Recent Electrochemical Assays on Cephalosporins

Page: [337 - 349] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Antibiotics are an important class among drugs because they are a significant agent to deal with infections. Cephalosporins are a very important group of antibiotics in the β-lactam class. The cephalosporins are semisynthetic antibiotics derived from products of the fungus Cephalosporium. Cephalosporins are classified as first, second, third, fourth, and advanced generation, based largely on their antibacterial spectrum and stability to β-lactamases. Electrochemical methods have been used for the determination of cephalosporin just as used in the determination of many antibiotic drugs. Electroanalytical methods present generally high sensitivity, low cost, low requirements, ease of preparation of the samples in a very short time, and a short analysis time. The most commonly used types are cyclic voltammetry, differential pulse voltammetry, square wave voltammetry and linear sweep voltammetry. The aim of this review is to evaluate the advantages and uses of electroanalytical methods used in the determination of cephalosporins. In addition, current applications of the methods to the pharmaceutical analysis of cephalosporins will also be summarized in a table.

Keywords: Cephalosporins, electroanalytical methods, voltammetry, drug analysis, antibiotics, β-lactamases.

Graphical Abstract

[1]
Officer, E.; Sincerely, Y.; Rossi, S., Eds.; M. Executive Officer Pharmacy Board of Australia Re: Feedback on Review of PBA Guideline 1 References Please Find Attached a Response from the 15 Pharmacists Currently Employed by Australian Medicines Handbook Pty Ltd (AMH); Information Pharmacists for Si, 2011.
[2]
Pitlik, J. Cycloaddition and related reactions of cephalosporin antibiotics. Bioorg. Med. Chem., 1995, 3(9), 1157-1181.
[http://dx.doi.org/10.1016/0968-0896(95)00088-X] [PMID: 8564409]
[3]
Craig, C.R.; Stitzel, R.E. Modern Pharmacology with Clinical Applications; Lippincott Williams & Wilkins, 2004.
[4]
Rang, H.P.; Dale, M.M.; Ritter, J.; Flower, R.J. 8th ed. Rang and Dale’s Pharmacology; , 1997.
[5]
Craig, C.R.; Stitzel, R.E. 5th ed. Modern Pharmacology with Clinical Applications; Little, Brown, 1997.
[6]
Ewa, P.U.F.A.L.; Marzena, S.Y.K.U.T.E.R.A. K.S. Determination of Cephalosporin Antibiotics in Post-mortem Material. Z Zagadnieñ nauk S1dowych; XLI, 2000, pp. 37-51.
[7]
El-Shaboury, S.R.; Saleh, G.A.; Mohamed, F.A.; Rageh, A.H. Analysis of cephalosporin antibiotics. J. Pharm. Biomed. Anal., 2007, 45(1), 1-19.
[http://dx.doi.org/10.1016/j.jpba.2007.06.002] [PMID: 17689910]
[8]
Cunha, B.A. Third-generation cephalosporins: a review. Clin. Ther., 1992, 14(5), 616-652.
[PMID: 1468084]
[9]
Sweetman, S.C. Martindale: The Complete Drug Reference; Pharmaceutical Press, 2009.
[10]
Devansh, M. Cephalosporins: A review on imperative class of antibiotics. mol. pharmacol, 2016, 1-6.
[11]
Shetty, N.; Shulman, R.I.; Scott, G.M. An audit of first generation cephalosporin usage. J. Hosp. Infect., 1999, 41(3), 229-232.
[http://dx.doi.org/10.1016/S0195-6701(99)90021-X] [PMID: 10204126]
[12]
Marsh, T.D. The Cephalosporin Antibiotic Agents--II. First- and Second-Generation Agents. Infection control: IC, 1984, 5, 577-582.
[13]
Endimiani, A.; Rossano, A.; Kunz, D.; Overesch, G.; Perreten, V. First countrywide survey of third-generation cephalosporin-resistant Escherichia coli from broilers, swine, and cattle in Switzerland. Diagn. Microbiol. Infect. Dis., 2012, 73(1), 31-38.
