
Chaube, V.D.; Moreau, P.; Finiels, A.; Ramaswamy, A.V.; Singh, A.P. A Novel single step selective synthesis of 4-hydroxybenzophenone (4-HBP) using zeolite H-beta. Catal. Lett., 2002, 79(1), 89-94.
[134]
Yadav, G.D.; Satoskar, D.V. Kinetics of epoxidation of alkyl esters of undecylenic acid: Comparison of traditional routes vs. Ishii-Venturello chemistry. J. Am. Oil Chem. Soc., 1997, 74(4), 397-407.
[145]
Sharma, P. Cinnamic acid derivatives: a new chapter of various pharmacological activities. J. Chem. Pharm. Res., 2011, 3(2), 403-423.
[146]
Yufeng, C. An overview on synthetic methods of alkyl cinnamates. Eur. Chem. Bull., 2013, 2(2), 76-77.
[150]
Nitta, M.; Aomura, K.; Yamaguchi, K. Alkylation of phenols. II. The selective formation of thymol from m-cresol and propylene with a γ-alumina catalyst. Bull. Chem. Soc. Jpn., 1974, 2630-2364.
[151]
Biederman, W.; Koller, H.; Wedemeyer, K. Process for preparation
of thymol. U.S. Patent 4,086,283, 1978.
[152]
Wimmer, P.; Buysch, H.J.; Puppe, L. Process for the preparation of thymol. U.S. Patent 5,030,770, 1991.
[155]
Umamaheswari, V.; Palanichamy, M.; Arabindoo, B.; Murugesan, V. Regioselective t-butylation of m-cresol over mesoporous Al-MCM-41 molecular sieves. Indian J. Chem. Sect. A, 2000, 39(12), 1241-1247.
[165]
Baldev, S.; Jyoti, P.; Parveen, S.; Suresh, C.; Pinki, K.; Sudip, M. Role of acidity for the production of carvacrol from carvone over sulphated zircona. Indian J. Chem. Technol., 2011, 18, 21-28.
[169]
Yadav, G.D.; Bisht, P.M. Selectivity engineering in multiphase transfer catalysis in the preparation of aromatic ethers. J. Mol. Catal. A. Chem., 2004, 223(1–2), 93-100.
[170]
Yadav, G.D.; Tekale, S.P. Selective O -alkylation of 2-naphthol using phosphonium-based ionic liquid as the phase transfer catalyst. Org. Process Res. Dev., 2010, 14(3), 722-727.
[171]
Yadav, G.D. Insight into green phase transfer catalysis. Top. Catal., 2004, 29(3), 145-161.
[176]
Yadav, G.D.; Ramesh, P. Selectivity engineering in the O-versus C-alkylation of p-cresol with cyclohexene over sulfated Zirconia. Can. J. Chem. Eng., 2000, 78(5), 917-927.
[178]
Yadav, G.D.; Bokade, V.V. Novelties of heteropoly acid supported on clay: Etherification of phenethyl alcohol with alkanols. Appl. Catal. A Gen., 1996, 147(2), 299-323.
[179]
Yadav, G.D.; Salunke, J.Y. Selectivity engineering of solid base catalyzed O-methylation of 2-naphthol with dimethyl carbonate to 2-Methoxynaphthalene. Catal. Today, 2013, 207, 180-190.
[196]
Wagh, D.P.; Yadav, G.D. Green synthesis of alpha-methylcinnamaldehyde via Claisen-Schmidt condensation of benzaldehyde with propanal over Mg–Zr mixed oxide supported on HMS. Mol. Catal., 2018, 459, 119-128.
[197]
Vrbková, E.; Vyskočilová, E.; Červený, L. Potassium modified alumina as a catalyst for the aldol condensation of benzaldehyde with linear C3–C8 aldehydes. React. Kinet. Mech. Catal., 2017, 121(1), 307-316.
[198]
Tichit, D.; Coq, B.; Cerneaux, S.; Durand, R. Condensation of aldehydes for environmentally friendly synthesis of 2-methyl-3-phenyl-propanal by heterogeneous catalysis. Catal. Today, 2002, 75(1–4), 197-202.
