Nanostructured Materials and their Potential as Electrochemical Sensors

Page: [534 - 543] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Environmental pollutants are considered as the main concern for human life because it can affect health, especially via water sources. An enormous effort is needed to detect and monitor such contaminants from natural waters. Nanotechnology field offered combined benefits in regards to sensitive detection of environmental contaminants from water. This review describes the main types of water contaminants and recent approaches used for effective electrochemical detection of environmental pollutants with the aid of nanostructured materials.

Keywords: Nanomaterials, detection, electrochemical sensor, water contaminants, heavy metals, organic pollutants.

Graphical Abstract

[1]
Hanrahan, G.; Patil, D.G.; Wang, J. Electrochemical sensors for environmental monitoring: design, development and applications. J. Environ. Monit., 2004, 6(8), 657-664.
[http://dx.doi.org/10.1039/b403975k] [PMID: 15292947]
[2]
Hazra, K.S.; Basu, S. Graphene-oxide nano composites for chemical sensor appli-cations C, 2016, 2(2), 12.
[3]
Orellana, G.; Moreno-Bondi, M.C. Frontiers in Chemical Sensors; Springer-Verlag Berlin Heidelberg: Switzerland AG, 2005.
[http://dx.doi.org/10.1007/3-540-27757-9]
[4]
Cammann, K. Sensors and analytical chemistry. Phys. Chem. Chem. Phys., 2003, 5, 5159-5168.
[http://dx.doi.org/10.1039/b309894j]
[5]
Shieh, J.; Huber, J.E.; Fleck, N.A.; Ashby, M.F. The selection of sensors. Prog. Mater. Sci., 2001, 46, 461-504.
[http://dx.doi.org/10.1016/S0079-6425(00)00011-6]
[6]
Wang, J.; Lu, J.; Hocevar, S.B.; Farias, P.A.M.; Ogorevc, B. Bismuth-coated carbon electrodes for anodic stripping voltammetry. Anal. Chem., 2000, 72(14), 3218-3222.
[http://dx.doi.org/10.1021/ac000108x] [PMID: 10939390]
[7]
Hoyer, B.; Florence, T.M. Application of polymer-coated glassy carbon electrodes to the direct determination of trace metals in body fluids by anodic stripping voltammetry. Anal. Chem., 1987, 59(24), 2839-2842.
[http://dx.doi.org/10.1021/ac00151a003] [PMID: 3434811]
[8]
Hernandez-Vargas, G.; Sosa-Hernández, J.E.; Saldarriaga-Hernandez, S.; Villalba-Rodríguez, A.M.; Parra-Saldivar, R.; Iqbal, H.M.N. Electrochemical biosensors: A solution to pollution detection with reference to environmental contaminants. Biosensors (Basel), 2018, 8(2), 29-49.
[http://dx.doi.org/10.3390/bios8020029] [PMID: 29587374]
[9]
Rahman, M.M.; Khan, S.B.; Marwani, H.M.; Asiri, A.M.A. SnO2-Sb2O3 nanocomposite for selective adsorption of lead ions from water samples prior to their determination by ICP-OES. Mikrochim. Acta, 2015, 182, 579-588.
[http://dx.doi.org/10.1007/s00604-014-1361-z]
[10]
Faisal, M.; Khan, S.B.; Rahman, M.M.; Jamal, A.; Asiri, A.M.; Abdullah, M.M. Smart chemical sensor and active photo-catalyst for environmental pollutants. Chem. Eng. J., 2011, 173, 178-184.
[http://dx.doi.org/10.1016/j.cej.2011.07.067]
[11]
Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem., 2015, 87(1), 230-249.
[http://dx.doi.org/10.1021/ac5039863] [PMID: 25354297]
[12]
Kamal, T.; Anwar, Y.; Khan, S.B.; Chani, M.T.S.; Asiri, A.M. Dye adsorption and bactericidal properties of TiO2/chitosan coating layer. Carbohydr. Polym., 2016, 148, 153-160.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.042] [PMID: 27185126]
[13]
Khan, A.; Asiri, A.M.; Rub, M.A.; Azum, N.; Khan, A.A.P.; Khan, S.B.; Rahman, M.M.; Khan, I. Synthesis, characterization of silver nanoparticle embedded polyaniline tungstophosphate-nanocomposite cation exchanger and its application for heavy metal selective membrane. Compos. B Eng., 2013, 45, 1486-1492.
