Radiochemistry: A Useful Tool in the Ophthalmic Drug Discovery

Page: [501 - 522] Pages: 22

  • * (Excluding Mailing and Handling)

Abstract

Positron Emission Tomography (PET) and Single Photon Emission Computerized Tomography (SPECT) are ultra-sensitive, fully translational and minimally invasive nuclear imaging techniques capable of tracing the spatiotemporal distribution of positron (PET) or gamma (SPECT) emitter-labeled molecules after administration into a living organism. Besides their impact in the clinical diagnostic, PET and SPECT are playing an increasing role in the process of drug development, both during the evaluation of the pharmacokinetic properties of new chemical entities as well as in the proof of concept, proof of mechanism and proof of efficacy studies. However, they have been scarcely applied in the context of ophthalmic drugs. In this paper, the basics of nuclear imaging and radiochemistry are briefly discussed, and the few examples of the use of these imaging modalities in ophthalmic drug development reported in the literature are presented and discussed. Finally, in a purely theoretical exercise, some labeling strategies that could be applied to the preparation of selected ophthalmic drugs are proposed and potential applications of nuclear imaging in ophthalmology are projected.

Keywords: Positron Emission Tomography (PET), Single Photon Emission Computerized Tomography (SPECT), radiochemistry, nuclear imaging, ophthalmology, drug development.

[1]
Abikhzer, G.; Keidar, Z. SPECT/CT and tumour imaging. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41(Suppl. 1), S67-S80.
[http://dx.doi.org/10.1007/s00259-013-2534-4] [PMID: 23990144]
[2]
Heller, G.V.; Hendel, R.C. Handbook of nuclear cardiology: Cardiac SPECT and cardiac PET , 2013.
[http://dx.doi.org/10.1007/978-1-4471-2945-5]
[3]
Ciarmiello, A.; Giovannini, E.; Meniconi, M.; Cuccurullo, V.; Gaeta, M.C. Hybrid SPECT/CT imaging in neurology. Curr. Radiopharm., 2014, 7(1), 5-11.
[http://dx.doi.org/10.2174/1874471007666140821152401] [PMID: 25143053]
[4]
Erba, P.A.; Israel, O. SPECT/CT in infection and inflammation. Clin. Transl. Imaging, 2014, 2(6), 519-535.
[http://dx.doi.org/10.1007/s40336-014-0092-9]
[5]
Yokoi, F.; Grunder, G.; Biziere, K.; Stephane, M.; Dogan, A.S.; Dannals, R.F.; Ravert, H.; Suri, A.; Bramer, S.; Wong, D.F. Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14597): a study using positron emission tomography and [11C]raclopride. Neuropsychopharmacology, 2002, 27(2), 248-259.
[http://dx.doi.org/10.1016/S0893-133X(02)00304-4] [PMID: 12093598]
[6]
Bench, C.J.; Lammertsma, A.A.; Dolan, R.J.; Grasby, P.M.; Warrington, S.J.; Gunn, K.; Cuddigan, M.; Turton, D.J.; Osman, S.; Frackowiak, R.S. Dose dependent occupancy of central dopamine D2 receptors by the novel neuroleptic CP-88,059-01: a study using positron emission tomography and 11C-raclopride. Psychopharmacology (Berl.), 1993, 112(2-3), 308-314.
[http://dx.doi.org/10.1007/BF02244926] [PMID: 7871035]
[7]
Joensuu, H.; Roberts, P.J.; Sarlomo-Rikala, M.; Andersson, L.C.; Tervahartiala, P.; Tuveson, D.; Silberman, S.; Capdeville, R.; Dimitrijevic, S.; Druker, B.; Demetri, G.D. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N. Engl. J. Med., 2001, 344(14), 1052-1056.
[http://dx.doi.org/10.1056/NEJM200104053441404] [PMID: 11287975]
[8]
Anderson, H.L.; Yap, J.T.; Miller, M.P.; Robbins, A.; Jones, T.; Price, P.M. Assessment of pharmacodynamic vascular response in a phase I trial of combretastatin A4 phosphate. J. Clin. Oncol., 2003, 21(15), 2823-2830.
[http://dx.doi.org/10.1200/JCO.2003.05.186] [PMID: 12807935]
[9]
Goerres, G.W.; Stupp, R.; Barghouth, G.; Hany, T.F.; Pestalozzi, B.; Dizendorf, E.; Schnyder, P.; Luthi, F.; von Schulthess, G.K.; Leyvraz, S. The value of PET, CT and inline PET/CT in patients with gastrointestinal stromal tumours: long-term outcome of treatment with imatinib mesylate. Eur. J. Nucl. Med. Mol. Imaging, 2005, 32(2), 153-162.
[http://dx.doi.org/10.1007/s00259-004-1633-7] [PMID: 15690223]
[10]
Catafau, A.M.; Danus, M.; Bullich, S.; Llop, J.; Perich, J.; Cunningham, V.J.; Plaza, P.; Penengo, M.M.; Eersels, J.L.; Squassante, L.; Ros, D.; Barbanoj, M. Characterization of the SPECT 5-HT2A receptor ligand 123I-R91150 in healthy volunteers: Part 1-pseudoequilibrium interval and quantification methods. J. Nucl. Med., 2006, 47(6), 919-928.
[PMID: 16741300]
[11]
Matthews, P.M.; Rabiner, E.A.; Passchier, J.; Gunn, R.N. Positron emission tomography molecular imaging for drug development. Br. J. Clin. Pharmacol., 2012, 73(2), 175-186.
