Protein Misfolding Diseases and Therapeutic Approaches

Page: [1226 - 1245] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Protein folding is the process by which a polypeptide chain acquires its functional, native 3D structure. Protein misfolding, on the other hand, is a process in which protein fails to fold into its native functional conformation. This misfolding of proteins may lead to precipitation of a number of serious diseases such as Cystic Fibrosis (CF), Alzheimer’s Disease (AD), Parkinson’s Disease (PD), and Amyotrophic Lateral Sclerosis (ALS) etc. Protein Quality-control (PQC) systems, consisting of molecular chaperones, proteases and regulatory factors, help in protein folding and prevent its aggregation. At the same time, PQC systems also do sorting and removal of improperly folded polypeptides. Among the major types of PQC systems involved in protein homeostasis are cytosolic, Endoplasmic Reticulum (ER) and mitochondrial ones. The cytosol PQC system includes a large number of component chaperones, such as Nascent-polypeptide-associated Complex (NAC), Hsp40, Hsp70, prefoldin and T Complex Protein-1 (TCP-1) Ring Complex (TRiC). Protein misfolding diseases caused due to defective cytosolic PQC system include diseases involving keratin/collagen proteins, cardiomyopathies, phenylketonuria, PD and ALS. The components of PQC system of Endoplasmic Reticulum (ER) include Binding immunoglobulin Protein (BiP), Calnexin (CNX), Calreticulin (CRT), Glucose-regulated Protein GRP94, the thiol-disulphide oxidoreductases, Protein Disulphide Isomerase (PDI) and ERp57. ER-linked misfolding diseases include CF and Familial Neurohypophyseal Diabetes Insipidus (FNDI). The components of mitochondrial PQC system include mitochondrial chaperones such as the Hsp70, the Hsp60/Hsp10 and a set of proteases having AAA+ domains similar to the proteasome that are situated in the matrix or the inner membrane. Protein misfolding diseases caused due to defective mitochondrial PQC system include medium-chain acyl-CoA dehydrogenase (MCAD)/Short-chain Acyl-CoA Dehydrogenase (SCAD) deficiency diseases, hereditary spastic paraplegia. Among therapeutic approaches towards the treatment of various protein misfolding diseases, chaperones have been suggested as potential therapeutic molecules for target based treatment. Chaperones have been advantageous because of their efficient entry and distribution inside the cells, including specific cellular compartments, in therapeutic concentrations. Based on the chemical nature of the chaperones used for therapeutic purposes, molecular, chemical and pharmacological classes of chaperones have been discussed.

Keywords: Protein folding, protein misfolding, protein aggregation, molecular chaperones, pharmacological chaperones, protein misfolding diseases.

Graphical Abstract

[1]
Dobson, C.M. Principles of protein folding, misfolding and aggregation. Semin.in Cell Dev. Biol., 2004, 15, 3-16.
[2]
Levinthal, C. Are there pathways for protein folding? J. Chim. Phys., 1968, 85, 44-45.
[3]
Hartl, F.U. Molecular chaperones in cellular protein folding. Nature, 1996, 381(6583), 571-579.
[4]
Dinner, A.R.; Sali, A.; Smith, L.J.; Dobson, C.M.; Karplus, M. Understanding protein folding via free-energy surfaces from theory and experiment. Trends Biochem. Sci., 2000, 25(7), 331-339.
[5]
Bryngelson, J.D.; Onuchic, J.N.; Socci, N.D.; Wolynes, P.G. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins, 1995, 21(3), 167-195.
[6]
Jahn, T.R.; Radford, S.E. The Yin and Yang of protein folding. FEBS J., 2005, 272(23), 5962-5970.
[7]
Leopold, P.E.; Montal, M.; Onuchic, J.N. Protein folding funnels: A kinetic approach to the sequence-structure relationship. Proc. Natl. Acad. Sci. USA, 1992, 89(18), 8721-8725.
[8]
Doyle, R.; Simons, K.; Qian, H.; Baker, D. Local interactions and the optimization of protein folding. Proteins, 1997, 29(3), 282-291.
[9]
Jackson, S.E. How do small single-domain proteins fold? Fold. Des., 1998, 3(4), R81-R91.
[10]
Fersht, A.R. Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding; WH Freeman and Company: New York, 1999.
[11]
Fersht, A.R. Transition-state structure as a unifying basis in protein-folding mechanisms: contact order, chain topology, stability, and the extended nucleus mechanism. Proc. Natl. Acad. Sci. USA, 2000, 97(4), 1525-1529.
[12]
Vendruscolo, M.; Paci, E.; Dobson, C.M.; Karplus, M. Three key residues form a critical contact network in a transition state for protein folding. Nature, 2001, 409, 641-646.
[13]
Makarov, D.E.; Plaxco, K.W. The topomer search model: A simple, quantitative theory of two-state protein folding kinetics. Protein Sci., 2003, 12(1), 17-26.
[14]
Davis, R.; Dobson, C.M.; Vendruscolo, M. Determination of the structures of distinct transition state ensembles for β-sheet peptide with parallel folding pathways. J. Chem. Phys., 2002, 117, 9510-9517.
[15]
Plaxco, K.W.; Simons, K.T.; Baker, D. Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol., 1998, 277(4), 985-994.
[16]
Branden, C.; Tooze, J. Introduction to protein structure; (2nd ed. ). Garland Publishing, 1999.
[17]
Dobson, C.M.; Šali, A.; Karplus, M. Protein folding: A perspective from theory and experiment. Angew. Chem. Int. Ed. Engl., 1998, 37(7), 868-893.
[18]
Baker, D. A surprising simplicity to protein folding. Nature, 2000, 405(6782), 39-42.
[19]
Bao, W.; Chen, Y.; Wang, D. Prediction of protein structure classes with flexible neural tree. Biomed. Mater. Eng., 2014, 24(6), 3797-3806.
[20]
Bao, W.; Wang, D.; Chen, Y. Classification of protein structure classes on flexible neutral tree. IEEE/ACMTCBB, 2017, 14, 1122-1133.
[21]
Cheung, M.S.; García, A.E.; Onuchic, J.N. Protein folding mediated by solvation: water expulsion and formation of the hydrophobic core occur after the structural collapse. Proc. Natl. Acad. Sci. USA, 2002, 99(2), 685-690.
[22]
Aliev, G.; Seyidova, D.; Neal, M.L.; Shi, J.; Lamb, B.T.; Siedlak, S.L.; Vinters, H.V.; Head, E.; Perry, G.; Lamanna, J.C.; Friedland, R.P.; Cotman, C.W. Atherosclerotic lesions and mitochondria DNA deletions in brain microvessels as a central target for the development of human AD and AD-like pathology in aged transgenic mice. Ann. N. Y. Acad. Sci., 2002, 977, 45-64.
[23]
Campioni, S.; Monsellier, E.; Chiti, F. Why proteins misfold. in: protein misfolding diseases: Current and emerging principles and therapies; Ramirez-Alvarado, M.; Kelly, J.W; Dobson, C.M. Eds.; Hoboken, NJ: John Wiley & Sons,. , 2010, pp. 3-20.
[24]
Speed, M.A.; Wang, D.I.; King, J. Specific aggregation of partially folded polypeptide chains: the molecular basis of inclusion body composition. Nat. Biotechnol., 1996, 14(10), 1283-1287.