[14]
Zhou, C.; Wang, Y.; Du, L.; Yao, H.; Wang, J.; Luo, G. Precipitation preparation of high surface area and porous nanosized ZnO by continuous gas-based impinging streams in unconfined space. Ind. Eng. Chem. Res., 2016, 55, 11943-11949.
[http://dx.doi.org/10.1021/acs.iecr.6b03348]
[15]
Gómez-Pastora, J.; Bringas, E.; Ortiz, I. Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem. Eng. J., 2014, 256, 187-204.
[http://dx.doi.org/10.1016/j.cej.2014.06.119]
[16]
Khan, S.B.; Alamry, K.A.; Bifari, E.N.; Asiri, A.M.; Yasir, M.; Gzara, L.; Ahmad, R.Z. Assessment of antibacterial cellulose nanocomposites for water permeability and salt rejection. J. Ind. Eng. Chem., 2015, 24, 266-275.
[http://dx.doi.org/10.1016/j.jiec.2014.09.040]
[17]
Rahman, M.M.; Khan, S.B.; Marwani, H.M.; Asiri, A.M.; Alamry, K.A.; Al-Youbi, A.O. Selective determination of gold(III) ion using CuO microsheets as a solid phase adsorbent prior by ICP-OES measurement. Talanta, 2013, 104, 75-82.
[http://dx.doi.org/10.1016/j.talanta.2012.11.031] [PMID: 23597891]
[18]
Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol., 2014, 7(2), 60-72.
[http://dx.doi.org/10.2478/intox-2014-0009] [PMID: 26109881]
[19]
Srivastava, N.K.; Majumder, C.B. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J. Hazard. Mater., 2008, 151(1), 1-8.
[http://dx.doi.org/10.1016/j.jhazmat.2007.09.101] [PMID: 17997034]
[20]
Atieh, M.A.; Ji, Y.; Kochkodan, V. Metals in the environment: Toxic metals removal. Bioinorg. Chem. Appl., 2017, 20174309198
[http://dx.doi.org/10.1155/2017/4309198] [PMID: 28790880]
[21]
Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett., 2010, 8, 199-216.
[http://dx.doi.org/10.1007/s10311-010-0297-8]
[22]
Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. In: Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology; Luch, A., Ed.; Springer Basel: Basel, 2012; pp. 133-164.
[http://dx.doi.org/10.1007/978-3-7643-8340-4_6]
[23]
Jan, A.T.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q.M.R. Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci., 2015, 16(12), 29592-29630.
[http://dx.doi.org/10.3390/ijms161226183] [PMID: 26690422]
[24]
Zhou, H.; Yang, W-T.; Zhou, X.; Liu, L.; Gu, J-F.; Wang, W-L.; Zou, J-L.; Tian, T.; Peng, P-Q.; Liao, B-H. Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment. Int. J. Environ. Res. Public Health, 2016, 13(3), 289.
[http://dx.doi.org/10.3390/ijerph13030289] [PMID: 26959043]
[25]
Rim, K.T.; Koo, K.H.; Park, J.S. Toxicological evaluations of rare earths and their health impacts to workers: a literature review. Saf. Health Work, 2013, 4(1), 12-26.
[http://dx.doi.org/10.5491/SHAW.2013.4.1.12] [PMID: 23516020]
[26]
Khan, S.; Malik, A. Environmental and Health Effects of Textile Industry Wastewater. In: Environmental Deterioration and Human Health: Natural and Anthropogenic Determinants; Malik, A.; Grohmann, E.; Akhtar, R., Eds.; Springer Netherlands: Dordrecht, 2014; pp. 55-71.
[http://dx.doi.org/10.1007/978-94-007-7890-0_4]
[27]
Gürses, A.; Açıkyıldız, M.; Güneş, K.; Gürses, M.S. Classification of Dye and Pigments. In: Dyes and Pigments; Gürses, A.; Açıkyıldız, M.; Güneş, K.; Gürses, M.S., Eds.; Springer International Publishing: Cham, 2016; pp. 31-45.