[http://dx.doi.org/10.1111/j.1365-2125.2011.04085.x] [PMID: 21838787]
[12]
Gómez-Vallejo, V.; Ugarte, A.; García-Barroso, C.; Cuadrado-Tejedor, M.; Szczupak, B.; Dopeso-Reyes, I.G.; Lanciego, J.L.; García-Osta, A.; Llop, J.; Oyarzabal, J.; Franco, R. Pharmacokinetic investigation of sildenafil using positron emission tomography and determination of its effect on cerebrospinal fluid cGMP levels. J. Neurochem., 2016, 136(2), 403-415.
[http://dx.doi.org/10.1111/jnc.13454] [PMID: 26641206]
[13]
Gomez-Vallejo, V.; Martin, A.; Aginagalde, M.; San Sebastian, E.; Padro, D.; Cossio, F.P.; Llop, J. Biodistribution and metabolism of 11C-labeled Kendine 91 in mice and rats. Appl. Radiat. Isot., 2012, 70(10), 2545-2551.
[http://dx.doi.org/10.1016/j.apradiso.2012.05.020] [PMID: 2287130]
[14]
Brunetti, J.; Falciani, C.; Roscia, G.; Pollini, S.; Bindi, S.; Scali, S.; Arrieta, U.C.; Gómez-Vallejo, V.; Quercini, L.; Ibba, E.; Prato, M.; Rossolini, G.M.; Llop, J.; Bracci, L.; Pini, A. In vitro and in vivo efficacy, toxicity, bio-distribution and resistance selection of a novel antibacterial drug candidate. Sci. Rep., 2016, 6, 26077.
[http://dx.doi.org/10.1038/srep26077] [PMID: 27169671]
[15]
Heskamp, S.; Raavé, R.; Boerman, O.; Rijpkema, M.; Goncalves, V.; Denat, F. 89Zr-Immuno-Positron Emission Tomography in Oncology: State-of-the-Art 89Zr Radiochemistry. Bioconjug. Chem., 2017, 28(9), 2211-2223.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00325] [PMID: 28767228]
[16]
Keyaerts, M.; Xavier, C.; Heemskerk, J.; Devoogdt, N.; Everaert, H.; Ackaert, C.; Vanhoeij, M.; Duhoux, F.P.; Gevaert, T.; Simon, P.; Schallier, D.; Fontaine, C.; Vaneycken, I.; Vanhove, C.; De Greve, J.; Lamote, J.; Caveliers, V.; Lahoutte, T.; Phase, I. Study of 68Ga-HER2- Nanobody for PET/CT Assessment of HER2 Expression in Breast Carcinoma. J. Nucl. Med., 2016, 57(1), 27-33.
[http://dx.doi.org/10.2967/jnumed.115.162024] [PMID: 26449837]
[17]
Xavier, C.; Blykers, A.; Vaneycken, I.; D’Huyvetter, M.; Heemskerk, J.; Lahoutte, T.; Devoogdt, N.; Caveliers, V. (18)F-nanobody for PET imaging of HER2 overexpressing tumors. Nucl. Med. Biol., 2016, 43(4), 247-252.
[http://dx.doi.org/10.1016/j.nucmedbio.2016.01.002] [PMID: 27067045]
[18]
Llop, J.; Jiang, P.; Marradi, M.; Gómez-Vallejo, V.; Echeverría, M.; Yu, S.; Puigivila, M.; Baz, Z.; Szczupak, B.; Pérez-Campaña, C.; Mao, Z.; Gao, C.; Moya, S.E. Visualisation of dual radiolabelled poly(lactide-co- glycolide) nanoparticle degradation in vivo using energy- discriminant SPECT. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(30), 6293-6300.
[http://dx.doi.org/10.1039/C5TB01157D]
[19]
Lauwen, S.; de Jong, E.K.; Lefeber, D.J.; den Hollander, A.I. Omics biomarkers in ophthalmology. Invest. Ophthalmol. Vis. Sci., 2017, 58(6), BIO88-BIO98.
[http://dx.doi.org/10.1167/iovs.17-21809] [PMID: 28525563]
[20]
Grünwald, F.; Zierz, S.; Broich, K.; Dewes, W.; Böker, T.; Biersack, H.J. Brain SPECT imaging with Tc-99m HMPAO in ophthalmoplegia plus. Clin. Nucl. Med., 1991, 16(1), 20-23.
[http://dx.doi.org/10.1097/00003072-199101000-00005] [PMID: 1999050]
[21]
Imamura, K.; Onoe, H.; Shimazawa, M.; Nozaki, S.; Wada, Y.; Kato, K.; Nakajima, H.; Mizuma, H.; Onoe, K.; Taniguchi, T.; Sasaoka, M.; Hara, H.; Tanaka, S.; Araie, M.; Watanabe, Y. Molecular imaging reveals unique degenerative changes in experimental glaucoma. Neuroreport, 2009, 20(2), 139-144.
[http://dx.doi.org/10.1097/WNR.0b013e32831d7f82] [PMID: 19057418]
[22]
Rojas, S.; Martín, A.; Arranz, M.J.; Pareto, D.; Purroy, J.; Verdaguer, E.; Llop, J.; Gómez, V.; Gispert, J.D.; Millán, O.; Chamorro, A.; Planas, A.M. Imaging brain inflammation with [(11)C]PK11195 by PET and induction of the peripheral-type benzodiazepine receptor after transient focal ischemia in rats. J. Cereb. Blood Flow Metab., 2007, 27(12), 1975-1986.
