Periphery Decorated and Core Initiated Neutral and Polyanionic Borane Large Molecules: Forthcoming and Promising Properties for Medicinal Applications

Page: [5036 - 5076] Pages: 41

  • * (Excluding Mailing and Handling)

Abstract

A mini-review based on radial growing macromolecules and core initiated Borane periphery decorated with o-carboranes and metallacarboranes that has been developed in the authors laboratories is reported. The review is divided into four sections; three of them are related to the design and synthesis of these large boron-containing molecules and the fourth deals with the unique properties of anionic metallacarborane molecules that provide a glimpse of their potential for their promising use in medicinal applications. Their unique stability along with their geometrical and electronic properties, as well as the precise steric structure of 1,2-closo-C2B10H12 (o-carborane) that has the potential for the incorporation of many substituents: at the carbon (Cc), at the boron and at both carbon and boron vertices, suggests this cluster as an innovative building block or platform for novel applications that cannot be achieved with organic hydrocarbon compounds. Poly(aryl-ether) dendrimers grown from fluorescent cores, such as 1,3,5-triarylbenzene or meso-porphyrins, have been decorated with boron clusters to attain rich boron containing dendrimers. Octasilsesquioxane cubes have been used as a core for its radial growth to get boron-rich large molecules. The unique properties of cobaltabisdicarbollide cluster, which include: i) self-assembly in water to produce monolayer nano-vesicles, ii) crossing lipid bilayer membranes, iii) interacting with membrane cells, iv) facilitating its visualization within cells by Raman and fluorescence techniques and v) their use as molecular platform for “in vivo” imaging are discussed in detail.

Keywords: Carboranes, metallacarboranes, boranes, dendrimers, macromolecules, cellular imaging, markers, antimicrobial, fluorescent probes, octasilselquioxanes, photoluminescence.

[1]
Scoire, S. Is boron a prebiotic element? A mini-review of the essentiality of boron for the appearance of life on Earth. Orig. Life Evol. Biosph., 2012, 42(1), 3-17.
[2]
(a)Dembitsky, V.M.; Smoum, R.; Al-Quntar, A.A.A.; Ali, H.A.; Pergament, I.; Srebnik, M. Natural occurrence of boron containing compounds in plants, algae and microorganisms. Plant Sci., 2002, 163, 931-942.
(b)Loomis, W.D.; Durst, R.W. Chemistry and biology of boron. Biofactors, 1992, 3, 229-239.
(c)Dinca, L.; Scorei, R. Boron in human nutrition and its regulations use. J. Nutr. Ther., 2013, 2, 22-29.
[3]
(a)Nielsen, F.H. Is boron nutritionally relevant? Nutr. Rev., 2008, 66(4), 183-191.
(b)Newnham, R.E. Essentiality of boron for healthy bones and joints. Environ. Health Perspect., 1994, 102, 83-85.
(c)Hakki, S.S.; Bozkurt, B.S.; Hakki, E.E. Boron regulates mineralized tissue associated proteins in osteoblasts (MC3T3-E1). J. Trace Elem. Med. Biol., 2010, 24(4), 243-250.
[4]
(a)Pizzorno, L. Nothing Boring about Boron. Eur. J. Integr Med, 2015. 14 (a), 35-48.
(b)Price, C.T.; Langford, J.R.; Liporace, F.A. Essential nutrients for bone health and a review of their availability in the average North American diet. Open Orthop. J., 2012, 6, 143-149.
(c)Beattie, J.H.; Peace, H.S. The influence of a low-boron diet and boron supplementation on bone, major mineral and sex steroid metabolism in postmenopausal women. Br. J. Nutr., 1993, 69(3), 871-884.
(d)Miljkovic, D.; Scorei, R.I.; Cimpoiaşu, V.M.; Scorei, I.D. Calcium fructoborate: plant based dietary boron for human nutrition. J. Diet. Suppl., 2009, 6(3), 211-226.
(e)Stubbs, J.R.; Zhang, S.; Friedman, P.A.; Nolin, T.D. Decreased conversion of 25-hydroxyvitamin D3 to 24,25-dihydroxyvitamin D3 following cholecalciferol therapy in patients with CKD. Clin. J. Am. Soc. Nephrol., 2014, 9(11), 1965-1973.
(f)Zofková, I.; Nemcikova, P.; Matucha, P. Trace elements and bone health. Clin. Chem. Lab. Med., 2013, 51(8), 1555-1561.
[5]
(a)Viñas, C. The uniqueness of boron as a novel challenging element for drugs in pharmacology, medicine and for smart biomaterials. Future Med. Chem., 2013, 5(6), 617-619.
(b)Chellan, P.; Sadler, P.J. The elements of life and medicines. Phil. Trans. R. Soc. A., 2015, 37320140182
(c)Pache, W.; Zähner, H. Metabolic products of microorganisms. 77. Studies on the mechanism of action of boromycin. Arch. Mikrobiol., 1969, 67, 156-165.
(d)Soriano-Ursúa, M.A.; Das, B.C.; Trujillo-Ferrara, J.G. Boron-containing compounds: chemico-biological properties and expanding medicinal potential in prevention, diagnosis and therapy. Expert Opin. Ther. Pat., 2014, 24, 485-500.
(e)Ciaravino, V.; Plattner, J.; Chanda, S. An assessment of the genetic toxicology of novel boron‐containing therapeutic agents. Environ. Mol. Mutagen., 2013, 54, 338-346.
[6]
(a) Housecroft, C.E. Boranes and Metalloboranes; Ellis Horwood Limited: Chichester, UK, 1990.
(b) Housecroft, C.E. Specialist Periodical Reports in Organometallic Chemistry, Abel, E. W; Stone, F.G.A., Ed.; Royal Society of Chemistry: London, 1991.
(c) Housecroft, C.E. Cluster Molecules of the p-Block Elements; Oxford University Press: New York, USA, 1994.
[7]
(a)Wade, K. The Structural Significance of the Number of Skeletal Bonding Electron-pairs in Carboranes, the Higher Boranes and Borane Anions, and Various Transition-metal Carbonyl Cluster Compounds. J. Chem. Comm. Soc. D.,1971, 792-793.
(b)Williams, R.E. Carboranes and Boranes; Polyhedra and Polyhedral Fragments. Inorg. Chem., 1971, 10, 210-214.
(c)Mingos, D.M.P. A General Theory for Cluster and Ring Compounds of the Main Group and Transition Elements. Nature-Phy. Sci, 1972, 236, 99-102.
(d)Rudolph, R.W.; Pretzer, W.R. Hueckel-type rules and the systematization of borane and heteroborane chemistry. Inorg. Chem., 1972, 11, 1974-1978.
(e)Wade, K. Structural and Bonding Patterns in Cluster Chemistry. Adv. Inorg. Chem. Radiochem, 1976, 18, 1-66.
(f)Williams, R.E. Coordination Number Pattern Recognition Theory of Carborane Structures. Adv. Inorg. Chem. Radiochem, 1976, 18, 67-142.
(g)Rudolph, R.W. Boranes and heteroboranes: a paradigm for the electron requirements of clusters? Acc. Chem. Res., 1976, 9, 446-452.
[8]
Grimes, R.N. Carboranes, 3rd ed; Elsevier Inc.: New York, 2016.
[9]
(a)Pitochelli, A.R.; Hawthorne, M.F. The isolation of the icosahedral B12H12-2 ion. J. Am. Chem. Soc., 1960, 82, 3228-3229.
(b)Miller, H.C.; Miller, N.E.; Muetterties, E.L. Synthesis of Polyhedral Boranes. J. Am. Chem. Soc., 1963, 85, 3885-3886.
[10]
Poater, J.; Solà, M.; Viñas, C.; Teixidor, F. π Aromaticity and Three‐Dimensional Aromaticity: Two sides of the Same Coin? Angew. Chem. Int. Ed., 2014, 53, 12191-12195.
[11]
Peymann, T.; Herzog, A.; Knobler, C.B.; Hawthorne, M.F. Aromatic Polyhedral Hydroxyborates:Bridging Boron Oxides and Boron Hydrides. Angew. Chem. Int. Ed., 1999, 38, 1061-1064.