[222]
Han, X.; Zhou, R.; Zheng, X. Hydrogenation of cinnamaldehyde over Pt/ZrO2 catalyst modified by Cr, Mn, Fe, Co, Ni and Sn. Indian J. Chem., 2006, 45(7), 1646-1650.
[232]
Maurel, D.G.F. Activity and selectivity of Pt−Fe/C alloys for the liquid phase hydrogenation of cinnamaldehyde to cinnamyl alcohol. React. Kinet. Catal. Lett., 1987, 35(1–2), 185-193.
[233]
Nakhate, A.V.; Yadav, G.D. Synthesis and characterization of sulfonated carbon-based graphene oxide monolith by solvothermal carbonization for esterification and unsymmetrical ether formation. ACS Sustain. Chem.& Eng., 2016, 4(4), 1963-1973.
[259]
Tungler, A.; Mathe, T.; Bende, Z.; Petro, J. Stereoselelctive hydrogenation of thymol. Appl. Catal., 1985, 19, 365-374.
[260]
Galo Cárdenas, T.; Ricardo Oliva, C.P.R.N. Catalytic hydrogenation of thymol over Pd/MgO prepared by SMAD method. J. Chil. Chem. Soc., 2006, 51(4), 1053-1056.
[261]
Dudas, J.; Hanika, J.; Lepuru, J.; Barkhuysen, M. Thymol hydrogenation in bench scale trickle bed reactor. Chem. Biochem. Eng. Q., 2005, 19(3), 255-262.
[262]
Yadav, G.D.; Goel, P.K. Stereoselective hydrogenation of p-tert-butylphenol over supported rhodium catalyst. J. Mol. Catal. A. Chem., 2002, 184(1–2), 281-288.
[264]
Bajaj, H.; Abdi, S.; Kureshy, R.; Khan, N.; Dabbawala, A.; Roy, T. Hydrogenation of styrene oxide forming 2-phenyl ethanol. U.S. Patent 2015 9,040,755 B2, [May 26, 2015].
[266]
Yadav, G.D.; Lawate, Y.S. Selective hydrogenation of styrene oxide to 2-phenyl ethanol over polyurea supported Pd-Cu catalyst in supercritical carbon dioxide. J. Supercrit. Fluids, 2011, 59, 78-86.
[268]
Patankar, S.C.; Dodiya, S.K.; Yadav, G.D. Cascade engineered synthesis of ethyl benzyl acetoacetate and methyl isobutyl ketone (MIBK) on novel multifunctional catalyst. J. Mol. Catal. A Chem., 2015, 409, 171-182.
[274]
Yadav, G.D.; Sharma, R.V. Synthesis, characterization and applications of highly active and robust sulfated Fe-TiO2 Catalyst (ICT-3) with superior redox and acidic properties. J. Catal., 2014, 311, 121-128.
[295]
Yadav, G.D.; Haldavanekar, B.V. Mechanistic and kinetic investigation of liquid-liquid phase transfer catalyzed oxidation of benzyl chloride to benzaldehyde. J. Phys. Chem. A, 1997, 101(1), 36-48.
[296]
Yadav, G.D.; Haldavanekar, B.V. Selectivity engineering with polymer-supported reagents: Oxidation of benzyl chloride to benzaldehyde. React. Funct. Polym., 1997, 32(2), 187-194.
[297]
Yadav, G.D.; Mistry, C.K. A New model of capsule membrane phase transfer catalysis for oxidation of benzyl chloride to benzaldehyde with hydrogen peroxide. J. Mol. Catal. A. Chem., 1995, 102(2), 67-72.
[298]
Mark, J.W. Dignum, Josef Kerler, and R. V. Vanilla production: Technological, chemical, and biosynthetic aspects. Food Rev. Int., 2001, 17(2), 199-219.
[299]
Yepez, R.; García, S.; Schachat, P.; Sánchez-Sánchez, M.; González-Estefan, J.H.; González-Zamora, E.; Ibarra, I.A.; Aguilar-Pliego, J. Catalytic activity of HKUST-1 in the oxidation of trans-ferulic acid to vanillin. New J. Chem., 2015, 39(7), 5112-5115.
[307]
Longo, M.A.; Sanromán, M.A. Production of food aroma compounds: microbial and enzymatic methodologies. Food Technol. Biotechnol., 2006, 44(3), 335-353.