[http://dx.doi.org/10.1016/j.diagmicrobio.2012.01.004] [PMID: 22578936]
[14]
Hancock, R.E.; Bellido, F. Factors involved in the enhanced efficacy against gram-negative bacteria of fourth generation cephalosporins. J. Antimicrob. Chemother., 1992, 29(Suppl. A), 1-6.
[http://dx.doi.org/10.1093/jac/29.suppl_A.1] [PMID: 1601751]
[15]
Wilson, W.R. The role of fourth-generation cephalosporins in the treatment of serious infectious diseases in hospitalized patients. Diagn. Microbiol. Infect. Dis., 1998, 31(3), 473-477.
[http://dx.doi.org/10.1016/S0732-8893(98)00041-8] [PMID: 9635239]
[16]
Greenberger, P.A. Immune-mediated and adverse drug reactions during treatment with the fifth generation cephalosporin, ceftaroline: drug allergy matters. J. Allergy Clin. Immunol. Pract., 2016, 4(4), 747-748.
[http://dx.doi.org/10.1016/j.jaip.2016.04.021] [PMID: 27393783]
[17]
Hughes, D.L. Patent review of manufacturing routes to fifth-generation cephalosporin drugs. Part 1, Ceftolozane. Org. Process Res. Dev., 2017, 21, 430-443.
[http://dx.doi.org/10.1021/acs.oprd.7b00033]
[18]
Wang, J. Analytical Electrochemistry; Wiley-VCH, 2006.
[http://dx.doi.org/10.1002/0471790303]
[19]
Özkan, S.A.; Uslu, B.; Aboul-Enein, H.Y. Analysis of Pharmaceuticals and Biological Fluids Using Modern Electroanalytical Techniques. Crit. Rev. Anal. Chem., 2003, 33, 155-181.
[http://dx.doi.org/10.1080/713609162]
[20]
Michael, E. Swartz; I.S.K.. Analytical Method Development and Validation; , 1997. 1st ed., Vol. 3.
[21]
Wang, J. Electroanalytical Techniques in Clinical Chemistry and Laboratory Medicine; VCH: New York, 1988.
[22]
Gosser, D.K. Cyclic Voltammetry; VCH, 1994.
[23]
Gupta, V.K.; Jain, R.; Radhapyari, K.; Jadon, N.; Agarwal, S. Voltammetric techniques for the assay of pharmaceuticals--a review. Anal. Biochem., 2011, 408(2), 179-196.
[http://dx.doi.org/10.1016/j.ab.2010.09.027] [PMID: 20869940]
[24]
Kounaves, S.P. Handbook of Instrumental Techniques for Analytical Chemistry; , 1997.
[25]
Aboul-Enein, H.Y.; S.A., Ozkan Electroanalytical Methods in Pharmaceutical Analysis and Their Validation. Chromatographia, 2012, 75, 811.
[http://dx.doi.org/10.1007/s10337-012-2268-7]
[26]
Perrett, D. Electroanalysis of Biologically important compounds. Chromatographia, 1994, 38, 792.
[http://dx.doi.org/10.1007/BF02269638]
[27]
Brett, C.M.A. Electrochemistry. Principles, Methods and Applications; Oxford University Press, 1993.
[28]
Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications; Wiley, 2001.
[29]
Harvey, D. Modern Analytical Chemistry; McGraw-Hill, 2000.
[30]
Ozkan, S.A.; Kauffmann, J-M.; Zuman, P. Electroanalysis in Biomedical and Pharmaceutical Sciences; Springer-Verlag Berlin Heidelberg, 2015.
[http://dx.doi.org/10.1007/978-3-662-47138-8]
[31]
Feier, B.; Gui, A.; Cristea, C.; Săndulescu, R. Electrochemical determination of cephalosporins using a bare boron-doped diamond electrode. Anal. Chim. Acta, 2017, 976, 25-34.
[http://dx.doi.org/10.1016/j.aca.2017.04.050] [PMID: 28576315]
[32]
Balooei, M.; Raoof, J.B.; Chekin, F.; Ojani, R. Cephalexin Electrochemical sensors based on glassy carbon modified with 3- mercaptopropyltrimethoxysilane functionalized multi-walled carbon nanotubes. Anal. Bioanal. Electrochem, 2017, 9, 929-939.