[http://dx.doi.org/10.1007/978-3-319-33892-7_3]
[28]
Gregory, P. Classification of Dyes by Chemical Structure. In: The Chemistry and Application of Dyes; Waring, D.R.; Hallas, G., Eds.; Springer US: Boston, MA, 1990; pp. 17-47.
[http://dx.doi.org/10.1007/978-1-4684-7715-3_2]
[29]
Salleh, M.A.M.; Mahmoud, D.K.; Karim, W.A.W.A.; Idris, A. Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 2011, 280, 1-13.
[http://dx.doi.org/10.1016/j.desal.2011.07.019]
[30]
Hassaan, M.A.; El Nemr, A. Health and environmental impacts of dyes: Mini review. Am. J. Environ. Sci. Eng., 2017, 1, 64-67.
[31]
Ju, K-S.; Parales, R.E. Nitroaromatic compounds, from synthesis to biodegradation. Microbiol. Mol. Biol. Rev., 2010, 74(2), 250-272.
[http://dx.doi.org/10.1128/MMBR.00006-10] [PMID: 20508249]
[32]
Pinheiro, H.M.; Touraud, E.; Thomas, O. Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes Pigm., 2004, 61, 121-139.
[http://dx.doi.org/10.1016/j.dyepig.2003.10.009]
[33]
Kovacic, P.; Somanathan, R. Nitroaromatic compounds: Environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism. J. Appl. Toxicol., 2014, 34(8), 810-824.
[http://dx.doi.org/10.1002/jat.2980] [PMID: 24532466]
[34]
Kalantar-zadeh, K.; Fry, B. Sensor Characteristics and Physical Effects. In: Nanotechnology-Enabled Sensors; Springer: Boston, MA, 2008; pp. 13-62.
[http://dx.doi.org/10.1007/978-0-387-68023-1_2]
[35]
Fraden, J. Chemical Sensors. In: Handbook of Modern Sensors: Physics, Designs, and Applications; Fraden, J., Ed.; Springer: New York, 2010; pp. 569-606.
[http://dx.doi.org/10.1007/978-1-4419-6466-3_17]
[36]
Rassaei, L.; Marken, F.; Sillanpää, M.; Amiri, M.; Cirtiu, C.M.; Sillanpää, M. Nanoparticles in electrochemical sensors for environmental monitoring. TRAC- Trends Analyt. Chem., 2011, 30, 1704-1715.
[http://dx.doi.org/10.1016/j.trac.2011.05.009]
[37]
Dai, L.; Soundarrajan, P.; Kim, T. Sensors and sensor arrays based on conjugated polymers and carbon nanotubes. Pure Appl. Chem., 2002, 74, 1753-1772.
[http://dx.doi.org/10.1351/pac200274091753]
[38]
Ali, J.; Najeeb, J.; Ali, M.A.; Aslam, M.F.; Raza, A. Biosensors: Their fundamentals, designs, types and most recent impactful applications: A review. J. Biosens. Bioelectron., 2017, 8, 1-9.
[http://dx.doi.org/10.4172/2155-6210.1000235]
[39]
Farré, M.; Barceló, D. Biosensors for Aquatic Toxicology Evaluation. In: Biosensors for Environmental Monitoring of Aquatic Systems: Bioanalytical and Chemical Methods for Endocrine Disruptors; Barceló, D.; Hansen, P-D., Eds.; Springer: Berlin, Heidelberg, 2009; pp. 115-160.
[http://dx.doi.org/10.1007/978-3-540-36253-1_5]
[40]
Yilmaz, N.; Eksin, E.; Karacicek, B.; Eraç, Y.; Erdem, A. Electrochemical detection of interaction between capsaicin and nucleic acids in comparison to agarose gel electrophoresis. Anal. Biochem., 2017, 535, 56-62.
[http://dx.doi.org/10.1016/j.ab.2017.07.023] [PMID: 28760672]
[41]
Stradiotto, N.R.; Yamanaka, H.; Zanoni, M.V.B. Electrochemical sensors: A powerful tool in analytical chemistry. J. Braz. Chem. Soc., 2003, 14, 159-173.