[http://dx.doi.org/10.1038/sj.jcbfm.9600500] [PMID: 17457364]
[23]
Wang, W.F.; Ishiwata, K.; Kiyosawa, M.; Kawamura, K.; Oda, K.; Matsuno, K.; Kobayashi, T.; Mochizuki, M. Investigation of the use of positron emission tomography for neuroreceptor imaging in rabbit eyes. Ophthalmic Res., 2004, 36(5), 255-263.
[http://dx.doi.org/10.1159/000081205] [PMID: 15583431]
[24]
Christoforidis, J.B.; Carlton, M.M.; Knopp, M.V.; Hinkle, G.H. PET/CT imaging of I-124-radiolabeled bevacizumab and ranibizumab after intravitreal injection in a rabbit model. Invest. Ophthalmol. Vis. Sci., 2011, 52(8), 5899-5903.
[http://dx.doi.org/10.1167/iovs.10-6862] [PMID: 21685343]
[25]
Subrizi, A.; Toropainen, E.; Ramsay, E.; Airaksinen, A.J.; Kaarniranta, K.; Urtti, A. Oxidative stress protection by exogenous delivery of rhHsp70 chaperone to the retinal pigment epithelium (RPE), a possible therapeutic strategy against RPE degeneration. Pharm. Res., 2015, 32(1), 211-221.
[http://dx.doi.org/10.1007/s11095-014-1456-6] [PMID: 25030185]
[26]
Fernández-Ferreiro, A.; Silva-Rodríguez, J.; Otero-Espinar, F.J.; González-Barcia, M.; Lamas, M.J.; Ruibal, A.; Luaces-Rodriguez, A.; Vieites-Prado, A.; Sobrino, T.; Herranz, M.; García-Varela, L.; Blanco-Mendez, J.; Gil-Martínez, M.; Pardo, M.; Moscoso, A.; Medín-Aguerre, S.; Pardo-Montero, J.; Aguiar, P. Positron emission tomography for the development and characterization of corneal permanence of ophthalmic pharmaceutical formulations. Invest. Ophthalmol. Vis. Sci., 2017, 58(2), 772-780.
[http://dx.doi.org/10.1167/iovs.16-20766] [PMID: 28146242]
[27]
Fernández-Ferreiro, A.; Luaces-Rodríguez, A.; Aguiar, P.; Pardo-Montero, J.; González-Barcia, M.; García-Varela, L.; Herranz, M.; Silva-Rodríguez, J.; Gil-Martínez, M.; Bermúdez, M.A.; Vieites-Prado, A.; Blanco-Méndez, J.; Lamas, M.J.; Gómez-Ulla, F.; Ruibal, Á.; Otero-Espinar, F.J.; González, F. Preclinical PET Study of intravitreal injections. Invest. Ophthalmol. Vis. Sci., 2017, 58(7), 2843-2851.
[http://dx.doi.org/10.1167/iovs.17-21812] [PMID: 28570736]
[28]
Keller, T.; Krzyczmonik, A.; Forsback, S.; Picon, F.R.L.; Kirjavainen, A.K.; Takkinen, J.; Rajander, J.; Cacheux, F.; Damont, A.; Dolle, F.; Rinne, J.O.; Haaparanta-Solin, M.; Solin, O. Radiosynthesis and preclinical evaluation of [(18)F]F-DPA, a novel pyrazolo[1,5a]pyrimidine acetamide TSPO radioligand, in healthy sprague dawley Rats. Mol. Imaging Biol., 2017, 19(5), 736-745.
[http://dx.doi.org/10.1007/s11307-016-1040-z] [PMID: 28083825]
[29]
Qu, W.; Zha, Z.; Ploessl, K.; Lieberman, B.P.; Zhu, L.; Wise, D.R.; Thompson, C.B.; Kung, H.F. Synthesis of optically pure 4-fluoro-glutamines as potential metabolic imaging agents for tumors. J. Am. Chem. Soc., 2011, 133(4), 1122-1133.
[http://dx.doi.org/10.1021/ja109203d] [PMID: 21190335]
[30]
Luo, S.; Kong, X.; Wu, J.R.; Wang, C.Y.; Tian, Y.; Zheng, G.; Su, Y.Y.; Lu, G.M.; Zhang, L.J.; Yang, G.F. Neuroinflammation in acute hepatic encephalopathy rats: imaging and therapeutic effectiveness evaluation using (11)C-PK11195 and (18)F-DPA-714 micro-positron emission tomography. Metab. Brain Dis., 2018, 33(5), 1733-1742.
[http://dx.doi.org/10.1007/s11011-018-0282-7] [PMID: 29968208]
[31]
Hoehne, A.; James, M.L.; Alam, I.S.; Ronald, J.A.; Schneider, B.; D’Souza, A.; Witney, T.H.; Andrews, L.E.; Cropper, H.C.; Behera, D.; Gowrishankar, G.; Ding, Z.; Wyss-Coray, T.; Chin, F.T.; Biswal, S.; Gambhir, S.S. [18F]FSPG-PET reveals increased cystine/glutamate antiporter (xc-) activity in a mouse model of multiple sclerosis. J. Neuroinflammation, 2018, 15(1), 55.