[33]
Balooei, M.; Raoof, J.B.; Chekin, F.; Ojani, R. Novel Sensor Based on 3-Mercaptopropyltrimethoxysilane Functionalized Carbon Nanotubes Modified Glassy Carbon Electrode for Electrochemical Determination of Cefixim. Anal. Bioanal. Electrochem, 2017, 9(3), 266-276.
[34]
Süslü, İ.; Çelebier, M.; Kablan, S.E.; Altinöz, S. Indirect Square-Wave Voltammetric Determination of Cefepime in the Presence of Formaldehyde. Am. J. Pharm., 2016, 35, 2246-2253.
[35]
Tiwari, P.; Azad, U.P.; Gupta, S.; Prakash, R. Pd@TTF tailored nanostructured platform: voltammetric estimation of ceftazidime. ChemistrySelect, 2017, 2, 7432-7438.
[http://dx.doi.org/10.1002/slct.201700700]
[36]
Azadmehr, F.; Zarei, K. Ultrasensitive Determination of ceftizoxime using pencil graphite electrode modified by hollow gold nanoparticles/reduced graphene oxide. Arab. J. Chem., 2018, 13(1), 1890-1900.
[37]
Shahrokhian, S.; Ranjbar, S.; Ghalkhani, M. Modification of the electrode surface by ag nanoparticles decorated nano diamond-graphite for voltammetric determination of ceftizoxime. Electroanalysis, 2016, 28, 469-476.
[http://dx.doi.org/10.1002/elan.201500377]
[38]
Prasad, B.B.; Arora, B. Application of polymer-modified hanging mercury drop electrode in the indirect determination of certainβ-lactam antibiotics by differential pulse, ion-exchange voltammetry. Electroanalysis, 2003, 15, 1212-1218.
[http://dx.doi.org/10.1002/elan.200390149]
[39]
Rodrigues, L.N.; Zanoni, M.V.; Fogg, A.G. Indirect polarographic and cathodic stripping voltammetric determination of cefaclor as an alkaline degradation product. J. Pharm. Biomed. Anal., 1999, 21(3), 497-505.
[http://dx.doi.org/10.1016/S0731-7085(99)00174-0] [PMID: 10701416]
[40]
Tarinc, D.; Dogan-Topal, B.; Golcu, A.; Ozkan, S.A. Electrochemical Investigation and determination of ceftazidime in pharmaceutical dosage forms and human urine. J. Anal. Chem., 2014, 69, 899-908.
[http://dx.doi.org/10.1134/S1061934814090056]
[41]
Guru Prasad, A.R.; Rao, V.S. Polarographic determination of certain cephalosporins in pharmaceutical preparations. Res. Pharm. Sci., 2010, 5(1), 57-63.
[PMID: 21589769]
[42]
Alghamdi, A.H.; Alghamdi, A.F.; Alomar, M.A.; Alghmdi, A.H. Study of stripping voltammetric behaviour of cefadroxil antibiotic in the presence of cu (ii) and its determination in pharmaceutical formulation. Port. Portugaliae Electrochimica Acta, 2009, 27, 645-655.
[http://dx.doi.org/10.4152/pea.200906645]
[43]
Ozkan, S.A.; Erk, N.; Uslu, B.; Yilmaz, N.; Biryol, I. Study on electrooxidation of cefadroxil monohydrate and its determination by differential pulse voltammetry. J. Pharm. Biomed. Anal., 2000, 23(2-3), 263-273.
[http://dx.doi.org/10.1016/S0731-7085(00)00294-6] [PMID: 10933519]
[44]
Chen, Y.; Huang, L.; Lin, Q. Rapid Hydrolysis and Electrochemical Detection of Cephalexin at a Heated Glassy Carbon Electrode; , 2012, Vol. 7, .
[45]
Chailapakul, O.; Aksharanandana, P.; Frelink, T.; Einaga, Y.; Fujishima, A. The electrooxidation of sulfur-containing compounds at boron-doped diamond electrode. Sens. Actuators B Chem., 2001, 80, 193-201.