[http://dx.doi.org/10.1590/S0103-50532003000200003]
[42]
Edmonds, T.E. Voltammetric and amperometric transducers. In: Chemical Sensors; Edmonds, T.E., Ed.; Springer Netherlands: Dordrecht, 1988; pp. 193-213.
[http://dx.doi.org/10.1007/978-94-010-9154-1_8]
[43]
Farghaly, O.A.; Abdel Hameed, R.S.; Abu-Nawwas, A-A.H. Analytical application using modern electrochemical techniques. Int. J. Electrochem. Sci., 2014, 9, 3287-3318.
[44]
Pujol, L.; Evrard, D.; Groenen-Serrano, K.; Freyssinier, M.; Ruffien-Cizsak, A.; Gros, P. Electrochemical sensors and devices for heavy metals assay in water: the French groups’ contribution. Front Chem., 2014, 2, 19.
[http://dx.doi.org/10.3389/fchem.2014.00019] [PMID: 24818124]
[45]
Li, G.; Miao, P. Theoretical Background of Electrochemical Analysis. In: Electrochemical Analysis of Proteins and Cells; Li, G.; Miao, P., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; pp. 5-18.
[http://dx.doi.org/10.1007/978-3-642-34252-3_2]
[46]
Kimmel, D.W.; LeBlanc, G.; Meschievitz, M.E.; Cliffel, D.E. Electrochemical sensors and biosensors. Anal. Chem., 2012, 84(2), 685-707.
[http://dx.doi.org/10.1021/ac202878q] [PMID: 22044045]
[47]
Putzbach, W.; Ronkainen, N.J. Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review. Sensors (Basel), 2013, 13(4), 4811-4840.
[http://dx.doi.org/10.3390/s130404811] [PMID: 23580051]
[48]
El Rhazi, M.; Majid, S. Electrochemical sensors based on polydiaminonaphthalene and polyphenylenediamine for monitoring metal pollutants. Trends Environ. Anal. Chem., 2014, 2, 33-42.
[http://dx.doi.org/10.1016/j.teac.2014.02.001]
[49]
Govindhan, M.; Adhikari, B-R.; Chen, A. Nanomaterials-based electrochemical detection of chemical contaminants. RSC Advances, 2014, 4(109), 63741-63760.
[http://dx.doi.org/10.1039/C4RA10399H]
[50]
Li, X.; Zhao, Y.; Wang, X.; Wang, J.; Gaskov, A.M.; Akbar, S.A. Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors. Sens. Actuators B Chem., 2016, 230, 330-336.
[http://dx.doi.org/10.1016/j.snb.2016.02.069]
[51]
Agarwal, S.; Sharma, G.L. Humidity sensing properties of (Ba, Sr) TiO3 thin films grown by hydrothermal-electrochemical method. Sens. Actuators B Chem., 2002, 85, 205-211.
[http://dx.doi.org/10.1016/S0925-4005(02)00109-0]
[52]
Sanghavi, B.J.; Wolfbeis, O.S.; Hirsch, T.; Swami, N.S. Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Mikrochim. Acta, 2015, 182, 1-41.
[http://dx.doi.org/10.1007/s00604-014-1308-4] [PMID: 25568497]
[53]
Jackowska, K.; Krysinski, P. New trends in the electrochemical sensing of dopamine. Anal. Bioanal. Chem., 2013, 405(11), 3753-3771.
[http://dx.doi.org/10.1007/s00216-012-6578-2] [PMID: 23241816]
[54]
Heller, A.; Feldman, B. Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev., 2008, 108(7), 2482-2505.
[http://dx.doi.org/10.1021/cr068069y] [PMID: 18465900]
[55]
Zaidi, S.A.; Shin, J.H. Recent developments in nanostructure based electrochemical glucose sensors. Talanta, 2016, 149, 30-42.
[http://dx.doi.org/10.1016/j.talanta.2015.11.033] [PMID: 26717811]
[56]
Khajeh, M.; Laurent, S.; Dastafkan, K. Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chem. Rev., 2013, 113(10), 7728-7768.