[http://dx.doi.org/10.1186/s12974-018-1080-1] [PMID: 29471880]
[32]
Domercq, M.; Szczupak, B.; Gejo, J.; Gómez-Vallejo, V.; Padro, D.; Gona, K.B.; Dollé, F.; Higuchi, M.; Matute, C.; Llop, J.; Martín, A. PET Imaging with [(18)F]FSPG evidences the role of system xc(-) on brain inflammation following cerebral ischemia in rats. Theranostics, 2016, 6(11), 1753-1767.
[http://dx.doi.org/10.7150/thno.15616] [PMID: 27570548]
[33]
Miyajima, N.; Ito, M.; Rokugawa, T.; Iimori, H.; Momosaki, S.; Omachi, S.; Shimosegawa, E.; Hatazawa, J.; Abe, K. Detection of neuroinflammation before selective neuronal loss appearance after mild focal ischemia using [18F]DPA-714 imaging. EJNMMI Res., 2018, 8(1), 43.
[http://dx.doi.org/10.1186/s13550-018-0400-x] [PMID: 29884977]
[34]
Colás, L.; Domercq, M.; Ramos-Cabrer, P.; Palma, A.; Gómez-Vallejo, V.; Padro, D.; Plaza-García, S.; Pulagam, K.R.; Higuchi, M.; Matute, C.; Llop, J.; Martín, A. In vivo imaging of A7 nicotinic receptors as a novel method to monitor neuroinflammation after cerebral ischemia. Glia, 2018, 66(8), 1611-1624.
[http://dx.doi.org/10.1002/glia.23326] [PMID: 29528142]
[35]
Zinnhardt, B.; Wiesmann, M.; Honold, L.; Barca, C.; Schäfers, M.; Kiliaan, A.J.; Jacobs, A.H. In vivo imaging biomarkers of neuroinflammation in the development and assessment of stroke therapies - towards clinical translation. Theranostics, 2018, 8(10), 2603-2620.
[http://dx.doi.org/10.7150/thno.24128] [PMID: 29774062]
[36]
Mittra, E.S.; Koglin, N.; Mosci, C.; Kumar, M.; Hoehne, A.; Keu, K.V.; Iagaru, A.H.; Mueller, A.; Berndt, M.; Bullich, S.; Friebe, M.; Schmitt-Willich, H.; Gekeler, V.; Fels, L.M.; Bacher-Stier, C.; Moon, D.H.; Chin, F.T.; Stephens, A.W.; Dinkelborg, L.M.; Gambhir, S.S. Pilot preclinical and clinical evaluation of (4S)-4-(3-[18F]fluoropropyl)-L-glutamate (18F-FSPG) for PET/CT imaging of intracranial malignancies. PLoS One, 2016, 11(2)e0148628
[http://dx.doi.org/10.1371/journal.pone.0148628] [PMID: 26890637]
[37]
Paris, L.P.; Johnson, C.H.; Aguilar, E.; Usui, Y.; Cho, K.; Hoang, L.T.; Feitelberg, D.; Benton, H.P.; Westenskow, P.D.; Kurihara, T.; Trombley, J.; Tsubota, K.; Ueda, S.; Wakabayashi, Y.; Patti, G.J.; Ivanisevic, J.; Siuzdak, G.; Friedlander, M. Global metabolomics reveals metabolic dysregulation in ischemic retinopathy. Metabolomics, 2016, 12, 15.
[http://dx.doi.org/10.1007/s11306-015-0877-5]
[38]
Joshi, S.M.; Mane, R.B.; Pulagam, K.R.; Gomez-Vallejo, V.; Llop, J.; Rode, C. The microwave-assisted synthesis of 5-substituted 1: H -tetrazoles via [3+2] cycloaddition over a heterogeneous Cu-based catalyst: Application to the preparation of13N-labelled tetrazoles. New J. Chem., 2017, 41(16), 8084-8091.
[http://dx.doi.org/10.1039/C7NJ00568G]
[39]
Joshi, S.M.; Gómez-Vallejo, V.; Salinas, V.; Llop, J. Synthesis of13N-labelled polysubstituted triazoles: via Huisgen cycloaddition. RSC Advances, 2016, 6(111), 109633-109638.
[http://dx.doi.org/10.1039/C6RA24670B]
[40]
Joshi, S.M.; de Cózar, A.; Gómez-Vallejo, V.; Koziorowski, J.; Llop, J.; Cossío, F.P. Synthesis of radiolabelled aryl azides from diazonium salts: experimental and computational results permit the identification of the preferred mechanism. Chem. Commun. (Camb.), 2015, 51(43), 8954-8957.
[http://dx.doi.org/10.1039/C5CC01913C] [PMID: 25929958]
[41]
Gaja, V.; Gómez-Vallejo, V.; Puigivila, M. Pérez- Campaña, C.; Martin, A.; García-Osta, A.; Calvo- Fernández, T.; Cuadrado-Tejedor, M.; Franco, R.; Llop, J. Synthesis and evaluation of (13)N-labelled azo compounds for β-amyloid imaging in mice. Mol. Imaging Biol., 2014, 16(4), 538-549.
[http://dx.doi.org/10.1007/s11307-013-0708-x] [PMID: 24310721]
[42]
Martín, A.; San Sebastián, E.; Gómez-Vallejo, V.; Llop, J. Positron emission tomograghy with [13N]ammonia evidences long-term cerebral hyperperfusion after 2h-transient focal ischemia. Neuroscience, 2012, 213, 47-53.