[12]
Connelly, N.G.; Damhus, T.; Hartshorn, R.M.; Hutton, A.T. Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005; Chapter IR-6, 83-110, RSC publishing, Cambridge, UK, 2005.
[13]
(a)Grimes, R.N. Boron-carbon ring ligands in organometallic synthesis. Chem. Rev., 1992, 92, 251-268.
(b)Saxena, A.K.; Hosmane, N.S. Recent advances in the chemistry of carborane metal complexes incorporating d- and f-block elements. Chem. Rev., 1993, 93, 1081-1124.
(c)Saxena, A.K.; Maguire, J.A.; Hosmane, N.S. Recent Advances in the Chemistry of Heterocarborane Complexes Incorporating s- and p-Block Elements. Chem. Rev., 1997, 97, 2421-2462.
[14]
(a) Fréchet, J.M.; Tomalia, D.A., Eds.; Dendrimers and other dendritic polymers, Wiley Series in Polymer Science; Wiley, 2001.
(b) Newkome, G.R.; Moorefield, C.N.; Vötgle, F. Dendrimers and Dendrons: Concepts, Synthesis, Applications; Wiley: New York, 2002.
(c)Beletskaya, I.P.; Chuchurjukin, A.V. Synthesis and properties of functionalised dendrimers. Russ. Chem. Rev., 2000, 69, 639-660.
(d)Astruc, D.; Chardac, F. Dendritic Catalysts and Dendrimers in Catalysis. Chem. Rev., 2001, 101, 2991-3024.
(e)Newkome, G.R.; Moorefield, C.N.; Vötgle, F. Dendritic Molecules. Concepts, Syntheses, Perspectives; VCH: Weinheim, Germany, 1996.
(f)Vogtle, F.; Richardt, G.; Werner, N. Dendrimer Chemistry: Concepts, Synthesis, Properties, Applications; Wiley: Weinheim, Germany, 2009.
(g)Bosman, A.W.; Janssen, H.M.; Meijer, E.W. About Dendrimers: Structure, Physical Properties, and Applications. Chem. Rev., 1999, 99, 1665-1688.
(h)Walter, M.V.; Malkoch, M. Simplifying the synthesis of dendrimers: accelerated approaches. Chem. Soc. Rev., 2012, 41, 4593-4609.
[15]
(a)Kleij, A.W.; Gossage, R.A.; Gebbink, R.J.M.K.; Brinkmann, N.; Reijerse, E.J.; Kragl, U.; Lutz, M.; Spek, A.L.; van Koten, G.A. “Dendritic Effect” in Homogeneous Catalysis with Carbosilane-Supported Arylnickel(II) Catalysts: Observation of Active-Site Proximity Effects in Atom-Transfer Radical Addition. J. Am. Chem. Soc., 2000, 122, 12112-12124.
(b)Boury, B.; Corriu, J.P.R.; Núñez, R. Hybrid Xerogels from Dendrimers and Arborols. Chem. Mater., 1998, 10, 1795-1804.
[16]
(a)Yamamoto, K.; Higuchi, M.; Shiki, S.; Tsuruta, M.; Chiba, H. Stepwise radial complexation of imine groups in phenylazomethine dendrimers. Nature, 2002, 415, 509-511.
(b)Frey, H.; Haag, R. Dendritic polyglycerol: a new versatile biocompatible-material. Rev. Mol. Biotechnol., 2002, 90, 257-267.
[17]
(a)Hecht, S.; Fréchet, J.M.J. Dendritic Encapsulation of Function: Applying Nature’s Site Isolation Principle from Biomimetics to Materials Science. Angew. Chem. Int. Ed., 2001, 40, 74-91.
(b)Stiriba, A-E.; Frey, H.; Haag, R. Dendritic Polymers in Biomedical Applications: From Potential to Clinical Use in Diagnostics and Therapy. Angew. Chem. Int. Ed., 2002, 41, 1329-1334.
(c)Oosterom, G.E.; Reek, J.N.; Kamer, P.C.; van Leeuwen, P.W. Transition Metal Catalysis Using Functionalized Dendrimers. Angew. Chem. Int. Ed., 2001, 40(10), 1828-1849.
(d)Kleij, A.W.; Gossage, R.A.; Jastrezebski, J.T.B.H.; Boersma, J.; van Koten, G. The “Dendritic Effect” in Homogeneous Catalysis with Carbosilane-Supported Arylnickel(ii) Catalysts: Observation of Active-Site Proximity Effects in Atom-Transfer Radical Addition. Angew. Chem. Int. Ed., 2000, 39, 176-178.
[18]
Reviews of dendrimers: (a) Boas, U.; Heegaard, P. M. H. Dendrimers in drug research. Chem. Soc. Rev., 2004, 33, 43-63. (b) Al-Jamal, K. T.; Ramaswamy, C.; Florence, A. T. Supramolecular structures from dendrons and dendrimers. Adv. Drug. Deliv. Rev., 2005, 57, 2238-2270. (b) I. J.; Baker, J. R., Jr. Eds. Dendrimer-Based Nanomedicine; Majoros, Pan Stanford Publishing: Singapore, 2008. (c) Caminade, A. M.; Majoral, J. -P. Dendrimers and nanotubes: a fruitful association. Chem. Soc. Rev., 2010, 39, 2034-2047. (d) Astruc, D.; Boisselier, E.; Ornelas, C. Dendrimers Designed for Functions: From Physical, Photophysical, and Supramolecular Properties to Applications in Sensing, Catalysis, Molecular Electronics, Photonics, and Nanomedicine. Chem. Rev., 2010, 110, 1857-1959. (e) Newkome, G. R.; Shreiner C. Dendrimers Derived from 1 → 3 Branching Motifs. Chem. Rev., 2010, 110, 6338-6442. (f) Sowinska, M.; Urbanczyk-Lipkowska, Z. Advances in the chemistry of dendrimers. New J. Chem., 2014, 38, 2168-2203.
[19]
(a)Caminade, A.M. Inorganic dendrimers: recent advances for catalysis, nanomaterials, and nanomedicine. Chem. Soc. Rev., 2016, 45, 5174-5186.
(b)Briz, V.; Serramia, M.J.; Madrid, R.; Hameau, A.; Caminade, A.M.; Majoral, J.P.; Muñoz-Fernández, M.A. Validation of a Generation 4 Phosphorus-Containing Polycationic Dendrimer for Gene Delivery Against HIV-1. Curr. Med. Chem., 2012, 19, 5044-5051.
(c)Caminade, A.M.; Ouali, A.; Laurent, R.; Turrin, C.O.; Majoral, J.P. Coordination chemistry with phosphorus dendrimers. Applications as catalysts, for materials, and in biology. Coord. Chem. Rev., 2016, 308, 478-497.
(d)Wang, L.; Yang, Y-X. Shi, X., Mignani, S., Caminade A. M.; Majoral, J. P. Cyclotriphosphazene core-based dendrimers for biomedical applications: an update on recent advances. J. Mater. Chem. B., 2018, 6, 884-895.
(e)Serramia, M.J.; Álvarez, S.; Fuentes-Paniagua, E.; Clemente, M.I.; Sánchez-Nieves, J.; Gómez, R.; de la Mata, J.; Muñoz-Fernández, M.A. In vivo delivery of siRNA to the brain by carbosilane dendrimer. J. Control. Release, 2015, 200, 60-70.
(f)Sowinska, M.; Urbanczyk-Lipkowska, Z. Advances in the chemistry of dendrimers. New J. Chem., 2014, 38, 2168-2203.
(g)Caminade, A.M. Phosphorus dendrimers for nanomedicine. Chem. Commun., 2017, 53, 9830-9838.
[20]
Menjoge, A.R.; Kannan, R.M.; Tomalia, D.A. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov. Today, 2010, 15, 171-185.
[21]
Cheng, Y. in Dendrimer-Based Drug Delivery Systems: From Theory to Practice; Wiley, 2012. ISBN: 978-1-118- 27522-1.
[22]
Khandare, J.; Calderón, M.; Diaga, N.M.; Haag, R. Multifunctional dendritic polymers in nanomedicine: opportunities and challenges. Chem. Soc. Rev., 2012, 41, 2824-2848.