[http://dx.doi.org/10.1021/cr400086v] [PMID: 23869773]
[57]
Kostopoulos, V.; Masouras, A.; Baltopoulos, A.; Vavouliotis, A.; Sotiriadis, G.; Pambaguian, L. A critical review of nanotechnologies for composite aerospace structures. CEAS Space J., 2017, 9, 35-57.
[http://dx.doi.org/10.1007/s12567-016-0123-7]
[58]
Murty, B.S.; Shankar, P.; Raj, B.; Rath, B.B.; Murday, J. Synthesis Routes. In: Textbook of Nanoscience and Nanotechnology; Murty, B.S.; Shankar, P.; Raj, B.; Rath, B.B.; Murday, J., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; pp. 66-106.
[http://dx.doi.org/10.1007/978-3-642-28030-6_3]
[59]
Salaheldeen Elnashaie, S.; Danafar, F.; Hashemipour Rafsanjani, H. From Nanotechnology to Nanoengineering. In: Nanotechnology for Chemical Engineers; Salaheldeen Elnashaie, S.; Danafar, F.; Hashemipour Rafsanjani, H., Eds.; Springer Singapore: Singapore, 2015; pp. 79-178.
[http://dx.doi.org/10.1007/978-981-287-496-2_2]
[60]
Santhosh, C.; Velmurugan, V.; Jacob, G.; Jeong, S.K.; Grace, A.N.; Bhatnagar, A. Role of nanomaterials in water treatment applications: A review. Chem. Eng. J., 2016, 306, 1116-1137.
[http://dx.doi.org/10.1016/j.cej.2016.08.053]
[61]
Tanimu, A.; Lawal, M.A.; Getso, Z.N. Electrochemical sensors using nanomaterials - A mini review. Res. Rev. J. Chem., 2017, 6, 38-48.
[62]
Maduraiveeran, G.; Jin, W. Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends Environ. Anal. Chem., 2017, 13, 10-23.
[http://dx.doi.org/10.1016/j.teac.2017.02.001]
[63]
Ansón-Casaos, A.; Garcia-Bordeje, E.; Benito, A.M.; Maser, W.K. Advanced Nanotechnologies for Detection and Defence against CBRN Agents, Dordrecht. In: Nanostructured Carbon Materials: Synthesis and Applications; Petkov, P.; Tsiulyanu, D.; Popov, C.; Kulisch, W., Eds.; Springer Netherlands: Dordrecht, 2018; pp. 177-191.
[64]
Radhakrishnan, S.; Mathiyarasu, J. Graphene–Carbon Nanotubes Modified Electrochemical Sensors. In: Graphene-Based Electrochemical Sensors for Biomolecules; Pandikumar, A.; Rameshkumar, P., Eds.; Elsevier, 2019; pp. 187-205.
[http://dx.doi.org/10.1016/B978-0-12-815394-9.00008-X]
[65]
Power, A.C.; Gorey, B.; Chandra, S.; Chapman, J. Carbon nanomaterials and their application to electrochemical sensors: A review. Nanotechnol. Rev., 2018, 7, 19-41.
[http://dx.doi.org/10.1515/ntrev-2017-0160]
[66]
Rajkumar, C.; Veerakumar, P.; Chen, S-M.; Thirumalraj, B.; Liu, S-B. Facile and novel synthesis of palladium nanoparticles supported on a carbon aerogel for ultrasensitive electrochemical sensing of biomolecules. Nanoscale, 2017, 9(19), 6486-6496.
[http://dx.doi.org/10.1039/C7NR00967D] [PMID: 28466933]
[67]
Singh, S.; Meena, V.K.; Mizaikoff, B.; Singh, S.P.; Suri, C.R. Electrochemical sensing of nitro-aromatic explosive compounds using silver nanoparticles modified electrochips. Anal. Methods, 2016, 8, 7158-7169.
[http://dx.doi.org/10.1039/C6AY01945E]
[68]
Yu, A.; Liang, Z.; Cho, J.; Caruso, F. Nanostructured electrochemical sensor based on dense gold nanoparticle films. Nano Lett., 2003, 3, 1203-1207.