[25]
Rajan, R.S.; Illing, M.E.; Bence, N.F.; Kopito, R.R. Specificity in intracellular protein aggregation and inclusion body formation. Proc. Natl. Acad. Sci. USA, 2001, 98(23), 13060-13065.
[26]
Dill, K.A.; MacCallum, J.L. The protein-folding problem, 50 years on. Science, 2012, 338(6110), 1042-1046.
[27]
Chiti, F.; Dobson, C.M. Protein misfolding, amyloid formation, and human disease: asummary of progress over the last decade. Annu. Rev. Biochem., 2017, 86, 27-68.
[28]
Ellis, R.J. Macromolecular crowding: An important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol., 2001, 11(1), 114-119.
[29]
Turner, G.C.; Varshavsky, A. Detecting and measuring cotranslational protein degradation in vivo. Science, 2000, 289(5487), 2117-2120.
[30]
Tsai, B.; Ye, Y.; Rapoport, T.A. Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat. Rev. Mol. Cell Biol., 2002, 3(4), 246-255.
[31]
Vabulas, M.R.; Raychaudhuri, S.; Hayer-Hartl, M.; Hartl, F.U. Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb. Perspect. Biol., 2010, 2(12)a004390
[32]
Spiess, C.; Meyer, A.S.; Reissmann, S.; Frydman, J. Mechanism of the eukaryotic chaperonin: Protein folding in the chamber of secrets. Trends Cell Biol., 2004, 14(11), 598-604.
[33]
Glickman, M.H.; Ciechanover, A. The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction. Physiol. Rev., 2002, 82(2), 373-428.
[34]
Kopito, R.R. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol., 2000, 10(12), 524-530.
[35]
Dobson, C.M. Protein folding and misfolding. Nature, 2003, 426(6968), 884-890.
[36]
Bucciantini, M.; Giannoni, E.; Chiti, F.; Baroni, F.; Formigli, L.; Zurdo, J.; Taddei, N.; Ramponi, G.; Dobson, C.M.; Stefani, M. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature, 2002, 416(6880), 507-511.
[37]
Kayed, R.; Head, E.; Thompson, J.L.; McIntire, T.M.; Milton, S.C.; Cotman, C.W.; Glabe, C.G. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science, 2003, 300(5618), 486-489.
[38]
Cecchi, C.; Baglioni, S.; Fiorillo, C.; Pensalfini, A.; Liguri, G.; Nosi, D.; Rigacci, S.; Bucciantini, M.; Stefani, M. Insights into the molecular basis of the differing susceptibility of varying cell types to the toxicity of amyloid aggregates. J. Cell Sci., 2005, 118(Pt 15), 3459-3470.
[39]
Mukai, H.; Isagawa, T.; Goyama, E.; Tanaka, S.; Bence, N.F.; Tamura, A.; Ono, Y.; Kopito, R.R. Formation of morphologically similar globular aggregates from diverse aggregation-prone proteins in mammalian cells. Proc. Natl. Acad. Sci. USA, 2005, 102(31), 10887-10892.
[40]
Levine, B.; Klionsky, D.J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell, 2004, 6(4), 463-477.
[41]
Malhotra, J.D.; Kaufman, R.J. In Endoplasmic Reticulum Stress and Oxidative Stress: mechanisms and Link to Disease; Ramirez-Alvarado, M.; Kelly, J.W.; Dobson, C.M., Eds.; Wiley and Sons Publication: New Jersey, 2010, pp. 47-72.
[42]
Schröder, M.; Kaufman, R.J. The mammalian unfolded protein response. Annu. Rev. Biochem., 2005, 74, 739-789.
[43]
Meusser, B.; Hirsch, C.; Jarosch, E.; Sommer, T. ERAD: the long road to destruction. Nat. Cell Biol., 2005, 7(8), 766-772.
[44]
Sekijima, Y.; Wiseman, R.L.; Matteson, J.; Hammarström, P.; Miller, S.R.; Sawkar, A.R.; Balch, W.E.; Kelly, J.W. The biological and chemical basis for tissue-selective amyloid disease. Cell, 2005, 121(1), 73-85.
[45]
Taylor, S.W.; Fahy, E.; Ghosh, S.S. Global organellar proteomics. Trends Biotechnol., 2003, 21(2), 82-88.
[46]
Wiedemann, N.; Frazier, A.E.; Pfanner, N. The protein import machinery of mitochondria. J. Biol. Chem., 2004, 279(15), 14473-14476.
[47]
Young, J.C.; Hoogenraad, N.J.; Hartl, F.U. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell, 2003, 112(1), 41-50.
[48]
Käser, M.; Langer, T. Protein degradation in mitochondria. Semin. Cell Dev. Biol., 2000, 11(3), 181-190.
[49]
Gámez, A.; Pérez, B.; Ugarte, M.; Desviat, L.R. Expression analysis of phenylketonuria mutations. Effect on folding and stability of the phenylalanine hydroxylase protein. J. Biol. Chem., 2000, 275(38), 29737-29742.
[50]
Gámez, A.; Yuste-Checa, P.; Brasil, S.; Briso-Montiano, Á.; Desviat, L.R.; Ugarte, M.; Pérez-Cerdá, C.; Pérez, B. Protein misfolding diseases: Prospects of pharmacological treatment. Clin. Genet., 2018, 93(3), 450-458.
[51]
Sanbe, A.; Osinska, H.; Saffitz, J.E.; Glabe, C.G.; Kayed, R.; Maloyan, A.; Robbins, J. Desmin-related cardiomyopathy in transgenic mice: A cardiac amyloidosis. Proc. Natl. Acad. Sci. USA, 2004, 101(27), 10132-10136.
[52]
Vang, S.; Corydon, T.J.; Børglum, A.D.; Scott, M.D.; Frydman, J.; Mogensen, J.; Gregersen, N.; Bross, P. Actin mutations in hypertrophic and dilated cardiomyopathy cause inefficient protein folding and perturbed filament formation. FEBS J., 2005, 272(8), 2037-2049.
[53]
Fatkin, D.; Seidman, C.E.; Seidman, J.G. Genetics and disease of ventricular muscle. Cold Spring Harb. Perspect. Med., 2014, 4(1)a021063
[54]
Vicart, P.; Caron, A.; Guicheney, P.; Li, Z.; Prévost, M.C.; Faure, A.; Chateau, D.; Chapon, F.; Tomé, F.; Dupret, J.M.; Paulin, D.; Fardeau, M. A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat. Genet., 1998, 20(1), 92-95.
[55]
Moore, D.J.; West, A.B.; Dawson, V.L.; Dawson, T.M. Molecular pathophysiology of Parkinson’s disease. Annu. Rev. Neurosci., 2005, 28, 57-87.
[56]
Selkoe, D.J. Presenilin, Notch, and the genesis and treatment of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2001, 98(20), 11039-11041.
[57]
Bruijn, L.I.; Miller, T.M.; Cleveland, D.W. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci., 2004, 27, 723-749.
[58]
Andersen, P.M. Genetic factors in the early diagnosis of ALS. Amyotroph. Lateral Scler. Other Motor Neuron Disord., 2000, 1(Suppl. 1), S31-S42.