[23]
Plesek, J. Potential Applications of the Boron Cluster Compounds. Chem. Rev., 1992, 92, 269-278.
[24]
Sweet, W.N.; Soloway, A.H.; Wright, R.L. Evaluation of boron compounds for use in neutron capture therapy of brain tumors. 2. Studies in man. J. Pharmacol. Exp. Ther., 1962, 137, 263-266.
[25]
(a)Newkome, G.R.; Moorefield, C.N.; Keith, J.M.; Baker, G.R.; Escamilla, G.H. Chemistry within a Unimolecular Micelle Precursor: Boron Superclusters by Site‐ and Depth‐Specific Transformations of Dendrimers. Angew. Chem. Int. Ed. Engl., 1994, 33, 666-668.
(b)Barth, R.F.; Adams, D.M.; Soloway, A.H.; Alam, F.; Darby, M.V. Boronated starburst dendrimer-monoclonal antibody immunoconjugates: Evaluation as a potential delivery system for neutron capture therapy. Bioconjug. Chem., 1994, 5, 58-66.
(c)Armspach, D.; Cattalini, M.; Constable, E.C.; Housecroft, C.E.; Phillips, D. Boron-rich metallodendrimers—mix-and-match assembly of multifunctional metallosupramolecules. Chem. Commun., 1996, 1823-1824.
(d)Qualmann, B.; Kessels, M.M.; Mussiol, H-J.; Sierralta, W.D.; Jungblut, P.W.; Moroder, L. Synthesis of Boron‐Rich Lysine Dendrimers as Protein Labels in Electron Microscopy. Angew. Chem. Int. Ed. Engl., 1996, 35, 909-911.
[26]
Skukla, M.S.; Gong, W.; Chatterjee, M.; Yang, W.; Sekido, M.; Diop, L.A.; Müller, R.; Sudimack, J.J.; Lee, R.J.; Barth, R.F.; Tjarks, W. Synthesis and Biological Evaluation of Folate Receptor-Targeted Boronated PAMAM Dendrimers as Potential Agents for Neutron Capture Therapy. Bioconjug. Chem., 2003, 14, 158-167. (b) Barth, R. F.; Coderre, J. A.; Vicente, M. G. H.; Blue, T. E. Boron neutron capture therapy of cancer: current status and future prospects. Clin. Cancer Res., 2005, 11, 3987-4002. (c) Backer, M. V.; Gaynutdinov, T. I.; Patel, V.; Bandyopadhyaya, A. K.; Thirumamagal, B. T. S.; Tjarks, W.; Barth, R. F.; Claffey, K.; Backer, J. M. Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Mol. Cancer Ther., 2005, 4, 1423.
[27]
(a)Dash, B.P.; Satapathy, R.; Maguire, J.A.; Hosmane, N.S. Boron-enriched star-shaped molecule viacycloaddition reaction. Chem. Commun., 2009, 3267-3269.
(b)Dash, B.P.; Satapathy, R.; Gaillsard, E.R.; Maguire, J.A.; Hosmane, N.S. Synthesis and Properties of Carborane-Appended C3-Symmetrical Extended π Systems. J. Am. Chem. Soc., 2010, 132, 6578-6587.
(c)Dash, B.P.; Satapathy, R.; Maguire, J.A.; Hosmane, N.S. Facile Synthetic Routes to Phenylene and Triazine Core Based Dendritic Cobaltabisdicarbollides. Organometallics, 2010, 29, 5230-5235.
(d)Dash, B.P.; Satapathy, R.; Gaillsard, E.R.; Norton, K.M.; Maguire, J.A.; Chug, N.; Hosmane, N.S. Enhanced π-Conjugation and Emission via Icosahedral Carboranes: Synthetic and Spectroscopic Investigation. Inorg. Chem., 2011, 50, 5485-5493.
[28]
(a)Parrott, C.; Marchington, E.B.; Valliant, J.F.; Adronov, A.J. Synthesis and Properties of Carborane-Functionalized Aliphatic Polyester Dendrimers. J. Am. Chem. Soc., 2005, 127, 12081-12089.
(b)Parrott, M.C.; Valliant, J.F.; Adronov, A. Thermally Induced Phase Transition of Carborane-Functionalized Aliphatic Polyester Dendrimers in Aqueous Media. Langmuir, 2006, 22, 5251-5255.
[29]
Núñez, R.; González, A.; Viñas, C.; Teixidor, F.; Sillanpää, R.; Kivekäs, R. Approaches to the Preparation of Carborane-Containing Carbosilane Compounds. Org. Lett., 2005, 7, 231. (b) Núñez, R.; González-Campo, A.; Viñas, C.; Teixidor, F.; Sillanpää, R.; Kivekäs, R. Boron-Functionalized Carbosilanes: Insertion of Carborane Clusters into Peripheral Silicon Atoms of Carbosilane Compounds. Organometallics, 2005, 24, 6351-6357.
[30]
Juárez-Pérez, E.J.; Viñas, C.; Teixidor, F.; Núñez, R. Polyanionic Carbosilane and Carbosiloxane Metallodendrimers Based on Cobaltabisdicarbollide Derivatives. Organometallics, 2009, 28, 5550-5559.
[31]
González-Campo, A.; Viñas, C.; Teixidor, F.; Núñez, R.; Sillanpää, R.; Kivekäs, R. Modular Construction of Neutral and Anionic Carboranyl-Containing Carbosilane-Based Dendrimers. Macromolecules, 2007, 40, 5644-5652.
[32]
(a)Ye, Q.; Zhou, H.; Xu, J. Cubic Polyhedral Oligomeric Silsesquioxane Based FunctionalMaterials:Synthesis, Assembly, and Applications. Chem. Asian J., 2016, 11, 1322-1337.
(b)Laine, R.M.; Roll, M.F. Polyhedral Phenylsilsesquioxanes. Macromolecules, 2011, 44(55), 1073-1109.
(c)Sulaiman, S.; Zhang, J.; Goodson, I.I.I.T.; Laine, R.M. Synthesis, characterization and photophysical properties of polyfunctional phenylsilsesquioxanes: [o-RPhSiO1.5]8, [2,5-R2PhSiO1.5]8, and [R3PhSiO1.5]8 compounds with the highest number of functional units/unit volume. J. Mater. Chem., 2011, 21, 11177-11187.
(d)Cordes, D.B.; Lickiss, P.D.; Rataboul, F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem. Rev., 2010, 110, 2081-2173.
[33]
Hartmann-Thompson, C. Applications of Polyhedral Oligomeric Silsesquioxanes; Springer Netherlands: Midland, 2011.
[34]
(a)Bahrami, M.; Furgal, J.C.; Hashemi, H.; Ehsani, M.; Jahani, Y.; Goodson, T.; Kieffer, J.; Laine, R.M. Synthesis and Characterization of Nanobuilding Blocks [o-RStyrPhSiO1.5]10,12 (R = Me, MeO, NBoc, and CN). Unexpected Photophysical Properties Arising from Apparent Asymmetric Cage Functionalization as Supported by Modeling Studies. J. Phys. Chem. C, 2015, 119, 15846-15858.
(b)Zhang, T.; Wang, J.; Zhou, M.; Ma, L.; Yin, G.; Chen, G.; Li, Q. Influence of polyhedral oligomeric silsesquioxanes (POSS) on blue light-emitting materials for OLED. Tetrahedron, 2014, 70(14), 2478-2486.
(c)Furgal, J.C.; Jung, J.H.; Clark, S.; Goodson, T.; Laine, R.M. Beads on a Chain (BoC) Phenylsilsesquioxane (SQ) Polymers via F– Catalyzed Rearrangements and ADMET or Reverse Heck Cross-coupling Reactions: Through Chain, Extended Conjugation in 3-D with Potential for Dendronization. Macromolecules, 2013, 46(19), 7591-7604.
(d)Chan, K.L.; Sonar, P.; Sellinger, A. Cubic silsesquioxanes for use in solution processable organic light emitting diodes (OLED). J. Mater. Chem., 2009, 19, 9103-9120.