[http://dx.doi.org/10.1016/j.neuroscience.2012.03.050] [PMID: 22521831]
[43]
da Silva, E.S.; Gómez-Vallejo, V.; Baz, Z.; Llop, J.; López-Gallego, F. Efficient enzymatic preparation of (13) N-labelled amino acids: towards multipurpose synthetic systems. Chemistry, 2016, 22(38), 13619-13626.
[http://dx.doi.org/10.1002/chem.201602471] [PMID: 27515007]
[44]
Da Silva, E.S.; Gómez-Vallejo, V.; Llop, J.; López-Gallego, F. Efficient nitrogen-13 radiochemistry catalyzed by a highly stable immobilized biocatalyst. Catal. Sci. Technol., 2015, 5(5), 2705-2713.
[http://dx.doi.org/10.1039/C5CY00179J]
[45]
Gómez-Vallejo, V.; Gaja, V.; Gona, K.B.; Llop, J. Nitrogen-13: historical review and future perspectives. J. Labelled Comp. Radiopharm., 2014, 57(4), 244-254.
[http://dx.doi.org/10.1002/jlcr.3163] [PMID: 24425683]
[46]
Miller, P.W.; Long, N.J.; Vilar, R.; Gee, A.D. Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Angew. Chem. Int. Ed. Engl., 2008, 47(47), 8998-9033.
[http://dx.doi.org/10.1002/anie.200800222] [PMID: 18988199]
[47]
Oleksiy, I.; Vanessa, G-V.; Jordi, L.; Jacek, K. On 11C chemistry reviews - surveying and filling the gaps. Curr. Org. Chem., 2013, 17(19), 2067-2096.
[http://dx.doi.org/10.2174/13892029113149990101]
[48]
Christman, D.R.; Finn, R.D.; Karlstrom, K.I.; Wolf, A.P. The production of ultra high activity 11C-labeled hydrogen cyanide, carbon dioxide, carbon monoxide and methane via the 14N(p, α)11C reaction (XV). Int. J. Appl. Radiat. Isot., 1975, 26(8), 435-442.
[http://dx.doi.org/10.1016/0020-708X(75)90057-5]
[49]
Le Bars, D.; Malleval, M.; Bonnefoi, F.; Tourvieille, C. Simple synthesis of [1-11C]acetate. J. Labelled Comp. Radiopharm., 2006, 49(3), 263-267.
[http://dx.doi.org/10.1002/jlcr.1024]
[50]
Jewett, D.M. A simple synthesis of [11C]methyl triflate. Int. J. Rad. Appl. Instrum. [A], 1992, 43(11), 1383-1385.
[http://dx.doi.org/10.1016/0883-2889(92)90012-4] [PMID: 1333459]
[51]
Hosoya, T.; Sumi, K.; Doi, H.; Wakao, M.; Suzuki, M. Rapid methylation on carbon frameworks useful for the synthesis of 11CH3-incorporated PET tracers: Pd(0)-mediated rapid coupling of methyl iodide with an alkenyltributylstannane leading to a 1-methylalkene. Org. Biomol. Chem., 2006, 4(3), 410-415.
[http://dx.doi.org/10.1039/b515215a] [PMID: 16446798]
[52]
Kealey, S.; Passchier, J.; Huiban, M. Negishi coupling reactions as a valuable tool for [11C]methyl-arene formation; first proof of principle. Chem. Commun. (Camb.), 2013, 49(96), 11326-11328.
[http://dx.doi.org/10.1039/c3cc47203e] [PMID: 24158034]
[53]
Huiban, M.; Huet, A.; Barré, L.; Sobrio, F.; Fouquet, E.; Perrio, C. Methyl transfer reaction from monomethyltin reagent under palladium(0) catalysis: a versatile method for labelling with carbon-11. Chem. Commun. (Camb.), 2006, (1), 97-99.
[http://dx.doi.org/10.1039/B510286C] [PMID: 16353105]
[54]
Rejc, L.; Gómez-Vallejo, V.; Alcázar, J.; Alonso, N.; Andrés, J.I.; Arrieta, A.; Cossío, F.P.; Llop, J. Negishi coupling reactions with [11C]CH3I: a versatile method for efficient 11C-C bond formation. Chem. Commun. (Camb.), 2018, 54(35), 4398-4401.
[http://dx.doi.org/10.1039/C8CC01540F] [PMID: 29664097]
[55]
Zeisler, S.K.; Nader, M.; Theobald, A.; Oberdorfer, F. Conversion of no-carrier-added [11C]carbon dioxide to [11C]carbon monoxide on molybdenum for the synthesis of 11C-labelled aromatic ketones. Appl. Radiat. Isot., 1997, 48(8), 1091-1095.
[http://dx.doi.org/10.1016/S0969-8043(97)00109-7]
[56]
Itsenko, O.; Kihlberg, T.; Långström, B. Synthesis of aliphatic [carbonyl-11C]esters using [11C]carbon monoxide. Eur. J. Org. Chem., 2005, (17), 3830-3834.
[http://dx.doi.org/10.1002/ejoc.200500269]
[57]
Karimi, F.; Langström, B. Synthesis of11C-labelled amides by palladium-mediated carboxamination using [11C]carbon monoxide, in situ activated amines and 1,2,2,6,6- pentamethylpiperidine. Eur. J. Org. Chem., 2003, (11), 2132-2137.