[http://dx.doi.org/10.1016/S0925-4005(01)00912-1]
[46]
Xu, F.; Wu, F.; Chen, L.; Cai, Z.; Wei, X. Electrochemical determination of cefotaxime using nafion-graphene oxide modified electrode. Asian J. Chem., 2016, 28, 111-115.
[http://dx.doi.org/10.14233/ajchem.2016.19261]
[47]
Bin, F.; Zhu, Y.; Zhang, Y.; Voltammetric, L.X. Behaviour of the degradation product of cephalexin at silver microdisk electrode and its analytical application. Chin. J. Anal. Chem., 1997, 5, 2.
[48]
Al-Ghamdi, A.H.; Al-Shadokhy, M.A.; Al-Warthan, A.A. Electrochemical determination of Cephalothin antibiotic by adsorptive stripping voltammetric technique. J. Pharm. Biomed. Anal., 2004, 35(5), 1001-1009.
[http://dx.doi.org/10.1016/j.jpba.2004.02.034] [PMID: 15336347]
[49]
Farghaly, O.A.; Hazzazi, O.A.; Rabie, E.M.; Khodari, M. Farghaly, O.A.; Hazzazi, O.A.; Rabie, E.M.; Khodari, M. Determination of Some Cephalosporins by Adsorptive Stripping Voltammetry. Int. J. Electrochem., 2008, 3.
[50]
Jamasbi, E.S.; Rouhollahi, A.; Shahrokhian, S.; Haghgoo, S.; Aghajani, S. The electrocatalytic examination of cephalosporins at carbon paste electrode modified with CoSalophen. Talanta, 2007, 71(4), 1669-1674.
[http://dx.doi.org/10.1016/j.talanta.2006.07.058] [PMID: 19071506]
[51]
Baranowska, I.; Markowski, P.; Gerle, A.; Baranowski, J. Determination of selected drugs in human urine by differential pulse voltammetry technique. Bioelectrochemistry, 2008, 73(1), 5-10.
[http://dx.doi.org/10.1016/j.bioelechem.2008.04.022] [PMID: 18515190]
[52]
El-Desoky, H.S.; Ghoneim, E.M.; Ghoneim, M.M. Voltammetric behavior and assay of the antibiotic drug cefazolin sodium in bulk form and pharmaceutical formulation at a mercury electrode. J. Pharm. Biomed. Anal., 2005, 39(5), 1051-1056.
[http://dx.doi.org/10.1016/j.jpba.2005.05.020] [PMID: 16005594]
[53]
Fayazfar, H.; Afshar, A.; Dolati, A. Tantalum electrodes modified with well-aligned carbon nanotube-Au nanoparticles: application to the highly sensitive electrochemical determination of cefazolin. Appl. Biochem. Biotechnol., 2014, 173(6), 1511-1528.
[http://dx.doi.org/10.1007/s12010-014-0944-9] [PMID: 24817553]
[54]
Ogorevc, B.; Krašna, A.; Hudnik, V.; Gomišček, S. Adsorptive stripping voltammetry of selected cephalosporin antibiotics and their direct determination in urine. Mikrochim. Acta, 1991, 103, 131-144.
[http://dx.doi.org/10.1007/BF01309019]
[55]
Ogorevc, B.; Hudnik, V.; Gomišček, S. Polarographic analysis of some cephalosporin antibiotics. Fresenius Z. Anal. Chem., 1988, 330, 59-64.
[http://dx.doi.org/10.1007/BF00494537]
[56]
Jain, R.; Radhapyari, K.; Jadon, N. Electrochemical evaluation and determination of cefdinir in dosage form and biological fluid at mercury electrode. J. Electrochem. Soc., 2007, 154, F199.
[http://dx.doi.org/10.1149/1.2772172]
[57]
Jain, R.; Dwivedi, A.; Mishra, R. Voltammetric behavior of cefdinir in solubilized system. J. Colloid Interface Sci., 2008, 318(2), 296-301.
[http://dx.doi.org/10.1016/j.jcis.2007.10.037] [PMID: 18036604]
[58]
She-ying, D.; Zhu-qing, Y.U.; Xiao-feng, H.H.N.; Ting-lin, H.; Jian-bin, Z. Voltammetric behavior of degradation product and determination of cefdinir. Chem. Res. Chin. Univ., 2009, 25, 807-811.