(e)Lo, M.Y.; Ueno, K.; Tanabe, H. Sellinger, Silsesquioxane-Based Nanocomposite Dendrimers With Photo-luminescent and Charge Transport Properties. A. Chem. Rec., 2006, 6, 157-168.
[35]
(a)Maegawa, T.; Miyashita, O.; Irie, Y.; Imoto, H.; Naka, K. Synthesis and properties of polyimides containing hexaisobutyl-substituted T8 cages in their main chains. RSC Advances, 2016, 6, 31751-31757.
(b)Huang, S.; Qiu, Z. Enhanced Thermal Stability and Crystallization Rate of Biodegradable Poly(butylene adipate) by a Small Amount of Octavinyl-Polyhedral Oligomeric Silsesquioxanes. Ind. Eng. Chem. Res., 2014, 53, 15296-15300.
(c)Ro, H.W.; Soles, C.L. Silsesquioxanes in nanoscale patterning applications. Mater. Today, 2011, 14, 20-33.
(d)Pielichowski, K.; Njuguna, J.; Janowski, B.; Pielichowski, J. in Supramolecular Polymers Polymeric Betains Oligomers, Springer Berlin Heidelberg, 2006, 201, ch. 77, pp. 225-296.
[36]
Ghanbari, H.; Cousins, B.G.; Seifalian, A.M. A Nanocage for Nanomedicine: Polyhedral Oligomeric Silsesquioxane (POSS). Macromol. Rapid Commun., 2011, 32, 1032-1046.
[37]
(a)Nemoto, H.; Wilson, J.G.; Nakamura, H.; Yamamoto, Y. Polyols of a cascade type as a water-solubilizing element of carborane derivatives for boron neutron capture therapy. J. Org. Chem., 1992, 57(2), 435-435.
(b)Nemoto, H.; Cai, J.; Yamamoto, Y. Synthesis of a water-soluble o-carbaborane bearing a uracil moiety via a palladium-catalysed reaction under essentially neutral conditions. J. Chem. Soc. Chem. Commun., 1994, 577-578.
[38]
(a)Knoth, W.H.; Miller, H.C.; England, D.C.; Parshall, G.W.; Muetterties, E.L. Derivative Chemistry of B10H10- and B12H12-. J. Am. Chem. Soc., 1962, 84(6), 1056-1057.
(b)Olid, D.; Nuñez, R.; Viñas, C.; Teixidor, F. Methods to produce B–C, B–P, B–N and B–S bonds in boron clusters. Chem. Soc. Rev., 2013, 42, 3318-3336.
[39]
(a) Hawthorne, M. F.; Carborane Chemistry at Work and at Play, Proceedings of the Ninth International Meeting on Boron Chemistry. In Advances in Boron Chemistry, W. Siebert Ed. (Special Publication No. 201, Royal Society of Chemistry, London, 1997, 261-272.
[40]
(a)Maderna, A.; Knobler, C.B.; Hawthorne, M.F. Twelvefold Functionalization of an Icosahedral Surface by Total Esterification of [B12(OH)12]2−: 12(12)‐Closomers. Angew. Chem. Int. Ed., 2001, 40(9), 1661-1664.
(b)Peymann, T.; Knobler, C.B.; Khan, S.I.; Hawthorne, M.F. Dodeca(benzyloxy)dodecaborane, B(12)(OCH(2)Ph)(12): A Stable Derivative of hypercloso-B(12)H(12) This work was supported by the U.S. Department of Energy (DE-FG02-95ER61975) and the National Science Foundation (NSF CHE 9730006 and NSF CHE 9871332). Angew. Chem. Int. Ed., 2001, 40(9), 1664-1667.
[41]
Thomas, J.; Hawthorne, M.F. Dodeca(carboranyl)-substituted closomers: toward unimolecular nanoparticles as delivery vehicles for BNCT. Chem. Commun., 2001, 1884-1885.
[42]
(a)Goswami, L.N.; Ma, L.X.; Chakravarty, S.; Cai, Q.Y.; Jalisatgi, S.S.; Hawthorne, M.F. Discrete Nanomolecular Polyhedral Borane Scaffold Supporting Multiple Gadolinium(III) Complexes as a High Performance MRI Contrast Agent. Inorg. Chem., 2013, 52(4), 1694-1700.
(b)Goswami, L.N.; Ma, L.X.; Kueffer, P.J.; Jalisatgi, S.S.; Hawthorne, M.F. Synthesis and Relaxivity Studies of a DOTA-Based Nanomolecular Chelator Assembly Supported by an Icosahedral Closo-B-12(2-)-Core for MRI: A Click Chemistry Approach. Molecules, 2013, 18(8), 9034-9048.
[43]
Goswami, L.N.; Khan, A.A.; Jalisatgi, S.S.; Hawthorne, M.F. Synthesis and in vitro assessment of a bifunctional closomer probe for fluorine (19F) magnetic resonance and optical bimodal cellular imaging. Chem. Commun., 2014, 50, 5793-5795.
[44]
(a)Sibrian-Vazquez, M.; Vicente, M.G.H. Boron Tumor- Delivery for BNCT: Recent Developments and Perspectives in Boron Science: New Technologies and Applications (ed. Hosmane, N.S.) 209 (Taylor & Francis, Bosa Roca), 2012.
(b)Scholz, M.; Hey-Hawkins, E. Carbaboranes as Pharmacophores: Properties, Synthesis, and Application Strategies. Chem. Rev., 2011, 111, 7035-7062.
(c)Sivaev, I.B.; Bregadze, V.V. Polyhedral Boranes for Medical Applications: Current Status and Perspectives. Eur. J. Inorg. Chem., 2009, 1433-1450.
(d)Bregadze, V.I.; Sivaev, I.B.; Glazun, S.A. Polyhedral boron compounds as potential diagnostic and therapeutic antitumor agents. Anticancer. Agents Med. Chem., 2006, 6, 75-109.
(e)Lesnikowski, Z.J. Challenges and Opportunities for the Application of Boron Clusters in Drug Design. J. Med. Chem., 2016, 59(17), 7738-7758.
(f)Valliant, J.F.; Guenther, K.J.; King, A.S.; Morel, P.; Schaffer, P.; Sogbein, O.O.; Stephenson, K.A. The medicinal chemistry of carboranes. Coord. Chem. Rev., 2002, 232, 173-230.
(g)Armstrong, A.F.; Valliant, J.F. The bioinorganic and medicinal chemistry of carboranes: from new drug discovery to molecular imaging and therapy. Dalton Trans., 2007, 4240-4251.
(h)Hawthorne, M.F.; Maderna, A. Applications of Radiolabeled Boron Clusters to the Diagnosis and Treatment of Cancer. Chem. Rev., 1999, 99, 3421-3434.
(i)Issa, F.; Kassiou, M.; Rendina, L.M. Boron in Drug Discovery: Carboranes as Unique Pharmacophores in Biologically Active Compounds. Chem. Rev., 2011, 111(9), 5701-5722.
[45]
Takagaki, M.; Tomaru, T.; Maguire, J.A.; Hosmane, N.S. Future Applications of Boron and Gadolinium Neutron Capture Therapy in Boron Science: New Technologies and Applications 243 (Taylor & Francis, Bosa Roca), 2012.
[46]
(a)Luderer, M.J.; de la Puente, P.; Azab, A.K. Advancements in Tumor Targeting Strategies for Boron Neutron Capture Therapy. Pharm. Res., 2015, 32, 2824-2836.
(b)Matuszewski, M.; Kiliszek, A.; Rypniewski, W.; Lesnikowski, Z.J.; Olejniczak, A.B. Nucleoside bearing boron clusters and their phosphoramidites-building blocks for modified oligonucleotide synthesis. New J. Chem., 2015, 39, 1202-1221.
[47]
Hiroyuki, N. Boron lipid-based liposomal boron delivery system for neutron capture therapy: recent development and future perspective. Future Med. Chem., 2013, 5, 715-730.
[48]
(a)Leśnikowski, Z.J. Challenges and Opportunities for the Application of Boron Clusters in Drug Design. J. Med. Chem., 2016, 59, 7738-7758.
(b)Ban, H.S.; Nakamura, H. Boron-Based Drug Design. Chem. Rec., 2015, 15, 616-635.