[http://dx.doi.org/10.1021/nl034363j]
[69]
Arya, S.K.; Saha, S.; Ramirez-Vick, J.E.; Gupta, V.; Bhansali, S.; Singh, S.P. Recent advances in ZnO nanostructures and thin films for biosensor applications: review Anal. Chim. Acta, 2012, 737, 1-21.
[http://dx.doi.org/10.1016/j.aca.2012.05.048] [PMID: 22769031]
[70]
Ahmad, N.; Umar, A.; Kumar, R.; Alam, M. Microwave-assisted synthesis of ZnO doped CeO2 nanoparticles as potential scaffold for highly sensitive nitroaniline chemical sensor. Ceram. Int., 2016, 42, 11562-11567.
[http://dx.doi.org/10.1016/j.ceramint.2016.04.013]
[71]
Rahman, M.M.; Khan, S.B.; Faisal, M.; Asiri, A.M.; Tariq, M.A. Detection of aprepitant drug based on low-dimensional un-doped iron oxide nanoparticles prepared by a solution method. Electrochim. Acta, 2012, 75, 164-170.
[http://dx.doi.org/10.1016/j.electacta.2012.04.093]
[72]
Rahman, M.M.; Jamal, A.; Khan, S.B.; Faisal, M. Fabrication of chloroform sensor based on hydrothermally prepared low-dimensional β-Fe2O3 nanoparticles. Superlattices Microstruct., 2011, 50(4), 369-376.
[http://dx.doi.org/10.1016/j.spmi.2011.07.016]
[73]
Zhuiykov, S. Semiconductor nanocrystals in environmental sensors. In: Nanostructured Semiconductor Oxides for the Next Generation of Electronics and Functional Devices; Zhuiykov, S., Ed.; Woodhead Publishing, 2014; pp. 374-426.
[74]
Bakhsh, E.M.; Khan, S.B.; Marwani, H.M.; Danish, E.Y.; Asiri, A.M. Efficient electrochemical detection and extraction of copper ions using ZnSe–CdSe/SiO2 core–shell nanomaterial. J. Ind. Eng. Chem., 2019, 73, 118-127.
[http://dx.doi.org/10.1016/j.jiec.2019.01.014]
[75]
Wang, G.; Morrin, A.; Li, M.; Liu, N.; Luo, X. Nanomaterial-doped conducting polymers for electrochemical sensors and biosensors. J. Mater. Chem. B Mater. Biol. Med., 2018, 6, 4173-4190.
[http://dx.doi.org/10.1039/C8TB00817E]
[76]
Shrivastava, S.; Jadon, N.; Jain, R. Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: A review. TRAC- Trends Analyt. Chem., 2016, 82, 55-67.
[http://dx.doi.org/10.1016/j.trac.2016.04.005]
[77]
Lim, M.; Kwon, H.; Kim, D.; Seo, J.; Han, H.; Khan, S.B. Highly-enhanced water resistant and oxygen barrier properties of cross-linked poly(vinyl alcohol) hybrid films for packaging applications. Prog. Org. Coat., 2015, 85, 68-75.
[http://dx.doi.org/10.1016/j.porgcoat.2015.03.005]
[78]
Jang, E.S.; Khan, S.B.; Seo, J.; Nam, Y.H.; Choi, W.J.; Akhtar, K.; Han, H. Synthesis and characterization of novel UV-curable polyurethane-clay nanohybrid: Influence of organically modified layered silicates on the properties of polyurethane. Prog. Org. Coat., 2011, 71, 36-42.
[http://dx.doi.org/10.1016/j.porgcoat.2010.12.007]
[79]
Jang, E.S.; Khan, S.B.; Seo, J.; Akhtar, K.; Choi, J.; Kim, K.I.; Han, H. Synthesis and characterization of novel UV-Curable PU-Si hybrids: Influence of silica on thermal, mechanical, and water sorption properties of polyurethane acrylates. Macromol. Res., 2011, 19, 1006.
[http://dx.doi.org/10.1007/s13233-011-1002-x]
[80]
Priyadarshini, E.; Pradhan, N. Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: A review. Sens. Actuators B Chem., 2017, 238, 888-902.