[http://dx.doi.org/10.1002/ejoc.200200586]
[58]
Rahman, O.; Llop, J.; Långström, B. Organic bases as additives to improve the radiochemical yields of [ 11C]ketones prepared by the Suzuki coupling reaction. Eur. J. Org. Chem., 2004, (12), 2674-2678.
[http://dx.doi.org/10.1002/ejoc.200400038]
[59]
Eriksson, J.; Van Den Hoek, J.; Windhorst, A.D. Transition metal mediated synthesis using [11C]CO at low pressure - a simplified method for 11C-carbonylation. J. Labelled Comp. Radiopharm., 2012, 55(6), 223-228.
[http://dx.doi.org/10.1002/jlcr.2930]
[60]
Audrain, H.; Martarello, L.; Gee, A.; Bender, D. Utilisation of [11C]-labelled boron carbonyl complexes in palladium carbonylation reaction. Chem. Commun. (Camb.), 2004, (5), 558-559.
[http://dx.doi.org/10.1039/b314982j] [PMID: 14973606]
[61]
Miller, P.W.; Audrain, H.; Bender, D.; deMello, A.J.; Gee, A.D.; Long, N.J.; Vilar, R. Rapid carbon-11 radiolabelling for PET using microfluidics. Chemistry, 2011, 17(2), 460-463.
[http://dx.doi.org/10.1002/chem.201002644] [PMID: 21207561]
[62]
Roberts, A.D.; Oakes, T.R.; Nickles, R.J. Development of an improved target for [18F]F2 production. Appl. Radiat. Isot., 1995, 46(2), 87-91.
[http://dx.doi.org/10.1016/0969-8043(94)00111-c] [PMID: 7711684]
[63]
Gona, K.B.; Gómez-Vallejo, V.; Padro, D.; Llop, J. [18F]fluorination of o-carborane via nucleophilic substitution: towards a versatile platform for the preparation of 18F-labelled BNCT drug candidates. Chem. Commun. (Camb.), 2013, 49(98), 11491-11493.
[http://dx.doi.org/10.1039/c3cc46695g] [PMID: 24175318]
[64]
Ichiishi, N.; Brooks, A.F.; Topczewski, J.J.; Rodnick, M.E.; Sanford, M.S.; Scott, P.J. Copper-catalyzed [18F]fluorination of (mesityl)(aryl)iodonium salts. Org. Lett., 2014, 16(12), 3224-3227.
[http://dx.doi.org/10.1021/ol501243g] [PMID: 24890658]
[65]
Bergman, J.; Solin, O. Fluorine-18-labeled fluorine gas for synthesis of tracer molecules. Nucl. Med. Biol., 1997, 24(7), 677-683.
[http://dx.doi.org/10.1016/S0969-8051(97)00078-4] [PMID: 9352540]
[66]
Oberdorfer, F.; Hofmann, E.; Maier‐Borst, W. Preparation of 18F-labelled N‐fluoropyridinium triflate. J. Labelled Comp. Radiopharm., 1988, 25(9), 999-1005.
[http://dx.doi.org/10.1002/jlcr.2580250912]
[67]
Satyamurthy, N.; Bida, G.T.; Phelps, M.E.; Barrio, J.R.N. [18F]fluoro-N-alkylsulfonamides: Novel reagents for mild and regioselective radiofluorination. Int. J. Rad. Appl. Instrum. [A], 1990, 41(8), 733-738.
[http://dx.doi.org/10.1016/0883-2889(90)90020-h] [PMID: 2172185]
[68]
Teare, H.; Robins, E.G.; Kirjavainen, A.; Forsback, S.; Sandford, G.; Solin, O.; Luthra, S.K.; Gouverneur, V. Radiosynthesis and evaluation of [18F]selectfluor bis(triflate). Angew. Chem. Int. Ed. Engl., 2010, 49(38), 6821-6824.
[http://dx.doi.org/10.1002/anie.201002310] [PMID: 20715033]
[69]
Jacobson, O.; Kiesewetter, D.O.; Chen, X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug. Chem., 2015, 26(1), 1-18.
[http://dx.doi.org/10.1021/bc500475e] [PMID: 25473848]
[70]
Kondo, K.; Lambrecht, R.M.; Wolf, A.P. Iodine-123 production for radiopharmaceuticals--XX excitation functions of the 124Te(p, 2n)123I and 124Te(p, n)124I reactions and the effect of target enrichment on radionuclidic purity. Int. J. Appl. Radiat. Isot., 1977, 28(4), 395-401.
[http://dx.doi.org/10.1016/0020-708X(77)90132-6] [PMID: 863535]
[71]
Clem, R.G.; Lambrecht, R.M. Enriched 124Te targets for production of 123I and 124I. Nucl. Instrum. Methods Phys. Res. A, 1991, 303(1), 115-118.
[http://dx.doi.org/10.1016/0168-9002(91)90773-J]
[72]
Scholten, B.; Kovács, Z.; Tárkányi, F.; Qaim, S.M. Excitation functions of 124Te(p, xn)124,123I reactions from 6 to 31 MeV with special reference to the production of 124I at a small cyclotron. Appl. Radiat. Isot., 1995, 46(4), 255-259.
[http://dx.doi.org/10.1016/0969-8043(94)00145-P]
[73]
Qaim, S.M. Target development for medical radioisotope production at a cyclotron. Nucl. Instrum. Methods Phys. Res. A, 1989, 282(1), 289-295.