[59]
Taşdemir, İ.H. Electrochemistry of cefditoren pivoxil and its voltammetric determination. Arab. J. Chem., 2016, 9, 86-94.
[http://dx.doi.org/10.1016/j.arabjc.2014.11.051]
[60]
Barbosa, A.M.J.; de Araujo, T.A.; Trindade, M.A.G.; Ferreira, V.S. Direct cefepime determination in human milk using solid mercury amalgam electrode manufactured with silver nanoparticles. J. Electroanal. Chem., 2012, 681, 127-132.
[http://dx.doi.org/10.1016/j.jelechem.2012.06.012]
[61]
Palacios, F.J.J.; Mochón, M.C.; Sánchez, J.C.J.; Carranza, J.H. Adsorptive stripping voltammetric determination of cefepime at the mercury electrode in human urine and cerebrospinal fluid, and differential pulse polarographic determination in serum. J. Pharm. Sci., 2003, 92(9), 1854-1859.
[http://dx.doi.org/10.1002/jps.10438] [PMID: 12950003]
[62]
Palacios, F.J.J.; Mochón, M.C.; Sánchez, J.C.J.; Carranza, J.H. Electrochemical reduction of cefepime at the mercury electrode. Electroanalysis, 2000, 12, 296-300.
[http://dx.doi.org/10.1002/(SICI)1521-4109(20000301)12:4<296:AID-ELAN296>3.0.CO;2-O]
[63]
Nigam, P.; Joshi, H.C. Instrumentation Science And Technology On-Chip Electrochemical Determination Of Cefepime.,
[64]
Özkan, S.A.; Uslu, B.; Zuman, P. Electrochemical reduction and oxidation of the antibiotic cefepime at a carbon electrode. Anal. Chim. Acta, 2002, 457, 265-274.
[http://dx.doi.org/10.1016/S0003-2670(02)00022-3]
[65]
Shahrokhian, S.; Hosseini-Nassab, N.; Kamalzadeh, Z. Fabrication of an electrochemical sensor based on the electrodeposition of pt nanoparticles on multiwalled carbon nanotubes film for voltammetric determination of ceftriaxone in the presence of lidocaine, assisted by factorial-based response-surface methodology. J. Solid State Electrochem., 2014, 18, 77-88.
[http://dx.doi.org/10.1007/s10008-013-2243-8]
[66]
K.; Reddaiah, K.; Reddy, T.M.; Reddy, S.R.J. Portugaliae Electrochimica Acta. Sociedade Portuguesa de Electroquimica, 2011, 29.
[67]
Afkhami, A.; Soltani-Felehgari, F.; Madrakian, T. Gold nanoparticles modified carbon paste electrode as an efficient electrochemical sensor for rapid and sensitive determination of cefixime in urine and pharmaceutical samples. Electrochim. Acta, 2013, 103, 125-133.
[http://dx.doi.org/10.1016/j.electacta.2013.04.064]
[68]
Asadollahi-Baboli, M.; Mani-Varnosfaderani, A. Rapid and simultaneous determination of tetracycline and cefixime antibiotics by mean of gold nanoparticles-screen printed gold electrode and chemometrics tools. Measurement, 2014, 47, 145-149.
[http://dx.doi.org/10.1016/j.measurement.2013.08.029]
[69]
Babaei, A.; Afrasiabi, M. A glassy carbon electrode modified with mcm-41/nickel hydroxide nanoparticle/multiwalled carbon nanotube composite as a sensor for the simultaneous determination of dopamine, piroxicam, and cefixime. Ionics, 2015, 21, 1731-1740.
[http://dx.doi.org/10.1007/s11581-014-1339-1]
[70]
Ensafi, A.A.; Allafchian, A.R. Multiwall carbon nanotubes decorated with NiFe2O4 magnetic nanoparticles, a new catalyst for voltammetric determination of cefixime. Colloids Surf. B Biointerfaces, 2013, 102, 687-693.