[http://dx.doi.org/10.1016/j.snb.2016.06.081]
[81]
Ding, Y.; Wang, S.; Li, J.; Chen, L. Nanomaterial-based optical sensors for mercury ions. TRAC- Trends Analyt. Chem., 2016, 82, 175-190.
[http://dx.doi.org/10.1016/j.trac.2016.05.015]
[82]
Luo, J.; Cong, J.; Liu, J.; Gao, Y.; Liu, X. A facile approach for synthesizing molecularly imprinted graphene for ultrasensitive and selective electrochemical detecting 4-nitrophenol. Anal. Chim. Acta, 2015, 864, 74-84.
[http://dx.doi.org/10.1016/j.aca.2015.01.037] [PMID: 25732429]
[83]
Yiğit, A.; Yardım, Y.; Çelebi, M.; Levent, A.; Şentürk, Z. Graphene/Nafion composite film modified glassy carbon electrode for simultaneous determination of paracetamol, aspirin and caffeine in pharmaceutical formulations. Talanta, 2016, 158, 21-29.
[http://dx.doi.org/10.1016/j.talanta.2016.05.046] [PMID: 27343573]
[84]
Ghanbari, K.; Ahmadi, F. NiO hedgehog-like nanostructures/Au/polyaniline nanofibers/reduced graphene oxide nanocomposite with electrocatalytic activity for non-enzymatic detection of glucose. Anal. Biochem., 2017, 518, 143-153.
[http://dx.doi.org/10.1016/j.ab.2016.11.020] [PMID: 27916553]
[85]
Hassan, S.S.; Nafady, A. Sirajuddin; Solangi, A.R.; Kalhoro, M.S.; Abro, M.I.; Sherazi, S.T.H. Ultra-trace level electrochemical sensor for methylene blue dye based on nafion stabilized ibuprofen derived gold nanoparticles. Sens. Actuators B Chem., 2015, 208, 320-326.
[http://dx.doi.org/10.1016/j.snb.2014.11.021]
[86]
Fritea, L.; Bănică, F.; Costea, T.O.; Moldovan, L.; Iovan, C.; Cavalu, S. A gold nanoparticles - Graphene based electrochemical sensor for sensitive determination of nitrazepam. J. Electroanal. Chem. (Lausanne Switz.), 2018, 830-831, 63-71.
[http://dx.doi.org/10.1016/j.jelechem.2018.10.015]
[87]
Cai, J.; Sun, B.; Li, W.; Gou, X.; Gou, Y.; Li, D.; Hu, F. Novel nanomaterial of porous graphene functionalized black phosphorus as electrochemical sensor platform for bisphenol A detection. J. Electroanal. Chem. (Lausanne Switz.), 2019, 835, 1-9.
[http://dx.doi.org/10.1016/j.jelechem.2019.01.003]
[88]
Abdullah, M.M.; Rahman, M.M.; Bouzid, H.; Faisal, M.; Khan, S.B.; Al-Sayari, S.A.; Ismail, A.A. Sensitive and fast response ethanol chemical sensor based on as-grown Gd2O3 nanostructures. J. Rare Earths, 2015, 33, 214-220.
[http://dx.doi.org/10.1016/S1002-0721(14)60405-1]
[89]
Khan, S.B.; Asiri, A.M.; Akhtar, K.; Rub, M.A. Development of electrochemical sensor based on layered double hydroxide as a marker of environmental toxin. J. Ind. Eng. Chem., 2015, 30, 234-238.
[http://dx.doi.org/10.1016/j.jiec.2015.05.027]
[90]
Rahman, L.U.; Shah, A.; Khan, S.B.; Asiri, A.M.; Hussain, H.; Han, C.; Qureshi, R.; Ashiq, M.N.; Zia, M.A.; Ishaq, M.; Kraatz, H-B. Synthesis, characterization, and application of Au–Ag alloy nanoparticles for the sensing of an environmental toxin, pyrene. J. Appl. Electrochem., 2015, 45, 463-472.