[http://dx.doi.org/10.1016/0168-9002(89)90155-1]
[74]
Weinreich, R.; Knust, J. Quality assurance of iodine-124 produced via the nuclear reaction 124Te (d, 2n)124I. J. Radioanal. Nucl. Chem., 1996, 213, 253-261.
[http://dx.doi.org/10.1007/BF02163571]
[75]
Hunter, W.M.; Greenwood, F.C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature, 1962, 194, 495-496.
[http://dx.doi.org/10.1038/194495a0] [PMID: 14450081]
[76]
Fraker, P.J.; Speck, J.C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem. Biophys. Res. Commun., 1978, 80(4), 849-857.
[http://dx.doi.org/10.1016/0006-291X(78)91322-0] [PMID: 637870]
[77]
Bolton, A.E.; Hunter, W.M. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem. J., 1973, 133(3), 529-539.
[http://dx.doi.org/10.1042/bj1330529] [PMID: 4733239]
[78]
Breslav, M.; McKinney, A.; Becker, J.M.; Naider, F. Preparation of radiolabeled peptides via an iodine exchange reaction. Anal. Biochem., 1996, 239(2), 213-217.
[http://dx.doi.org/10.1006/abio.1996.0317] [PMID: 8811912]
[79]
Dutta, B.; Maiti, M.; Lahiri, S. Production of 88,89Zr by proton induced activation ofnatY and separation by SLX and LLX. J. Radioanal. Nucl. Chem., 2009, 281(3), 663-667.
[http://dx.doi.org/10.1007/s10967-009-0051-5]
[80]
Fadeeva, V.I.; Tikhomirova, T.I.; Yuferova, I.B.; Kudryavtsev, G.V. Preparation, properties and analytical application of silica with chemically grafted hydroxamic acid groups. Anal. Chim. Acta, 1989, 219(2), 201-212.
[http://dx.doi.org/10.1016/S0003-2670(00)80351-7]
[81]
Holland, J.P.; Sheh, Y.; Lewis, J.S. Standardized methods for the production of high specific-activity zirconium-89. Nucl. Med. Biol., 2009, 36(7), 729-739.
[http://dx.doi.org/10.1016/j.nucmedbio.2009.05.007] [PMID: 19720285]
[82]
Meijs, W.E.; Herscheid, J.D.M.; Haisma, H.J.; Pinedo, H.M. Evaluation of desferal as a bifunctional chelating agent for labeling antibodies with Zr-89. Int. J. Rad. Appl. Instrum. [A], 1992, 43(12), 1443-1447.
[http://dx.doi.org/10.1016/0883-2889(92)90170-j] [PMID: 1334954]
[83]
Wadas, T.J.; Wong, E.H.; Weisman, G.R.; Anderson, C.J. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem. Rev., 2010, 110(5), 2858-2902.
[http://dx.doi.org/10.1021/cr900325h] [PMID: 20415480]
[84]
Vugts, D.J.; Klaver, C.; Sewing, C.; Poot, A.J.; Adamzek, K.; Huegli, S.; Mari, C.; Visser, G.W.M.; Valverde, I.E.; Gasser, G.; Mindt, T.L.; van Dongen, G.A.M.S. Comparison of the octadentate bifunctional chelator DFO*-pPhe-NCS and the clinically used hexadentate bifunctional chelator DFO-pPhe-NCS for 89Zr-immuno-PET. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(2), 286-295.
[http://dx.doi.org/10.1007/s00259-016-3499-x] [PMID: 27573793]
[85]
Patra, M.; Bauman, A.; Mari, C.; Fischer, C.A.; Blacque, O.; Häussinger, D.; Gasser, G.; Mindt, T.L. An octadentate bifunctional chelating agent for the development of stable zirconium-89 based molecular imaging probes. Chem. Commun. (Camb.), 2014, 50(78), 11523-11525.
[http://dx.doi.org/10.1039/C4CC05558F] [PMID: 25132321]
[86]
Prydal, J.I.; Jenkins, D.R.; Lovering, A.; Watts, A. The pharmacokinetics of linezolid in the non-inflamed human eye. Br. J. Ophthalmol., 2005, 89(11), 1418-1419.
[http://dx.doi.org/10.1136/bjo.2005.073700] [PMID: 16234443]
[87]
Saleh, M.; Lefèvre, S.; Acar, N.; Bourcier, T.; Marcellin, L.; Prévost, G.; Subilia, A.; Gaucher, D.; Jehl, F. Efficacy of intravitreal administrations of linezolid in an experimental model of S.aureus-related endophthalmitis. Invest. Ophthalmol. Vis. Sci., 2012, 53(8), 4832-4841.
[http://dx.doi.org/10.1167/iovs.11-8417] [PMID: 22661478]
[88]
Hegazy, H.M.; Kivilcim, M.; Peyman, G.A.; Unal, M.H.; Liang, C.; Molinari, L.C.; Kazi, A.A. Evaluation of toxicity of intravitreal ceftazidime, vancomycin, and ganciclovir in a silicone oil-filled eye. Retina, 1999, 19(6), 553-557.
[http://dx.doi.org/10.1097/00006982-199911000-00013] [PMID: 10606458]
[89]
Ficker, L.; Meredith, T.A.; Gardner, S.; Wilson, L.A. Cefazolin levels after intravitreal injection. Effects of inflammation and surgery. Invest. Ophthalmol. Vis. Sci., 1990, 31(3), 502-505.