[59]
Gaudette, M.; Hirano, M.; Siddique, T. Current status of SOD1 mutations in familial amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord., 2000, 1(2), 83-89.
[60]
Bobadilla, J.L.; Macek, M., Jr; Fine, J.P.; Farrell, P.M. Cystic fibrosis: a worldwide analysis of CFTR mutations--correlation with incidence data and application to screening. Hum. Mutat., 2002, 19(6), 575-606.
[61]
Ward, C.L.; Kopito, R.R. Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J. Biol. Chem., 1994, 269(41), 25710-25718.
[62]
Mall, M.; Kreda, S.M.; Mengos, A.; Jensen, T.J.; Hirtz, S.; Seydewitz, H.H.; Yankaskas, J.; Kunzelmann, K.; Riordan, J.R.; Boucher, R.C. The DeltaF508 mutation results in loss of CFTR function and mature protein in native human colon. Gastroenterology, 2004, 126(1), 32-41.
[63]
Farinha, C.M.; Amaral, M.D. Most F508del-CFTR is targeted to degradation at an early folding checkpoint and independently of calnexin. Mol. Cell. Biol., 2005, 25(12), 5242-5252.
[64]
Lomas, D.A.; Parfrey, H. α1-antitrypsin deficiency. 4: Molecular pathophysiology. Thorax, 2004, 59(6), 529-535.
[65]
Schmidt, B.Z.; Perlmutter, D.H. Grp78, Grp94, and Grp170 interact with α1-antitrypsin mutants that are retained in the endoplasmic reticulum. Am. J. Physiol. Gastrointest. Liver Physiol., 2005, 289(3), G444-G455.
[66]
Perlmutter, D.H. Liver injury in α1-antitrypsin deficiency: an aggregated protein induces mitochondrial injury. J. Clin. Invest., 2002, 110(11), 1579-1583.
[67]
Teckman, J.H.; An, J.K.; Blomenkamp, K.; Schmidt, B.; Perlmutter, D. Mitochondrial autophagy and injury in the liver in α 1-antitrypsin deficiency. Am. J. Physiol. Gastrointest. Liver Physiol., 2004, 286(5), G851-G862.
[68]
Hidvegi, T.; Schmidt, B.Z.; Hale, P.; Perlmutter, D.H. Accumulation of mutant alpha1-antitrypsin Z in the endoplasmic reticulum activates caspases-4 and -12, NFkappaB, and BAP31 but not the unfolded protein response. J. Biol. Chem., 2005, 280(47), 39002-39015.
[69]
Rudnick, D.A.; Perlmutter, D.H. α-1-antitrypsin deficiency: a new paradigm for hepatocellular carcinoma in genetic liver disease. Hepatology, 2005, 42(3), 514-521.
[70]
Christensen, J.H.; Siggaard, C.; Rittig, S. Autosomal dominant familial neurohypophyseal diabetes insipidus. APMIS Suppl., 2003, 109(109), 92-95.
[71]
Christensen, J.H.; Siggaard, C.; Corydon, T.J.; Robertson, G.L.; Gregersen, N.; Bolund, L.; Rittig, S. Differential cellular handling of defective arginine vasopressin (AVP) prohormones in cells expressing mutations of the AVP gene associated with autosomal dominant and recessive familial neurohypophyseal diabetes insipidus. J. Clin. Endocrinol. Metab., 2004, 89(9), 4521-4531.
[72]
Siggaard, C.; Christensen, J.H.; Corydon, T.J.; Rittig, S.; Robertson, G.L.; Gregersen, N.; Bolund, L.; Pedersen, E.B. Expression of three different mutations in the arginine vasopressin gene suggests genotype-phenotype correlation in familial neurohypophyseal diabetes insipidus kindreds. Clin. Endocrinol. (Oxf.), 2005, 63(2), 207-216.
[73]
Gregersen, N.; Bross, P.; Andresen, B.S. Genetic defects in fatty acid β-oxidation and acyl-CoA dehydrogenases. Molecular pathogenesis and genotype-phenotype relationships. Eur. J. Biochem., 2004, 271(3), 470-482.
[74]
Casari, G.; De Fusco, M.; Ciarmatori, S.; Zeviani, M.; Mora, M.; Fernandez, P.; De Michele, G.; Filla, A.; Cocozza, S.; Marconi, R.; Dürr, A.; Fontaine, B.; Ballabio, A. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell, 1998, 93(6), 973-983.
[75]
Hansen, J.J.; Dürr, A.; Cournu-Rebeix, I.; Georgopoulos, C.; Ang, D.; Nielsen, M.N.; Davoine, C.S.; Brice, A.; Fontaine, B.; Gregersen, N.; Bross, P. Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am. J. Hum. Genet., 2002, 70(5), 1328-1332.
[76]
Atorino, L.; Silvestri, L.; Koppen, M.; Cassina, L.; Ballabio, A.; Marconi, R.; Langer, T.; Casari, G. Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia. J. Cell Biol., 2003, 163(4), 777-787.
[77]
Ellis, R.J. The general concept of molecular chaperones. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1993, 339(1289), 257-261.
[78]
Laskey, R.A.; Honda, B.M.; Mills, A.D.; Finch, J.T. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature, 1978, 275(5679), 416-420.
[79]
Barral, J.M.; Broadley, S.A.; Schaffar, G.; Hartl, F.U. Roles of molecular chaperones in protein misfolding diseases. Semin. Cell Dev. Biol., 2004, 15(1), 17-29.
[80]
Li, J.; Qian, X.; Sha, B. Heat shock protein 40: structural studies and their functional implications. Protein Pept. Lett., 2009, 16(6), 606-612.
[81]
Macario, A.J.L.; Conway de Macario, E. Chaperonopathies by defect, excess, or mistake. Ann. N. Y. Acad. Sci., 2007, 1113, 178-191.
[82]
Lupo, V.; Aguado, C.; Knecht, E.; Espinós, C. Chaperonopathies: spotlight on hereditary motor neuropathies. Front. Mol. Biosci., 2016, 3, 81.
[83]
Okamoto, T.; Yamamoto, H.; Kudo, I.; Matsumoto, K.; Odaka, M.; Grave, E.; Itoh, H. HSP60 possesses a GTPase activity and mediates protein folding with HSP10. Sci. Rep., 2017, 7(1), 16931.
[84]
Bross, P.; Naundrup, S.; Hansen, J.; Nielsen, M.N.; Christensen, J.H.; Kruhøffer, M.; Palmfeldt, J.; Corydon, T.J.; Gregersen, N.; Ang, D.; Georgopoulos, C.; Nielsen, K.L. The Hsp60-(p.V98I) mutation associated with hereditary spastic paraplegia SPG13 compromises chaperonin function both in vitro and in vivo. J. Biol. Chem., 2008, 283(23), 15694-15700.
[85]
Magen, D.; Georgopoulos, C.; Bross, P.; Ang, D.; Segev, Y.; Goldsher, D.; Nemirovski, A.; Shahar, E.; Ravid, S.; Luder, A.; Heno, B.; Gershoni-Baruch, R.; Skorecki, K.; Mandel, H. Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am. J. Hum. Genet., 2008, 83(1), 30-42.
[86]
Pilon, M.; Schekman, R. Protein translocation: How Hsp70 pulls it off. Cell, 1999, 97(6), 679-682.