[http://dx.doi.org/10.1007/s10800-015-0807-2]
[91]
Asif, S.A.B.; Khan, S.B.; Asiri, A.M. Electrochemical sensor for H2O2 using a glassy carbon electrode modified with a nanocomposite consisting of graphene oxide, cobalt(III) oxide, horseradish peroxidase and nafion. Mikrochim. Acta, 2016, 183, 3043-3052.
[http://dx.doi.org/10.1007/s00604-016-1942-0]
[92]
Khan, S.B.; Ahmed, M.S.; Asiri, A.M. Amperometric sensor for ascorbic acid using a gold electrode modified with ZnO@SiO2 nanospheres. New J. Chem., 2016, 40, 8438-8443.
[http://dx.doi.org/10.1039/C6NJ00115G]
[93]
Asif, S.A.B.; Khan, S.B.; Asiri, A.M. Assessment of graphene oxide/MgAl oxide nanocomposite as a non-enzymatic sensor for electrochemical quantification of hydrogen peroxide. J. Taiwan Inst. Chem. Eng., 2017, 74, 255-262.
[http://dx.doi.org/10.1016/j.jtice.2016.11.011]
[94]
Din, A.; Khan, S.B.; Khan, M.I.; Asif, S.A.B.; Khan, M.A.; Gul, S.; Akhtar, K.; Asiri, A.M. Cadmium oxide based efficient electrocatalyst for hydrogen peroxide sensing and water oxidation. J. Mater. Sci. Mater. Electron., 2017, 28, 1092-1100.
[http://dx.doi.org/10.1007/s10854-016-5633-8]
[95]
Abdel-Latif, I.A.; Rahman, M.M.; Khan, S.B. Neodymium cobalt oxide as a chemical sensor. Results Phys., 2018, 8, 578-583.
[http://dx.doi.org/10.1016/j.rinp.2017.12.079]
[96]
Khan, S.B.; Ali, F.; Akhtar, K. Chitosan nanocomposite fibers supported copper nanoparticles based perceptive sensor and active catalyst for nitrophenol in real water. Carbohydr. Polym., 2019, 207, 650-662.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.032] [PMID: 30600050]
[97]
Yang, Y.; Kang, M.; Fang, S.; Wang, M.; He, L.; Zhao, J.; Zhang, H.; Zhang, Z. Electrochemical biosensor based on three dimensional reduced graphene oxide and polyaniline nanocomposite for selective detection of mercury ions. Sens. Actuators B Chem., 2015, 214, 63-69.
[http://dx.doi.org/10.1016/j.snb.2015.02.127]
[98]
Xiong, W.; Zhou, L.; Liu, S. Development of gold-doped carbon foams as a sensitive electrochemical sensor for simultaneous determination of Pb (II) and Cu (II). Chem. Eng. J., 2016, 284, 650-656.
[http://dx.doi.org/10.1016/j.cej.2015.09.013]
[99]
Chaiyo, S.; Mehmeti, E.; Žagar, K.; Siangproh, W.; Chailapakul, O.; Kalcher, K. Electrochemical sensors for the simultaneous determination of zinc, cadmium and lead using a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode. Anal. Chim. Acta, 2016, 918, 26-34.
[http://dx.doi.org/10.1016/j.aca.2016.03.026] [PMID: 27046207]
[100]
Deshmukh, S.; Kandasamy, G.; Upadhyay, R.K.; Bhattacharya, G.; Banerjee, D.; Maity, D.; Deshusses, M.A.; Roy, S.S. Terephthalic acid capped iron oxide nanoparticles for sensitive electrochemical detection of heavy metal ions in water. J. Electroanal. Chem. (Lausanne Switz.), 2017, 788, 91-98.
[http://dx.doi.org/10.1016/j.jelechem.2017.01.064]
[101]
Gupta, S.; Singh, R.; Anoop, M.D.; Kulshrestha, V.; Srivastava, D.N.; Ray, K.; Kothari, S.L.; Awasthi, K.; Kumar, M. Electrochemical sensor for detection of mercury (II) ions in water using nanostructured bismuth hexagons. Appl. Phys., A Mater. Sci. Process., 2018, 124, 737.
[http://dx.doi.org/10.1007/s00339-018-2161-9]