[49]
Barth, R.F.; Vicente, M.G.; Harling, O.K.; Kiger, W.S.; Riley, K.J.; Binns, P.J.; Wagner, F.M.; Suzuki, M.; Aihara, T.; Kato, I.; Kawabata, S. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat. Oncol., 2012, 7, 146-146.
[50]
Hawthorne, M.F.; Young, D.C.; Wegner, P.A. Carbametallic Boron Hydride Derivatives. I. Apparent Analogs of Ferrocene and Ferricinium Ion. J. Am. Chem. Soc., 1965, 87, 1818-1819.
[51]
Masalles, C.; Llop, J.; Viñas, C.; Teixidor, F. Extraordinary Overoxidation Resistance Increase in Self‐Doped Polypyrroles by Using Non‐conventional Low Charge‐Density Anions. Adv. Mater., 2002, 14, 826-829.
[52]
(a)Sivaev, I.B.; Bregadze, V.I. Chemistry of Cobalt Bis(dicarbollides). A Review. Collect. Czech. Chem. Commun., 1999, 64, 783-805.
(b)Juárez-Pérez, E.J.; Núñez, R.; Viñas, C.; Sillanpää, R.; Teixidor, F. The Role of C–H···H–B Interactions in Establishing Rotamer Configurations in Metallabis(dicarbollide) Systems. Eur. J. Inorg. Chem., 2010, 2010(16), 2385-2392.
(c)Dash, B.P.; Satapathy, R.; Swain, B.R.; Mahanta, C.S.; Jena, B.; Hosmane, N.S. Cobalt bis(dicarbollide) anion and its derivatives. J. Organomet. Chem., 2017, 849-850, 170-194.
[53]
Chamberlin, R.M.; Scott, B.L.; Melo, M.M.; Abney, K.D. Butyllithium Deprotonation vs Alkali Metal Reduction of Cobalt Dicarbollide: A New Synthetic Route to C-Substituted Derivatives. Inorg. Chem., 1997, 36 (5), 809-817. (b) Rojo, I.; Teixidor, F.; Viñas, C.; Kivekäs, R.; Sillanpää, R. Synthesis and Coordinating Ability of an Anionic CobaltabisdicarbollideLigand Geometrically Analogous to BINAP. Chem. Eur. J., 2004, 10 (21), 5376-5385. (c) Juárez-Pérez, E. J.; Viñas, C.; González-Campo, A.; Teixidor, F.; Kivekäs, R.; Sillanpää R.; Núñez, R. Controlled Direct Synthesis of C‐Mono‐ and C‐Disubstituted Derivatives of [3,3′‐Co(1,2‐C2B9H11)2] with Organosilane Groups: Theoretical Calculations Compared with Experimental Results. Chem. Eur. J., 2008, 14 (16), 4924. (d) Juárez-Pérez, E. J.; Viñas, C.; Teixidor, F.; Núñez, R. First example of the formation of a Si–C bond from an intramolecular Si–H⋯H–C diyhydrogen interaction in a metallacarborane: A theoretical study. J. Organomet. Chem., 2009, 694(11), 1764-1770.
[54]
(a)Viñas, C.; Pedrajas, J.; Bertrán, J.; Teixidor, F.; Kivekäs, R.; Sillanpää, R. Synthesis of Cobaltabis(dicarbollyl) Complexes Incorporating Exocluster SR Substituents and the Improved Synthesis of [3,3‘-Co(1-R-2-R‘-1,2-C2B9H9)2]- Derivatives. Inorg. Chem., 1997, 36(11), 2482-2486.
(b)Viñas, C.; Gómez, S.; Bertrán, J.; Teixidor, F.; Dozol, J.F.; Rouquette, H. Cobaltabis(dicarbollide) derivatives as extractants for europium from nuclear wastes. Chem. Commun., 1998, 191-192.
(c)Viñas, C.; Gómez, S.; Bertrán, J.; Teixidor, F.; Dozol, J.F.; Rouquette, H. New Polyether-Substituted Metallacarboranes as Extractants for 137Cs and 90Sr from Nuclear Wastes. Inorg. Chem., 1998, 37(14), 3640-3643.
(d)Viñas, C.; Bertrán, J.; Gómez, S.; Teixidor, F.; Dozol, J.F.; Rouquette, H.; Kivekäs, R.; Sillanpää, R. Aromatic substituted metallacarboranes as extractants of 137Cs and 90Sr from nuclear wastes. J. Chem. Soc., Dalton Trans., 1998, 2849-2854.
(e)Viñas, C.; Pedrajas, J.; Teixidor, F.; Kivekäs, R.; Sillanpää, R.; Welch, A. First Example of a Bis(dicarbollide) Metallacarborane Containing a B,C‘-Heteronuclear Bridge. J. Inorg. Chem, 1997, 36(14), 2988-2991.
[55]
Teixidor, F.; Viñas, C.; Demonceau, A.; Nuñez, R. Boron clusters: Do they receive the deserved interest? Pure. Appl. Chem.,2003, 75 (9), 1305-1313. (b) Grimes, R. N. Carboranes, 2nd ed; Academic Press: Burlington, MA, 2011.
[56]
Teixidor, F.; Barberà, G.; Vaca, A.; Kivekäs, R.; Sillanpää, R.; Oliva, J.; Viñas, C. Are Methyl Groups Electron-Donating or Electron-Withdrawing in Boron Clusters? Permethylation of o-Carborane. J. Am. Chem. Soc., 2005, 127(29), 10158-10159.
[57]
Puga, A.V.; Teixidor, F.; Sillanpää, R.; Kivekäs, R.; Arca, M.; Barberà, G.; Viñas, C. From Mono- to Poly-Substituted Frameworks: A Way of Tuning the Acidic Character of Cc-H in o-Carborane Derivatives. Chem. Eur. J., 2009, 15, 9755-9763.
[58]
Núñez, R.; González-Campo, A.; Laromaine, A.; Teixidor, F.; Sillanpää, R.; Kivekäs, R.; Viñas, C. Synthesis of Small Carboranylsilane Dendrons as Scaffolds for Multiple Functionalizations. Org. Lett., 2006, 8(20), 4549-4552.
[59]
(a)Gómez, F.A.; Hawthorne, M.F. A simple route to C-monosubstituted carborane derivatives. J. Org. Chem., 1992, 57(5), 1384-1390.
(b)Wang, S.; Yang, Q.; Mak, T.C.W.; Xie, Z. Carbon versus Silicon Bridges. Synthesis of a New Versatile Ligand and Its Applications in Organolanthanide Chemistry. Organometallics, 2000, 19(3), 334-343.
(c)Xie, Z. Cyclopentadienyl−Carboranyl Hybrid Compounds: A New Class of Versatile Ligands for Organometallic Chemistry. Acc. Chem. Res., 2003, 36(1), 1-9.
(d)González-Campo, A.; Boury, B.; Teixidor, F.; Núñez, R. Carboranyl Units Bringing Unusual Thermal and Structural Properties to Hybrid Materials Prepared by Sol−Gel Process. Chem. Mater., 2006, 18(18), 4344-4353.
[60]
Farràs, P.; Teixidor, F.; Kivekäs, R.; Sillanpää, R.; Viñas, C.; Grüner, B.; Cisarova, I. Metallacarboranes as Building Blocks for Polyanionic Polyarmed Aryl-Ether Materials. Inorg. Chem., 2008, 47(20), 9497-9508.
[61]
Viñas, C.; Núñez, R.; Teixidor, F. Large Molecules Containing Icosahedral Boron Clusters Designed for Potential Applications in Boron Science; Hosmane, N.S., Ed.; CRC Press Taylor & Francis Group: Boca Raton, 2012.
[62]
Šícha, V.; Farràs, P. Štíbr, B.; Teixidor, F.; Grüner, B.; Viñas, C. Syntheses of C-substituted icosahedral dicarbaboranes bearing the 8-dioxane-cobalt bisdicarbollide moiety. J. Organomet. Chem., 2009, 694(11), 1599-1601.