[87]
Saleh, A.; Srinivasula, S.M.; Balkir, L.; Robbins, P.D.; Alnemri, E.S. Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat. Cell Biol., 2000, 2(8), 476-483.
[88]
Dougan, D.A.; Mogk, A.; Zeth, K.; Turgay, K.; Bukau, B. AAA+ proteins and substrate recognition, it all depends on their partner in crime. FEBS Lett., 2002, 529(1), 6-10.
[89]
Zhu, X.; Zhao, X.; Burkholder, W.F.; Gragerov, A.; Ogata, C.M.; Gottesman, M.E.; Hendrickson, W.A. Structural analysis of substrate binding by the molecular chaperone DnaK. Science, 1996, 272(5268), 1606-1614.
[90]
Flaherty, K.M.; McKay, D.B.; Kabsch, W.; Holmes, K.C. Similarity of the three-dimensional structures of actin and the ATPase fragment of a 70-kDa heat shock cognate protein. Proc. Natl. Acad. Sci. USA, 1991, 88(11), 5041-5045.
[91]
Rüdiger, S.; Germeroth, L.; Schneider-Mergener, J.; Bukau, B. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J., 1997, 16(7), 1501-1507.
[92]
Aghdassi, A.; Phillips, P.; Dudeja, V.; Dhaulakhandi, D.; Sharif, R.; Dawra, R.; Lerch, M.M.; Saluja, A. Heat shock protein 70 increases tumorigenicity and inhibits apoptosis in pancreatic adenocarcinoma. Cancer Res., 2007, 67(2), 616-625.
[93]
Cai, W.F.; Zhang, X.W.; Yan, H.M.; Ma, Y.G.; Wang, X.X.; Yan, J.; Xin, B.M.; Lv, X.X.; Wang, Q.Q.; Wang, Z.Y.; Yang, H.Z.; Hu, Z.W. Intracellular or extracellular heat shock protein 70 differentially regulates cardiac remodelling in pressure overload mice. Cardiovasc. Res., 2010, 88(1), 140-149.
[94]
Young, J.C.; Moarefi, I.; Hartl, F.U. Hsp90: A specialized but essential protein-folding tool. J. Cell Biol., 2001, 154(2), 267-273.
[95]
Bagatell, R.; Whitesell, L. Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol. Cancer Ther., 2004, 3(8), 1021-1030.
[96]
Clark, J.I.; Muchowski, P.J. Small heat-shock proteins and their potential role in human disease. Curr. Opin. Struct. Biol., 2000, 10(1), 52-59.
[97]
Ackerley, S.; James, P.A.; Kalli, A.; French, S.; Davies, K.E.; Talbot, K. A mutation in the small heat-shock protein HSPB1 leading to distal hereditary motor neuronopathy disrupts neurofilament assembly and the axonal transport of specific cellular cargoes. Hum. Mol. Genet., 2006, 15(2), 347-354.
[98]
Almeida-Souza, L.; Goethals, S.; de Winter, V.; Dierick, I.; Gallardo, R.; Van Durme, J.; Irobi, J.; Gettemans, J.; Rousseau, F.; Schymkowitz, J.; Timmerman, V.; Janssens, S. Increased monomerization of mutant HSPB1 leads to protein hyperactivity in Charcot-Marie-Tooth neuropathy. J. Biol. Chem., 2010, 285(17), 12778-12786.
[99]
Vilariño-Güell, C.; Rajput, A.; Milnerwood, A.J.; Shah, B.; Szu-Tu, C.; Trinh, J.; Yu, I.; Encarnacion, M.; Munsie, L.N.; Tapia, L.; Gustavsson, E.K.; Chou, P.; Tatarnikov, I.; Evans, D.M.; Pishotta, F.T.; Volta, M.; Beccano-Kelly, D.; Thompson, C.; Lin, M.K.; Sherman, H.E.; Han, H.J.; Guenther, B.L.; Wasserman, W.W.; Bernard, V.; Ross, C.J.; Appel-Cresswell, S.; Stoessl, A.J.; Robinson, C.A.; Dickson, D.W.; Ross, O.A.; Wszolek, Z.K.; Aasly, J.O.; Wu, R.M.; Hentati, F.; Gibson, R.A.; McPherson, P.S.; Girard, M.; Rajput, M.; Rajput, A.H.; Farrer, M.J. DNAJC13 mutations in Parkinson disease. Hum. Mol. Genet., 2014, 23(7), 1794-1801.
[100]
Wadhwa, R.; Ryu, J.; Ahn, H.M.; Saxena, N.; Chaudhary, A.; Yun, C.O.; Kaul, S.C. Functional significance of point mutations in stress chaperone mortalin and their relevance to Parkinson disease. J. Biol. Chem., 2015, 290(13), 8447-8456.
[101]
Johnson, J.O.; Mandrioli, J.; Benatar, M.; Abramzon, Y.; Van Deerlin, V.M.; Trojanowski, J.Q.; Gibbs, J.R.; Brunetti, M.; Gronka, S.; Wuu, J.; Ding, J.; McCluskey, L.; Martinez-Lage, M.; Falcone, D.; Hernandez, D.G.; Arepalli, S.; Chong, S.; Schymick, J.C.; Rothstein, J.; Landi, F.; Wang, Y.D.; Calvo, A.; Mora, G.; Sabatelli, M.; Monsurrò, M.R.; Battistini, S.; Salvi, F.; Spataro, R.; Sola, P.; Borghero, G.; Galassi, G.; Scholz, S.W.; Taylor, J.P.; Restagno, G.; Chiò, A.; Traynor, B.J. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron, 2010, 68(5), 857-864.
[102]
Muchowski, P.J.; Wacker, J.L. Modulation of neurodegeneration by molecular chaperones. Nat. Rev. Neurosci., 2005, 6(1), 11-22.
[103]
Rochet, J.C. Novel therapeutic strategies for the treatment of protein-misfolding diseases. Expert Rev. Mol. Med., 2007, 9(17), 1-34.
[104]
Treiber, A.; Morand, O.; Clozel, M. The pharmacokinetics and tissue distribution of the glucosylceramide synthase inhibitor miglustat in the rat. Xenobiotica, 2007, 37(3), 298-314.
[105]
Gorbatyuk, M.S.; Gorbatyuk, O.S. The molecular chaperone GRP78/BiP as a therapeutic target for neurodegenerative disorders: a mini review. J. Genet. Syndr. Gene Ther., 2013, 4(2), 128-135.
[106]
Roodveldt, C.; Outeiro, T.F.; Braun, J.E.A. Editorial: Molecular chaperones and neurodegeneration. Front. Neurosci., 2017, 11, 565-567.
[107]
Matsuda, J.; Suzuki, O.; Oshima, A.; Yamamoto, Y.; Noguchi, A.; Takimoto, K.; Itoh, M.; Matsuzaki, Y.; Yasuda, Y.; Ogawa, S.; Sakata, Y. Nanba, E.; Higaki, K.; Ogawa, Y.; Tominaga, L.; Ohno, K.; Iwasaki, H.; Watanabe, H.; Brady, R.O.; Suzuki, Y. Chemical chaperone therapy for brain pathology in GM1-gangliosidosis. Proc. Natl. Acad. Sci. USA, 2003, 100, 15912-15917.