[PMID: 2318588]
[90]
Fiscella, R.; Peyman, G.A.; Fishman, P.H. Duration of therapeutic levels of intravitreally injected liposome-encapsulated clindamycin in the rabbit. Can. J. Ophthalmol., 1987, 22(6), 307-309.
[PMID: 3427538]
[91]
El Aissi, R.; Miladi, I.; Chezal, J.M.; Chavignon, O.; Miot-Noirault, E.; Moreau, E. Melanoma-targeted delivery system (part 2): Synthesis, radioiodination and biological evaluation in B16F0 bearing mice. Eur. J. Med. Chem., 2016, 120, 304-312.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.019] [PMID: 27214141]
[92]
Chambers, R.D.; Skinner, C.J.; Atherton, M.J.; Moilliet, J.S. Elemental fluorine. Part 4. Use of elemental fluorine for the halogenation of aromatics. J. Chem. Soc., Perkin Trans. 1, 1996, (14), 1659-1664.
[http://dx.doi.org/10.1039/p19960001659]
[93]
Guillemot, G. C.; Barral, K.; Canard, B.; Querat, G.; Alvarez, K.; De Llamballerie, X. N.; Mahuteau-Betzer, F.; Poinsard, C. Propenamide thiophene derivatives as flavivirus inhibitors and their use., 2015.
[94]
Chandra Babu, K.; Buchi Reddy, R.; Gangaiah, L.; Madhusudhan, G.; Mukkanti, K. A new and alternate synthesis of Linezolid: an antibacterial agent. Pharma Chem., 2011, 3(4), 219-226.
[95]
Miller, D. Review of moxifloxacin hydrochloride ophthalmic solution in the treatment of bacterial eye infections. Clin. Ophthalmol., 2008, 2(1), 77-91.
[http://dx.doi.org/10.2147/OPTH.S1666] [PMID: 19668391]
[96]
Baumann, M.; Baxendale, I.R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem., 2013, 9, 2265-2319.
[http://dx.doi.org/10.3762/bjoc.9.265] [PMID: 24204439]
[97]
Barza, M.; Kane, A.; Baum, J. Pharmacokinetics of intravitreal carbenicillin, cefazolin, and gentamicin in rhesus monkeys. Invest. Ophthalmol. Vis. Sci., 1983, 24(12), 1602-1606.
[PMID: 6654640]
[98]
Jústiz, O.H.; Fernández-Lafuente, R.; Guisán, J.M.; Negri, P.; Pagani, G.; Pregnolato, M.; Terreni, M. One-pot chemoenzymatic synthesis of 3‘-functionalized cephalosporines (cefazolin) by three consecutive biotransformations in fully aqueous medium. J. Org. Chem., 1997, 62(26), 9099-9106.
[http://dx.doi.org/10.1021/jo971166u]
[99]
Li, H.; Liu, Y.; Li, J. Pharmacokinetics and relative bioavailability studies of clindamycin phosphate in healthy volunteers. Chin. J. Antibiot., 1995, 20(3), 186-189.
[100]
Magerlein, B.J.; Birkenmeyer, R.D.; Herr, R.R.; Kagan, F. Lincomycin. V. Amino acid fragment. J. Am. Chem. Soc., 1967, 89(10), 2459-2464.
[http://dx.doi.org/10.1021/ja00986a038] [PMID: 6042751]
[101]
Saba, W.; Valette, H.; Peyronneau, M.A.; Bramoullé, Y.; Coulon, C.; Curet, O.; George, P.; Dollé, F.; Bottlaender, M. [(11)C]SL25.1188, a new reversible radioligand to study the monoamine oxidase type B with PET: preclinical characterisation in nonhuman primate. Synapse, 2010, 64(1), 61-69.
[http://dx.doi.org/10.1002/syn.20703] [PMID: 19728365]
[102]
Van Dongen, G.A.M.S.; Huisman, M.C.; Boellaard, R.; Harry Hendrikse, N.; Windhorst, A.D.; Visser, G.W.M.; Molthoff, C.F.M.; Vugts, D.J. 89Zr-immuno-PET for imaging of long circulating drugs and disease targets: why, how and when to be applied? Q. J. Nucl. Med. Mol. Imaging, 2015, 59(1), 18-38.
[PMID: 25517081]
[103]
Jauw, Y.W. Menke-van der Houven van Oordt, C.W.; Hoekstra, O.S.; Hendrikse, N.H.; Vugts, D.J.; Zijlstra, J.M.; Huisman, M.C.; van Dongen, G.A. Immuno-positron emission tomography with zirconium-89-labeled monoclonal antibodies in oncology: what can we learn from initial clinical trials? Front. Pharmacol., 2016, 7, 131.
[http://dx.doi.org/10.3389/fphar.2016.00131] [PMID: 27252651]
[104]
Mishra, K. P. Biological responses, monitoring and protection form radiation exposure, 2015.
[105]
Belotserkovsky, E.; Ostaltsov, Z. Ionizing radiation: Applications, sources and biological effects, 2013.
[106]
Ainsbury, E.A.; Bouffler, S.D.; Dörr, W.; Graw, J.; Muirhead, C.R.; Edwards, A.A.; Cooper, J. Radiation cataractogenesis: a review of recent studies. Radiat. Res., 2009, 172(1), 1-9.
[http://dx.doi.org/10.1667/RR1688.1] [PMID: 19580502]