[63]
Llop, J.; Masalles, C.; Viñas, C.; Teixidor, F.; Sillanpää, R.; Kivekäs, R. The [3,3′-Co(1,2-C2B9H11)2] anion as a platform for new materials: synthesis of its functionalized monosubstituted derivatives incorporating synthons for conducting organic polymers. Dalton Trans., 2003, 4, 556-561.
[64]
(a)Sivaev, I.B.; Starikova, Z.A.; Sjöberg, S.; Bregadze, V.I. Synthesis of functional derivatives of the [3,3′-Co(1,2-C2B9H11)2] anion. J. Organomet. Chem., 2002, 649, 1-8.
(b)Sivaev, I. B.; Sjöberg, S.; Bregadze, V. I. Materials of the Next Century, Nizhny Novgorod, Russia, May 29-June 2000.
[65]
Plešek, J.; Grüner, B.; Heřmánek, S.; Báča, J.; Mareček, V.; Jänchenová, J.; Lhotský, A.; Holub, K.; Selucký, P.; Rais, J.; Císařová, I.; Čáslavský, J. Synthesis of functionalized cobaltacarboranes based on the closo-[(1,2-C2B9H11)2-3,3′-Co] ion bearing polydentate ligands for separation of M3+ cations from nuclear waste solutions. Electrochemical and liquid-liquid extraction study of selective transfer of M3+ metal cations to an organic phase. Molecular structure of the closo-[(8-(2-CH3O-C6H4-O)-(CH2CH2O)2-1,2-C2B9H10)-(1′,2′-C2B9H11)-3,3′-Co]Na determined by X-ray diffraction analysis. Polyhedron, 2002, 21, 975-986.
[66]
Grüner, B.; Plešek, J.; Báča, J.; Císařová, I.; Dozol, J-F.; Rouquette, H.; Viňas, C.; Selucký, P.; Rais, J. Cobalt bis(dicarbollide) ions with covalently bonded CMPO groups as selective extraction agents for lanthanide and actinide cations from highly acidic nuclear waste solutions. New J. Chem., 2002, 26, 1519-1527.
[67]
Teixidor, F.; Pedrajas, J.; Rojo, I.; Viñas, C.; Kivekäs, R.; Sillanpää, R.; Sivaev, I.; Bregadze, V.; Sjöberg, S. Chameleonic Capacity of [3,3‘-Co(1,2-C2B9H11)2]- in Coordination. Generation of the Highly Uncommon S(thioether)−Na Bond. Organometallics, 2003, 22(17), 3414-3423.
[68]
(a)Grüner, B.; Mikulasek, L.; Baca, J.; Cisarova, I.; Böhmer, V.; Danila, C.; Reinoso-Garcia, M.M.; Verboom, W.; Reinhoudt, D.N.; Casnati, A.; Ungaro, R. Cobalt Bis(dicarbollides)(1–) Covalently Attached to the Calix[4]arene Platform: The First Combination of Organic Bowl‐Shaped Matrices and Inorganic Metallaborane Cluster Anions. Eur. J. Org. Chem., 2005, 10, 2022-2039.
(b)Mikulasek, L.; Grüner, B.; Danila, C.; Bohmer, V.; Caslavsky, J.; Selucky, P. Synergistic effect of ligating and ionic functions, prearranged on a calix[4]arene. Chem. Commun., 2006, 38, 4001-4003.
[69]
(a)Olejniczak, A.B.; Plesek, J.; Kriz, O.; Lesnikowski, Z.J. A Nucleoside Conjugate Containing a Metallacarborane Group and Its Incorporation into a DNA Oligonucleotide. Angew. Chem. Int. Ed., 2003, 42, 5740-5743.
(b)Leśnikowski, Z.J.; Paradowska, E.; Olejniczaka, A.B.; Studzińska, M.; Seekamp, P.; Schüßler, U.; Gabel, D.; Schinazi, R.F.; Plešek, J. Towards new boron carriers for boron neutron capture therapy: metallacarboranes and their nucleoside conjugates. Bioorg. Med. Chem., 2005, 13, 4168-4175.
(c)Olejniczak, A.B.; Plesek, J.; Lesnikowski, Z.J. Nucleoside–Metallacarborane Conjugates for Base-Specific Metal Labelingof DNA. Chem. Eur. J., 2007, 13, 311-318.
[70]
Farràs, P.; Cioran, A.M.; Šícha, V.; Teixidor, F.; Štíbr, B.; Grüner, B.; Viñas, C. Toward the Synthesis of High Boron Content Polyanionic Multicluster Macromolecules. Inorg. Chem., 2009, 48, 8210-8219.
[71]
(a)Wiesboeck, R.A.; Hawthorne, M.F. Dicarbaundecaborane(13) and Derivatives. J. Am. Chem. Soc., 1964, 86, 1642-1643.
(b)Garret, P.M.; Tebbe, F.N.; Hawthorne, M.F. The Thermal Isomerization of C-Phenyldicarbaundecaborate(12). J. Am. Chem. Soc., 1964, 86(22), 5016-5017.
(c)Hawthorne, M.F.; Young, D.C.; Garret, P.M.; Owen, D.A.; Schwerin, S.G.; Tebbe, F.N.; Wegner, P.M. Preparation and characterization of the (3)-1,2- and (3)-1,7-dicarbadodecahydroundecaborate(-1) ions. J. Am. Chem. Soc., 1968, 90(4), 862-868.
[72]
(a)Zakharkin, L.I.; Kalinin, V.N. On the reaction of amines with barenes. Tetrahedron Lett., 1965, 6(7), 407-409.
(b)Zakharkin, L.I.; Kirillova, V.S. Cleavage of o-carboranes to (3)-l,2-dicarbaundecarborates by amines. Izv. Akad. Nauk SSSR Ser [Khim], 1975, 24, 2596-2598.
(c)Taoda, Y.; Sawabe, T.; Endo, Y.; Yamaguchi, K.; Fujii, S.; Kagechika, H. Identification of an intermediate in the deboronation of ortho-carborane: an adduct of ortho-carborane with two nucleophiles on one boron atom. Chem. Commun., 2008, 2049-2051.
[73]
(a)Fox, M.A.; Gill, W.R.; Herbertson, P.L.; MacBride, J.A.H.; Wade, K. Deboronation of c-substituted ortho- and meta-closo-carboranes using “wet” fluoride ion solutions. Polyhedron, 1996, 16, 565-571.
(b)Fox, M.A.; MacBride, J.A.H.; Wade, K. Fluoride-ion deboronation of p-fluorophenyl-ortho- and -meta-carboranes. NMR evidence for the new fluoroborate, HOBHF2. Polyhedron, 1997, 16, 2499-2507.
(c)Fox, M.A.; Wade, K. Cage-fluorination during deboronation of meta-carboranes. Polyhedron, 1997, 16, 2517-2525.
(d)Yoo, J.; Hwang, J.W.; Do, Y. Facile and Mild Deboronation of o-Carboranes Using Cesium Fluoride. Inorg. Chem., 2001, 40(3), 568-570.
[74]
Davidson, M.G.; Fox, M.A.; Hibbert, T.G.; Howard, J.A.K.; Mackinnon, A.; Neretin, I.S.; Wade, K. Deboronation of ortho-carborane by an iminophosphorane: crystal structures of the novel carborane adduct nido-C2B10H12·HNP(NMe2)3 and the borenium salt [(Me2N)3PNHBNP(NMe2)3]2O2+(C2B9H12)2. Chem. Commun., 1999, 1649-1650.
[75]
Teixidor, F.; Sillanpää, R.; Pepiol, A.; Lupu, M. Viñas. C. Synthesis of Globular Precursors. Chem. Eur. J., 2015, 21, 12778-12786.
[76]
Cigler, P.; Kožišek, M.; Řezačova, P.; Brynda, J.; Otwinowski, Z.; Pokorna, J.; Plešek, J.; Grüner, B.; Doleckova-Marešova, L.; Maša, M.; Sedlaček, J.; Bodem, J.; Krausslich, H.G.; Kral, V.; Konvalinka, J. From nonpeptide toward noncarbon protease inhibitors: Metallacarboranes as specific and potent inhibitors of HIV protease. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15394-15399.