[108]
Calderwood, S.K.; Murshid, A.; Prince, T. The shock of aging: molecular chaperones and the heat shock response in longevity and aging--a mini-review. Gerontology, 2009, 55(5), 550-558.
[109]
Almstedt, K. Protein misfolding in human diseases; Linköping University Electronic Press, 2009.
[110]
Ebrahimi-Fakhari, D.; Wahlster, L.; McLean, P.J. Molecular chaperones in Parkinson’s disease--present and future. J. Parkinsons Dis., 2011, 1(4), 299-320.
[111]
Wang, X.Y.; Facciponte, J.; Subjeck, J. Molecular Chaperones and Cancer Immunotherapy. In: Molecular Chaperones in Health and Disease; Handbook of Experimental Pharmacology; Starke, K.; Gaestel, M. Eds.; Springer, Berlin, Heidelberg,. , 2006; vol, 172, pp. 305-329.
[112]
Chaari, A.; Hoarau-Véchot, J.; Ladjimi, M. Applying chaperones to protein-misfolding disorders: molecular chaperones against α-synuclein in Parkinson’s disease. Int. J. Biol. Macromol., 2013, 60, 196-205.
[113]
Ciocca, D.R.; Arrigo, A.P.; Calderwood, S.K. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch. Toxicol., 2013, 87(1), 19-48.
[114]
Wang, H. Meng-Shan, Tan.; Rui-Chun, Lu.; Jin-Tai, Yu.; Lan, Tan. Heat shock proteins at the crossroads between cancer and Alzheimer’s disease. BioMed Res. Int., 2014, 2014, 1-9.
[115]
Nami, B.; Ghasemi-Dizgah, A.; Vaseghi, A. Overexpression of molecular chaperons GRP78 and GRP94 in CD44(hi)/CD24(lo) breast cancer stem cells. Bioimpacts, 2016, 6(2), 105-110.
[116]
Novellino, L.; Castelli, C.; Parmiani, G.J.C.I. A listing of human tumor antigens recognized by T cells. Cancer Immunol. Immunother., 2005, 54, 187-207.
[117]
Ullrich, S.J.; Robinson, E.A.; Law, L.W.; Willingham, M.; Appella, E. A mouse tumor-specific transplantation antigen is a heat shock-related protein. Proc. Natl. Acad. Sci. USA, 1986, 83(10), 3121-3125.
[118]
Perlmutter, D.H. Chemical chaperones: a pharmacological strategy for disorders of protein folding and trafficking. Pediatr. Res., 2002, 52(6), 832-836.
[119]
Yancey, P.H.; Clark, M.E.; Hand, S.C.; Bowlus, R.D.; Somero, G.N. Living with water stress: evolution of osmolyte systems. Science, 1982, 217(4566), 1214-1222.
[120]
Baskakov, I.; Bolen, D.W. Forcing thermodynamically unfolded proteins to fold. J. Biol. Chem., 1998, 273(9), 4831-4834.
[121]
Lin, T.Y.; Timasheff, S.N. Why do some organisms use a urea-methylamine mixture as osmolyte? Thermodynamic compensation of urea and trimethylamine N-oxide interactions with protein. Biochemistry, 1994, 33(42), 12695-12701.
[122]
Street, T.O.; Bolen, D.W.; Rose, G.D. A molecular mechanism for osmolyte-induced protein stability. Proc. Natl. Acad. Sci. USA, 2006, 103(38), 13997-14002.
[123]
Ghumman, B.; Bertram, E.M.; Watts, T.H. Chemical chaperones enhance superantigen and conventional antigen presentation by HLA-DM-deficient as well as HLA-DM-sufficient antigen-presenting cells and enhance IgG2a production in vivo. J. Immunol., 1998, 161(7), 3262-3270.
[124]
Mimori, S.; Ohtaka, H.; Koshikawa, Y.; Kawada, K.; Kaneko, M.; Okuma, Y.; Nomura, Y.; Murakami, Y.; Hamana, H. 4-Phenylbutyric acid protects against neuronal cell death by primarily acting as a chemical chaperone rather than histone deacetylase inhibitor. Bioorg. Med. Chem. Lett., 2013, 23(21), 6015-6018.
[125]
Ren, M.; Leng, Y.; Jeong, M.; Leeds, P.R.; Chuang, D.M. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: Potential roles of histone deacetylase inhibition and heat shock protein induction. J. Neurochem., 2004, 89(6), 1358-1367.
[126]
Wright, J.M.; Zeitlin, P.L.; Cebotaru, L.; Guggino, S.E.; Guggino, W.B. Gene expression profile analysis of 4-phenylbutyrate treatment of IB3-1 bronchial epithelial cell line demonstrates a major influence on heat-shock proteins. Physiol. Genomics, 2004, 16(2), 204-211.
[127]
Rodrigues, C.M.; Fan, G.; Wong, P.Y.; Kren, B.T.; Steer, C.J. Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production. Mol. Med., 1998, 4(3), 165-178.
[128]
Rodrigues, C.M.; Fan, G.; Ma, X.; Kren, B.T.; Steer, C.J. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J. Clin. Invest., 1998, 101(12), 2790-2799.
[129]
Rodrigues, C.M.; Solá, S.; Sharpe, J.C.; Moura, J.J.; Steer, C.J. Tauroursodeoxycholic acid prevents Bax-induced membrane perturbation and cytochrome C release in isolated mitochondria. Biochemistry, 2003, 42(10), 3070-3080.
[130]
Azzaroli, F.; Mehal, W.; Soroka, C.J.; Wang, L.; Lee, J.; Crispe, I.N.; Boyer, J.L. Ursodeoxycholic acid diminishes Fas-ligand-induced apoptosis in mouse hepatocytes. Hepatology, 2002, 36(1), 49-54.
[131]
Tamarappoo, B.K.; Verkman, A.S. Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J. Clin. Invest., 1998, 101(10), 2257-2267.
[132]
Tan, C.M.; Nickols, H.H.; Limbird, L.E. Appropriate polarization following pharmacological rescue of V2 vasopressin receptors encoded by X-linked nephrogenic diabetes insipidus alleles involves a conformation of the receptor that also attains mature glycosylation. J. Biol. Chem., 2003, 278(37), 35678-35686.
[133]
Brown, C.R.; Hong-Brown, L.Q.; Biwersi, J.; Verkman, A.S.; Welch, W.J. Chemical chaperones correct the mutant phenotype of the delta F508 cystic fibrosis transmembrane conductance regulator protein. Cell Stress Chaperones, 1996, 1(2), 117-125.
[134]
Kuzuhara, T.; Suganuma, M.; Fujiki, H. Green tea catechin as a chemical chaperone in cancer prevention. Cancer Lett., 2008, 261(1), 12-20.
[135]
Makhija, L.; Krishnan, V.; Rehman, R.; Chakraborty, S.; Maity, S.; Mabalirajan, U.; Chakraborty, K.; Ghosh, B.; Agrawal, A. Chemical chaperones mitigate experimental asthma by attenuating endoplasmic reticulum stress. Am. J. Respir. Cell Mol. Biol., 2014, 50(5), 923-931.
[136]
Basseri, S.; Lhoták, S.; Sharma, A.M.; Austin, R.C. The chemical chaperone 4-phenylbutyrate inhibits adipogenesis by modulating the unfolded protein response. J. Lipid Res., 2009, 50(12), 2486-2501.
[137]
Ohnishi, K.; Ota, I.; Yane, K.; Takahashi, A.; Yuki, K.; Emoto, M.; Hosoi, H.; Ohnishi, T. Glycerol as a chemical chaperone enhances radiation-induced apoptosis in anaplastic thyroid carcinoma cells. Mol. Cancer, 2002, 1, 1-5.
[138]
Crowe, J.H. Trehalose as a “Chemical Chaperone”. Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks. Adv. Exp. Med. Biol., 2007, 594, 143-158.
[139]
Tanaka, M.; Machida, Y.; Niu, S.; Ikeda, T.; Jana, N.R.; Doi, H.; Kurosawa, M.; Nekooki, M.; Nukina, N. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat. Med., 2004, 10(2), 148-154.
[140]
Chollet, M.E.; Skarpen, E.; Iversen, N.; Sandset, P.M.; Skretting, G. The chemical chaperone sodium 4-phenylbutyrate improves the secretion of the protein CA267T mutant in CHO-K1 cells trough the GRASP55 pathway. Cell Biosci., 2015, 5, 57-60.
[141]
Sawkar, A.R.; Cheng, W.C.; Beutler, E.; Wong, C.H.; Balch, W.E.; Kelly, J.W. Chemical chaperones increase the cellular activity of N370S β -glucosidase: a therapeutic strategy for Gaucher disease. Proc. Natl. Acad. Sci. USA, 2002, 99(24), 15428-15433.
[142]
Suzuki, Y.; Ichinomiya, S.; Kurosawa, M.; Ohkubo, M.; Watanabe, H.; Iwasaki, H.; Matsuda, J.; Noguchi, Y.; Takimoto, K.; Itoh, M.; Tabe, M.; Iida, M.; Kubo, T.; Ogawa, S.; Nanba, E.; Higaki, K.; Ohno, K.; Brady, R.O. Chemical chaperone therapy: clinical effect in murine G(M1)-gangliosidosis. Ann. Neurol., 2007, 62(6), 671-675.
[143]
Perez-Miller, S.; Younus, H.; Vanam, R.; Chen, C.H.; Mochly-Rosen, D.; Hurley, T.D. Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant. Nat. Struct. Mol. Biol., 2010, 17(2), 159-164.
[144]
Roth, S.D.; Schüttrumpf, J.; Milanov, P.; Abriss, D.; Ungerer, C.; Quade-Lyssy, P.; Simpson, J.C.; Pepperkok, R.; Seifried, E.; Tonn, T. Chemical chaperones improve protein secretion and rescue mutant factor VIII in mice with hemophilia A. PLoS One, 2012, 7(9)e44505
[145]
Hossain, M.A.; Higaki, K.; Saito, S.; Ohno, K.; Sakuraba, H.; Nanba, E.; Suzuki, Y.; Ozono, K.; Sakai, N. Chaperone therapy for Krabbe disease: potential for late-onset GALC mutations. J. Hum. Genet., 2015, 60(9), 539-545.
[146]
Yoshida, H.; Yoshizawa, T.; Shibasaki, F.; Shoji, S.; Kanazawa, I. Chemical chaperones reduce aggregate formation and cell death caused by the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Neurobiol. Dis., 2002, 10(2), 88-99.
[147]
Haneef, S.A.; Doss, C.G. Personalized pharmacoperones for lysosomal storage disorder: approach for next-generation treatment. Adv. Protein Chem. Struct. Biol., 2016, 102, 225-265.
[148]
Bernier, V.; Lagacé, M.; Bichet, D.G.; Bouvier, M. Pharmacological chaperones: Potential treatment for conformational diseases. Trends Endocrinol. Metab., 2004, 15(5), 222-228.
[149]
Aymami, J.; Barril, X.; Rodríguez-Pascau, L.; Martinell, M. Pharmacological chaperones for enzyme enhancement therapy in genetic diseases. Pharm. Pat. Anal., 2013, 2(1), 109-124.
[150]
Leidenheimer, N.J.; Ryder, K.G. Pharmacological chaperoning: A primer on mechanism and pharmacology. Pharmacol. Res., 2014, 83, 10-19.
[151]
Leandro, J.; Simonsen, N.; Saraste, J.; Leandro, P.; Flatmark, T. Phenylketonuria as a protein misfolding disease: The mutation pG46S in phenylalanine hydroxylase promotes self-association and fibril formation. Biochim. Biophys. Acta, 2011, 1812, 106-120.
[152]
Pey, A.L.; Ying, M.; Cremades, N.; Velazquez-Campoy, A.; Scherer, T.; Thöny, B.; Sancho, J.; Martinez, A. Identification of pharmacological chaperones as potential therapeutic agents to treat phenylketonuria. J. Clin. Invest., 2008, 118(8), 2858-2867.
[153]
Santos-Sierra, S.; Kirchmair, J.; Perna, A.M.; Reiss, D.; Kemter, K.; Röschinger, W.; Glossmann, H.; Gersting, S.W.; Muntau, A.C.; Wolber, G.; Lagler, F.B. Novel pharmacological chaperones that correct phenylketonuria in mice. Hum. Mol. Genet., 2012, 21(8), 1877-1887.
[154]
Bulawa, C.E.; Connelly, S.; Devit, M.; Wang, L.; Weigel, C.; Fleming, J.A.; Packman, J.; Powers, E.T.; Wiseman, R.L.; Foss, T.R.; Wilson, I.A.; Kelly, J.W.; Labaudinière, R. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc. Natl. Acad. Sci. USA, 2012, 109(24), 9629-9634.
[155]
Jorge-Finnigan, A.; Brasil, S.; Underhaug, J.; Ruíz-Sala, P.; Merinero, B.; Banerjee, R.; Desviat, L.R.; Ugarte, M.; Martinez, A.; Pérez, B. Pharmacological chaperones as a potential therapeutic option in methylmalonic aciduria cblB type. Hum. Mol. Genet., 2013, 22(18), 3680-3689.
[156]
Mecozzi, V.J.; Berman, D.E.; Simoes, S.; Vetanovetz, C.; Awal, M.R.; Patel, V.M.; Schneider, R.T.; Petsko, G.A.; Ringe, D.; Small, S.A. Pharmacological chaperones stabilize retromer to limit APP processing. Nat. Chem. Biol., 2014, 10, 443-449.
[157]
Smith, D.F.; Whitesell, L.; Katsanis, E. Molecular chaperones: biology and prospects for pharmacological intervention. Pharmacol. Rev., 1998, 50(4), 493-514.
[158]
Cechowska-Pasko, M. Endoplasmic reticulum chaperons. Postepy Biochem., 2009, 55(4), 416-424.
[159]
Heard, A.; Thompson, J.; Carver, J.; Bakey, M.; Wang, X.R. Targeting molecular chaperones for the treatment of cystic fibrosis: is it a viable approach? Curr. Drug Targets, 2015, 16(9), 958-964.
[160]
Amaral, M.D. CFTR and chaperones: processing and degradation. J. Mol. Neurosci., 2004, 23(1-2), 41-48.