[77]
(a)Cioran, A.M.; Musteti, A.D.; Teixidor, F.; Krpetić, Ž.; Prior, I.A.; He, Q.; Kiely, C.J.; Brust, M.; Viñas, C. Mercaptocarborane-Capped Gold Nanoparticles: Electron Pools and Ion Traps with Switchable Hydrophilicity. J. Am. Chem. Soc., 2012, 134(1), 212-221.
(b)Grzelczak, M.P.; Danks, S.P.; Klipp, R.C.; Belic, D.; Zaulet, A.; Kunstmann-Olsen, C.; Bradley, D.F.; Tsukuda, T.; Viñas, C.; Teixidor, F.; Abramson, J.J.; Brust, M. Ion Transport across Biological Membranes by Carborane-Capped Gold Nanoparticles. ACS Nano, 2017, 11(12), 12492-12499.
(c)Oleshkevich, E.; Teixidor, F.; Rosell, A.; Viñas, C. Merging Icosahedral Boron Clusters and Magnetic Nanoparticles: Aiming toward Multifunctional Nanohybrid Materials. Inorg. Chem., 2018, 57(1), 462-470.
(d)Saha, A.; Oleshkevich, E.; Viñas, C.; Teixidor, F. Biomimetic Inspired Core–Canopy Quantum Dots: Ions Trapped in Voids Induce Kinetic Fluorescence Switching. Adv. Mater., 2017, 29, 1704238-1704245.
[78]
Janczak, S.; Olejniczak, A.; Balabańska, S.; Chmielewski, M.K.; Lupu, M.; Viñas, C.; Lesnikowski, Z.J. Boron clusters as a platform for new materials: synthesis of functionalized o-carborane (C2B10H12) derivatives incorporating DNA fragments. Chem. Eur. J., 2015, 21, 15118-15122.
[79]
Cheung, M-S.; Chan, H-S.; Xie, Z. Synthesis and structural characterization of hydroxyethyl- and alkoxyethyl-o-carboranes and their alkali and rare earth metal complexes. Organometallics, 2004, 23, 517-526.
[80]
Brown, T.; Brown, D.J.S. Oligonucleotides and analogues. A Practical Approach; F., Eckstein, Ed.; IRL Press: Oxford, 1991, pp. 1-24.
[81]
Teixidor, F.; Pepiol, A.; Viñas, C. Synthesis of Periphery-Decorated and Core-Initiated Borane Polyanionic Macromolecules. Chem. Eur. J., 2015, 21, 10650-10653.
[82]
Lerouge, F.; Viñas, C.; Teixidor, F.; Núñez, R.; Abreu, A.; Xochitiotzi, E.; Santillán, R.; Farfán, N. High boron content carboranyl-functionalized aryl ether derivatives displaying photoluminescent properties. Dalton Trans., 2007, 1898-1903.
[83]
Lerouge, F.; Ferrer-Ugalde, A.; Viñas, C.; Teixidor, F.; Núñez, R.; Abreu, A.; Xochitiotzi, E.; Santillán, R.; Farfán, N. Synthesis and fluorescence emission of neutral and anionic di and tetra carboranyl compounds. Dalton Trans., 2011, 40, 7541-7550.
[84]
Núñez, R.; Juárez-Pérez, E.J.; Teixidor, F.; Santillan, R.; Farfán, N.; Abreu, A.; Yépez, R.; Viñas, C. Decorating Poly(alkyl aryl-ether) Dendrimers with Metallacarboranes. Inorg. Chem., 2010, 49, 9993-10000.
[85]
González-Campo, A.; Ferrer-Ugalde, A.; Viñas, C.; Teixidor, F.; Sillanpää, R.; Rodríguez-Romero, J.; Santillan, R.; Farfán, N.; Núñez, R. A Versatile Methodology for the Controlled Synthesis of Photoluminescent High-Boron-Content dendrimers. Chem. Eur. J., 2013, 19, 6299-6312.
[86]
Wu, W.; Zhang, X.Y.; Kang, S.X.; Gao, Y.M. Chin. Chem. Lett., 2010, 21, 312-316.
[87]
Juárez-Pérez, E.J.; Viñas, C.; Teixidor, F.; Santillan, R.; Farfán, N.; Abreu, A.; Yépez, R. Núñez, R. Polyanionic Aryl Ether Metallodendrimers Based on Cobaltabisdicarbollide Derivatives. Photoluminescent Properties. Macromolecules, 2010, 43, 150-159.
[88]
Cabrera-González, J.; Xochitiotzi-Flores, E.; Viñas, C.; Teixidor, F.; García-Ortega, H.; Farfán, N.; Santillan, R.; Parella, T.; Núñez, R. High-Boron-Content Porphyrin-Cored Aryl Ether Dendrimers: Controlled Synthesis, Characterization, and Photophysical Properties. Inorg. Chem., 2015, 54, 5021-5031.
[89]
Ferrer-Ugalde, A.; Juárez-Pérez, E.J.; Teixidor, F.; Viñas, C.; Pérez-Inestrosa, E.; Sillanpää, R.; Núñez, R. Synthesis and Characterization of New Fluorescent Styrene‐Containing Carborane Derivatives: The Singular Quenching Role of a Phenyl Substituent. Chem. Eur. J., 2012, 18, 544-553.
[90]
González-Campo, A.; Juárez-Pérez, E.J.; Viñas, C.; Boury, B.; Kivekäs, R.; Sillanpää, R.; Núñez, R. Carboranyl Substituted Siloxanes and Octasilsesquioxanes: Synthesis, Characterization, and Reactivity. Macromolecules, 2008, 41, 8458-8466.
[91]
(a)Bassindale, A.R.; Mackinnon, I.A.; Maesano, M.G.; Taylor, P.G. The preparation of hexasilsesquioxane (T6) cages by “non aqueous” hydrolysis of trichlorosilanes. Chem. Commun., 2003, 1382.
(b)Brook, M.A. In Silicon in Organic, Organometallic, and Polymer Chemistry; John Wiley & Sons, Inc.: New York, 2000, p. 256.
(c)Le Roux, C.; Yang, H.; Wenzel, S.; Brook, M.A. Using “Anhydrous” Hydrolysis To Favor Formation of Hexamethylcyclotrisiloxane from Dimethyldichlorosilane. Organometallics, 1998, 17, 556-564.
(d)Lu, P.; Paulasaari, J.K.; Weber, W.P. Organometallics, 1996, 15, 4649.
(e)Arkhireeva, A.; Hay, J.N.; Manzano, M. Preparation of Silsesquioxane Particles via a Nonhydrolytic Sol−Gel Route. Chem. Mater., 2005, 17, 875-880.
[92]
Itami, Y.; Marciniec, B.; Kubicki, M. Functionalization of Octavinylsilsesquioxane by Ruthenium‐Catalyzed Silylative Coupling versus Cross‐Metathesis. Chem. Eur. J.2004, 10, 1239-1248. (b) Sulaiman, S.; Bhaskar, A.; Zhang, J.; Guda, R.; Goodson III T.; Laine, R. M. Molecules with Perfect Cubic Symmetry as Nanobuilding Blocks for 3-D Assemblies. Elaboration of Octavinylsilsesquioxane. Unusual Luminescence Shifts May Indicate Extended Conjugation Involving the Silsesquioxane Core. Chem. Mater., 2008, 20, 5563-5573. (c) Cheng, G.; Vautravers, N. R.; Morris, R. E.; Cole-Hamilton, D. Synthesis of Functional Cubes from Octavinylsilsesquioxane (OVS). J. Org. Biomol. Chem., 2008, 6, 4662-4667.
[93]
Ferrer-Ugalde, A.; Juárez-Pérez, E.J.; Viñas, C.; Teixidor, F.; Núñez, R. Synthesis, Characterization, and Thermal Behavior of Carboranyl–Styrene Decorated Octasilsesquioxanes: Influence of the carborane clusters on photoluminescence. Chem. Eur. J., 2013, 19, 17021-17030.
[94]
Cabrera-González, J.; Ferrer-Ugalde, A.; Bhattacharyya, S.; Chaari, M.; Teixidor, F.; Gierschner, J.; Núñez, R. Fluorescent carborane–vinylstilbene functionalised octasilsesquioxanes: synthesis, structural, thermal and photophysical properties. J. Mater. Chem. C, 2017, 5, 10211-10219.