[161]
Coppinger, J.A.; Hutt, D.M.; Razvi, A.; Koulov, A.V.; Pankow, S.; Yates, J.R., III; Balch, W.E. A chaperone trap contributes to the onset of cystic fibrosis. PLoS One, 2012, 7(5)e37682
[162]
Ohgane, K.; Dodo, K.; Hashimoto, Y. Structural development study of a novel pharmacological chaperone for folding-defective rhodopsin mutants responsible for retinitis pigmentosa. Yakugaku Zasshi, 2011, 131(3), 325-334.
[163]
Nicoll, A.J.; Trevitt, C.R.; Tattum, M.H.; Risse, E.; Quarterman, E.; Ibarra, A.A.; Wright, C.; Jackson, G.S.; Sessions, R.B.; Farrow, M.; Waltho, J.P.; Clarke, A.R.; Collinge, J. Pharmacological chaperone for the structured domain of human prion protein. Proc. Natl. Acad. Sci. USA, 2010, 107(41), 17610-17615.
[164]
Parenti, G. Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics. EMBO Mol. Med., 2009, 1(5), 268-279.
[165]
Fukuda, H.; Karaki, F.; Dodo, K.; Noguchi-Yachide, T.; Ishikawa, M.; Hashimoto, Y.; Ohgane, K. Phenanthridin-6-one derivatives as the first class of non-steroidal pharmacological chaperones for Niemann-Pick disease type C1 protein. Bioorg. Med. Chem. Lett., 2017, 27(12), 2781-2787.
[166]
Porto, C.; Cardone, M.; Fontana, F.; Rossi, B.; Tuzzi, M.R.; Tarallo, A.; Barone, M.V.; Andria, G.; Parenti, G. The pharmacological chaperone N-butyldeoxynojirimycin enhances enzyme replacement therapy in Pompe disease fibroblasts. Mol. Ther., 2009, 17(6), 964-971.
[167]
Gaggl, M.; Sunder-Plassmann, G. Fabry disease: A pharmacological chaperone on the horizon. Nat. Rev. Nephrol., 2016, 12(11), 653-654.
[168]
Shin, S.H.; Murray, G.J.; Kluepfel-Stahl, S.; Cooney, A.M.; Quirk, J.M.; Schiffmann, R.; Brady, R.O.; Kaneski, C.R. Screening for pharmacological chaperones in Fabry disease. Biochem. Biophys. Res. Commun., 2007, 359(1), 168-173.
[169]
Hughes, D.A.; Nicholls, K.; Shankar, S.P.; Sunder-Plassmann, G.; Koeller, D.; Nedd, K.; Vockley, G.; Hamazaki, T.; Lachmann, R.; Ohashi, T.; Olivotto, I.; Sakai, N.; Deegan, P.; Dimmock, D.; Eyskens, F.; Germain, D.P.; Goker-Alpan, O.; Hachulla, E.; Jovanovic, A.; Lourenco, C.M.; Narita, I.; Thomas, M.; Wilcox, W.R.; Bichet, D.G.; Schiffmann, R.; Ludington, E.; Viereck, C.; Kirk, J.; Yu, J.; Johnson, F.; Boudes, P.; Benjamin, E.R.; Lockhart, D.J.; Barlow, C.; Skuban, N.; Castelli, J.P.; Barth, J.; Feldt-Rasmussen, U. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study. J. Med. Genet., 2017, 54(4), 288-296.
[170]
Yang, D.S.; Yip, C.M.; Huang, T.H.; Chakrabartty, A.; Fraser, P.E. Manipulating the amyloid-β aggregation pathway with chemical chaperones. J. Biol. Chem., 1999, 274(46), 32970-32974.
[171]
De Jonghe, C.; Esselens, C.; Kumar-Singh, S.; Craessaerts, K.; Serneels, S.; Checler, F.; Annaert, W.; Van Broeckhoven, C.; De Strooper, B. Pathogenic APP mutations near the gamma-secretase cleavage site differentially affect Abeta secretion and APP C-terminal fragment stability. Hum. Mol. Genet., 2001, 10(16), 1665-1671.
[172]
Lee, H.G.; Petersen, R.B.; Zhu, X.; Honda, K.; Aliev, G.; Smith, M.A.; Perry, G. Will preventing protein aggregates live up to its promise as prophylaxis against neurodegenerative diseases? Brain Pathol., 2003, 13(4), 630-638.
[173]
Fung, J.; Darabie, A.A.; McLaurin, J. Contribution of simple saccharides to the stabilization of amyloid structure. Biochem. Biophys. Res. Commun., 2005, 328(4), 1067-1072.
[174]
Syed Haneef, S.A.; George Priya Doss, C. Chapter Eight - personalized pharmacoperones for lysosomal storage disorder: approach for next-generation treatment. Adv. Protein Chem. Struct. Biol., 2016, 102, 225-265.
[175]
Parenti, G.; Andria, G.; Valenzano, K.J. Pharmacological chaperone therapy: preclinical development, clinical translation, and prospects for the treatment of lysosomal storage disorders. Mol. Ther., 2015, 23(7), 1138-1148.
[176]
Parenti, G.; Moracci, M.; Fecarotta, S.; Andria, G. Pharmacological chaperone therapy for lysosomal storage diseases. Future Med. Chem., 2014, 6(9), 1031-1045.
[177]
Valenzano, K.J.; Khanna, R.; Powe, A.C.; Boyd, R.; Lee, G.; Flanagan, J.J.; Benjamin, E.R. Identification and characterization of pharmacological chaperones to correct enzyme deficiencies in lysosomal storage disorders. Assay Drug Dev. Technol., 2011, 9(3), 213-235.
[178]
Boyd, R.E.; Lee, G.; Rybczynski, P.; Benjamin, E.R.; Khanna, R.; Wustman, B.A.; Valenzano, K.J. Pharmacological chaperones as therapeutics for lysosomal storage diseases. J. Med. Chem., 2013, 56(7), 2705-2725.
[179]
Benjamin, E.R.; Flanagan, J.J.; Schilling, A.; Chang, H.H.; Agarwal, L.; Katz, E.; Wu, X.; Pine, C.; Wustman, B.; Desnick, R.J.; Lockhart, D.J.; Valenzano, K.J. The pharmacological chaperone 1-deoxygalactonojirimycin increases α-galactosidase A levels in Fabry patient cell lines. J. Inherit. Metab. Dis., 2009, 32(3), 424-440.
[180]
Shimada, Y.; Nishida, H.; Nishiyama, Y.; Kobayashi, H.; Higuchi, T.; Eto, Y.; Ida, H.; Ohashi, T. Proteasome inhibitors improve the function of mutant lysosomal α-glucosidase in fibroblasts from Pompe disease patient carrying c.546G>T mutation. Biochem. Biophys. Res. Commun., 2011, 415(2), 274-278.
[181]
Flanagan, J.J.; Rossi, B.; Tang, K.; Wu, X.; Mascioli, K.; Donaudy, F.; Tuzzi, M.R.; Fontana, F.; Cubellis, M.V.; Porto, C.; Benjamin, E.; Lockhart, D.J.; Valenzano, K.J.; Andria, G.; Parenti, G.; Do, H.V. The pharmacological chaperone 1-deoxynojirimycin increases the activity and lysosomal trafficking of multiple mutant forms of acid alpha-glucosidase. Hum. Mutat., 2009, 30(12), 1683-1692.
[182]
Okumiya, T.; Kroos, M.A.; Vliet, L.V.; Takeuchi, H.; Van der Ploeg, A.T.; Reuser, A.J. Chemical chaperones improve transport and enhance stability of mutant α-glucosidases in glycogen storage disease type II. Mol. Genet. Metab., 2007, 90(1), 49-57.
[183]
Parenti, G.; Zuppaldi, A.; Gabriela Pittis, M.; Rosaria Tuzzi, M.; Annunziata, I.; Meroni, G. Porto, C.; Donaudy, F.; Rossi, B.; Rossi, M.; Filocamo, M.; Donati, A.; Bembi, B.; Ballabio, A.; Andria, G. Pharmacological enhancement of mutated α-glucosidase activity in fibroblasts from patients with Pompe disease. Mol. Ther., 2007, 15, 508-514.
[184]
Shimada, Y.; Kobayashi, H.; Kawagoe, S.; Aoki, K.; Kaneshiro, E.; Shimizu, H.; Eto, Y.; Ida, H.; Ohashi, T. Endoplasmic reticulum stress induces autophagy through activation of p38 MAPK in fibroblasts from Pompe disease patients carrying c.546G>T mutation. Mol. Genet. Metab., 2011, 104(4), 566-573.
[185]
Germain, D.P.; Giugliani, R.; Hughes, D.A.; Mehta, A.; Nicholls, K.; Barisoni, L.; Jennette, C.J.; Bragat, A.; Castelli, J.; Sitaraman, S.; Lockhart, D.J.; Boudes, P.F. Safety and pharmacodynamic effects of a pharmacological chaperone on α-galactosidase A activity and globotriaosylceramide clearance in Fabry disease: report from two phase 2 clinical studies. Orphanet J. Rare Dis., 2012, 7, 91-101.
[186]
Cohen, F.E.; Pan, K.M.; Huang, Z.; Baldwin, M.; Fletterick, R.J.; Prusiner, S.B. Structural clues to prion replication. Science, 1994, 264(5158), 530-531.
[187]
Goldfarb, L.G.; Brown, P.; Haltia, M.; Cathala, F.; McCombie, W.R.; Kovanen, J.; Cervenáková, L.; Goldin, L.; Nieto, A.; Godec, M.S.; Asher, D.M.; Gajdusek, D.C. Creutzfeldt-Jakob disease cosegregates with the codon 178Asn PRNP mutation in families of European origin. Ann. Neurol., 1992, 31(3), 274-281.
[188]
Korth, C.; May, B.C.; Cohen, F.E.; Prusiner, S.B. Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc. Natl. Acad. Sci. USA, 2001, 98(17), 9836-9841.
[189]
May, B.C.; Fafarman, A.T.; Hong, S.B.; Rogers, M.; Deady, L.W.; Prusiner, S.B.; Cohen, F.E. Potent inhibition of scrapie prion replication in cultured cells by bis-acridines. Proc. Natl. Acad. Sci. USA, 2003, 100(6), 3416-3421.
[190]
Geschwind, M.D.; Kuo, A.L.; Wong, K.S.; Haman, A.; Devereux, G.; Raudabaugh, B.J.; Johnson, D.Y.; Torres-Chae, C.C.; Finley, R.; Garcia, P.; Thai, J.N.; Cheng, H.Q.; Neuhaus, J.M.; Forner, S.A.; Duncan, J.L.; Possin, K.L.; Dearmond, S.J.; Prusiner, S.B.; Miller, B.L. Quinacrine treatment trial for sporadic Creutzfeldt-Jakob disease. Neurology, 2013, 81(23), 2015-2023.
[191]
Vogtherr, M.; Grimme, S.; Elshorst, B.; Jacobs, D.M.; Fiebig, K.; Griesinger, C.; Zahn, R. Antimalarial drug quinacrine binds to C-terminal helix of cellular prion protein. J. Med. Chem., 2003, 46(17), 3563-3564.
[192]
Schmitz, M.; Zafar, S.; Silva, C.J.; Zerr, I. Behavioral abnormalities in prion protein knockout mice and the potential relevance of PrP(C) for the cytoskeleton. Prion, 2014, 8(6), 381-386.
[193]
Kuwata, K. Logical design of medical chaperone for prion diseases. Curr. Top. Med. Chem., 2013, 13(19), 2432-2440.
[194]
Small, S.A. Pharmacological chaperones in the age of proteomic pathology. Proc. Natl. Acad. Sci. USA, 2014, 111(34), 12274-12275.
[195]
Henrich, S.; Salo-Ahen, O.M.; Huang, B.; Rippmann, F.F.; Cruciani, G.; Wade, R.C. Computational approaches to identifying and characterizing protein binding sites for ligand design. J. Mol. Recognit., 2010, 23(2), 209-219.
[196]
Bao, W.; Yuan, C.; Zhang, Y.; Han, K.; Nandi, A. K.; Honig, B.; Huang, D. Mutli-Features Prediction of Protein Translational Modification Sites. IEEE/ACM TCBB, 2018, 15, 1453-1460.
[197]
Hosokawa-Muto, J.; Kamatari, Y.O.; Nakamura, H.K.; Kuwata, K. Variety of antiprion compounds discovered through an in silico screen based on cellular-form prion protein structure: Correlation between antiprion activity and binding affinity. Antimicrob. Agents Chemother., 2009, 53(2), 765-771.
[198]
Kuwata, K.; Nishida, N.; Matsumoto, T.; Kamatari, Y.O.; Hosokawa-Muto, J.; Kodama, K.; Nakamura, H.K.; Kimura, K.; Kawasaki, M.; Takakura, Y.; Shirabe, S.; Takata, J.; Kataoka, Y.; Katamine, S. Hot spots in prion protein for pathogenic conversion. Proc. Natl. Acad. Sci. USA, 2007, 104(29), 11921-11926.
[199]
Katsuno, M.; Tanaka, F.; Sobue, G. Perspectives on molecular targeted therapies and clinical trials for neurodegenerative diseases. J. Neurol. Neurosurg. Psychiatry, 2012, 83(3), 329-335.
[200]
Ferreira, N.C.; Marques, I.A.; Conceição, W.A.; Macedo, B.; Machado, C.S.; Mascarello, A.; Chiaradia-Delatorre, L.D.; Yunes, R.A.; Nunes, R.J.; Hughson, A.G.; Raymond, L.D.; Pascutti, P.G.; Caughey, B.; Cordeiro, Y. Anti-prion activity of a panel of aromatic chemical compounds: in vitro and in silico approaches. PLoS One, 2014, 9(1)e84531
[201]
Futerman, A.R. Sussman, Joel L.; Silman, Israel.; Harel, Michal.; Dvir, Hay.; Toker, Lilly.; Adamsky, Swetlana. Gaucher disease drugs and methods of identifying same. United States., , 2007.
[202]
Nowak, R.J.; Cuny, G.D.; Choi, S.; Lansbury, P.T.; Ray, S.S. Improving binding specificity of pharmacological chaperones that target mutant superoxide dismutase-1 linked to familial amyotrophic lateral sclerosis using computational methods. J. Med. Chem., 2010, 53(7), 2709-2718.