[95]
Cabrera-González, J.; Sánchez-Arderiu, V.; Viñas, C.; Parella, T.; Teixidor, F.; Núñez, R. Redox-Active Metallacarborane-Decorated Octasilsesquioxanes. Electrochemical and Thermal Properties. Inorg. Chem., 2016, 55(22), 11630-11634.
[96]
Hosmane, N.S. Boron Science: New Technologies and Applications; CRC Press: Boca Raton, 2012.
[97]
Cigler, P.; Kozisek, M.; Rezacova, P.; Brynda, J.; Otwinowski, Z.; Pokorna, J.; Plesek, J.; Grüner, B.; Doleckova-Maresova, L.; Masa, M.; Sedlacek, J.; Bodem, J.; Krausslich, H.G.; Kral, V.; Konvalinka, J. From nonpeptide toward noncarbon protease inhibitors: Metallacarboranes as specific and potent inhibitors of HIV protease. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15394-15399.
[98]
(a)Rezacova, P.; Pokorna, J.; Brynda, J.; Kozisek, M.; Cigler, P.; Lepsik, M.; Fanfrlik, J.; Rezac, J.; Saskova, K.G.; Sieglova, I.; Plesek, J.; Sicha, V.; Grüner, B.; Oberwinkler, H.; Sedlacek, J.; Krausslich, H.G.; Hobza, P.; Kral, V.; Konvalinka, J. Design of HIV Protease Inhibitors Based on Inorganic Polyhedral Metallacarboranes. J. Med. Chem., 2009, 52(22), 7132-7141.
(b)Kozisek, M.; Cigler, P.; Lepsik, M.; Fanfrlik, J.; Rezacova, P.; Brynda, J.; Pokorna, J.; Plesek, J.; Grüner, B.; Saskova, K.G.; Vaclavikova, J.; Kral, V.; Konvalinka, J. Inorganic Polyhedral Metallacarborane Inhibitors of HIV Protease: A New Approach to Overcoming Antiviral Resistance. J. Med. Chem., 2008, 51(15), 4839-4843.
[99]
Bauduin, P.; Prevost, S.; Farràs, P.; Teixidor, F.; Diat, O.; Zemb, T. A Theta-Shaped Amphiphilic Cobaltabisdicarbollide Anion: TransitionFrom Monolayer Vesicles to Micelles. Angew. Chem. Int. Ed., 2011, 50, 5298-5300.
[100]
Brusselle, D.; Bauduin, P.; Girard, L.; Zaulet, A.; Viñas, C.; Teixidor, F.; Ly, I.; Diat, O. Yotropic Lamellar Phase Formed from Monolayered q-ShapedCarborane-Cage Amphiphiles. Angew. Chem. Int. Ed., 2013, 52, 12114-12118.
[101]
Zaulet, A.; Teixidor, F.; Bauduin, P.; Diat, O.; Hirva, P.; Ofori, A.; Viñas, C. Deciphering the role of the cation in anionic cobaltabisdicarbollide clusters. J. Organomet. Chem., 2018, 865, 214-225.
[102]
Verdia-Baguena, C.; Alcaraz, A.; Aguilella, V.M.; Cioran, A.M.; Tachikawa, S.; Nakamura, H.; Teixidor, F.; Viñas, C. Amphiphilic COSAN and I2-COSAN crossing synthetic lipid membranes: planar bilayers and liposomes. Chem. Commun., 2014, 50, 6700-6703.
[103]
(a)Montal, M.; Mueller, P. Formation of Bimolecular Membranes from Lipid Monolayers and a Study of Their Electrical Properties. Proc. Natl. Acad. Sci. USA, 1972, 69(12), 3561-3566.
(b)Bezrukov, S.M.; Vodyanoy, I. Probing alamethicin channels with water-soluble polymers. Effect on conductance of channel states. Biophys. J., 1993, 64(1), 16-25.
[104]
Tarrés, M.; Canetta, E.; Paul, E.; Forbes, J.; Azzouni, K.; Viñas, C.; Teixidor, F.; Harwood, J.A. Biological interaction of living cells with COSAN-based synthetic vesicles. Sci. Rep., 2015, 5, 7804.
[105]
(a)Kessin, R.H. The evolution of the cellular slime molds: Dictyostelium - A model system for cell and developmental biology; Universal Academy Press: Columbia, 1997.
(b)Olie, R.A.; Durrieu, F.; Cornillon, S.; Loughran, G.; Gross, J.; Earnshaw, W.C.; Golstein, P. Apparent caspase independence of programmed cell death in Dictyostelium. Curr. Biol., 1998, 8, 955-958.
[106]
Tarrés, M.; Canetta, E.; Viñas, C.; Teixidor, F.; Harwood, A.J. Imaging in living cells using νB–H Raman spectroscopy: monitoring COSAN uptake. Chem. Commun., 2014, 50, 3370-3372.
[107]
Muñoz‐Flores, B.M. Cabrera‐González. J.; Viñas, C.; Chávez‐Reyes, A.; Dias, H. V. R., Jiménez‐Pérez, V. M.; Núñez, R. Organotin Dyes Bearing Anionic Boron Clusters as Cell‐Staining Fluorescent Probes. Chem. Eur. J., 2018, 4, 5601-5612.
[108]
Chaari, M.; Gaztelumendi, N.; Cabrera-González, J.; Peixoto-Moledo, P.; Viñas, C.; Xochitiotzi-Flores, E.; Farfan, N.; Ben Salah, A.; Nogues, C.; Nuñez, R. Fluorescent BODIPY-anionic boron cluster conjugates as potential agents for cell tracking. Bioconjug. Chem., 2018, 29, 1763-1773.
[109]
Gona, K.B.; Zaulet, A.; Gómez-Vallejo, V.; Teixidor, F.; Llop, J.; Viñas, C. COSAN as a molecular imaging platform: synthesis and “in vivo” imaging. Chem. Commun., 2014, 50, 11415-11417.
[110]
(a)Baker, S.J.; Akama, T.; Zhang, Y.K.; Sauro, V.; Pandit, C.; Singh, R.; Kully, M.; Khan, J.; Plattner, J.; Benkovic, S.J.; Lee, V.; Maples, K.R. Identification of a novel boron-containing antibacterial agent (AN0128) with anti-inflammatory activity, for the potential treatment of cutaneous diseases. Bioorg. Med. Chem. Lett., 2006, 16, 5963-5967.
(b)Mendes, R.E.; Alley, M.R.K.; Sader, H.S.; Biedenbach, D.J.; Jones, R.N. Potency and Spectrum of Activity of AN3365, a Novel Boron-Containing Protein Synthesis Inhibitor, Tested against Clinical Isolates of Enterobacteriaceae and Nonfermentative Gram-Negative Bacilli. Antimicrob. Agents Chemother., 2013, 57(6), 2849-2857.
(c)Gorovoy, A.S.; Gozhina, O.V.; Svendsen, J.S.; Domorad, A.A.; Tetz, G.V.; Tetz, V.V.; Lejon, T. Boron-Containing Peptidomimetics – A Novel Class of Selective Anti-tubercular Drugs. Chem. Biol. Drug Des., 2013, 81, 408-413.
[111]
Popova, T.; Zaulet, A.; Teixidor, F.; Alexandrova, R.; Viñas, C. Investigations on antimicrobial activity of cobaltabisdicarbollides. J. Organomet. Chem., 2013, 747, 229-234.
[112]
Zheng, Y.; Liu, W.W.; Chen, Y.; Jiang, H.; Yan, H.; Kosenko, I.; Chekulaeva, L.; Sivaev, I.; Bregadze, V.; Wang, X.M. A Highly Potent Antibacterial Agent Targeting Methicillin-Resistant Staphylococcus aureus Based on Cobalt Bis(1,2-Dicarbollide) Alkoxy Derivative. Organometallics, 2017, 36(18), 3484-3490.
[113]
Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods, 1983, 65, 55-63.
[114]
Borenfreund, E.; Puerner, J. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol. Lett., 1985, 24, 119-250.