[http://dx.doi.org/10.1016/j.colsurfb.2012.09.037] [PMID: 23107947]
[71]
Golcu, A.; Dogan, B.; Ozkan, S.A. Anodic voltammetric behavior and determination of cefixime in pharmaceutical dosage forms and biological fluids. Talanta, 2005, 67(4), 703-712.
[http://dx.doi.org/10.1016/j.talanta.2005.03.020] [PMID: 18970228]
[72]
Jain, R.; Gupta, V.K.; Jadon, N.; Radhapyari, K. Voltammetric determination of cefixime in pharmaceuticals and biological fluids. Anal. Biochem., 2010, 407(1), 79-88.
[http://dx.doi.org/10.1016/j.ab.2010.07.027] [PMID: 20678464]
[73]
Karimian, N.; Gholivand, M.B.; Malekzadeh, G. Cefixime detection by a novel electrochemical sensor based on glassy carbon electrode modified with surface imprinted polymer/multiwall carbon nanotubes. J. Electroanal. Chem., 2016, 771, 64-72.
[http://dx.doi.org/10.1016/j.jelechem.2016.03.042]
[74]
Reddy, T.M.; Sreedhar, M.; Jayarama Reddy, S. Voltammetric behavior of cefixime and cefpodoxime proxetil and determination in pharmaceutical formulations and urine. J. Pharm. Biomed. Anal., 2003, 31(4), 811-818.
[http://dx.doi.org/10.1016/S0731-7085(02)00721-5] [PMID: 12644208]
[75]
Yaman, Y.T.; Bolat, G.; Yardimci, C.; Abaci, S. An ionic liquid/bismuth film-modified sensor for the electrochemical detection of cefixime. Turk. J. Chem., 2018, 42, 826-838.
[76]
Belloni, J. Photography: enhancing sensitivity by silver-halide crystal doping. Radiat. Phys. Chem., 2003, 67, 291-296.
[http://dx.doi.org/10.1016/S0969-806X(03)00054-9]
[77]
Norouzi, P.; Larijani, B.; Faridbod, F.; Ganjali, M.R. Norouzi, P.; Larijani, B.; Faridbod, F.; Ganjali, M.R. Determination of Cefoperazone Based on Nano-Composite Electrode Using Coulometric FFT Admittance Voltammetry. Int. J. Electrochem. Sci., 2013, 8.
[78]
El-Maali, N.A.; Ali, A.M.M.; Ghandour, M.A. Electrochemical reduction and oxidation of two cephalosporin antibiotics: ceftriaxone (rocephin) and cefoperazone (cefobid). Electroanalysis, 1993, 5, 599-604.
[http://dx.doi.org/10.1002/elan.1140050712]
[79]
Dogan, B.; Golcu, A.; Dolaz, M.; Ozkan, S. Anodic oxidation of antibacterial drug cefotaxime sodium and its square wave and differential pulse voltammetric determination in pharmaceuticals and human serum. Curr. Pharm. Anal., 2009, 5, 197-207.
[http://dx.doi.org/10.2174/157341209788172861]
[80]
Billová, S.; Kizek, R.; Jelen, F.; Novotná, P. Square-wave voltammetric determination of cefoperazone in a bacterial culture, pharmaceutical drug, milk, and urine. Anal. Bioanal. Chem., 2003, 377(2), 362-369.
[http://dx.doi.org/10.1007/s00216-003-2109-5] [PMID: 12898110]
[81]
Hammam, E.; El-Attar, M.A.; Beltagi, A.M. Voltammetric studies on the antibiotic drug cefoperazone quantification and pharmacokinetic studies. J. Pharm. Biomed. Anal., 2006, 42(4), 523-527.
[http://dx.doi.org/10.1016/j.jpba.2006.05.002] [PMID: 16782297]
[82]
Hoang, V.D.; Huyen, D.T.; Phuc, P.H. Adsorptive cathodic stripping voltammetric determination of cefoperazone in bulk powder, pharmaceutical dosage forms, and human urine. J. Anal. Methods Chem., 2013., 367914
[http://dx.doi.org/10.1155/2013/367914] [PMID: 24109542]
[83]
Aleksić, M.M.; Kapetanović, V. Voltammetric behavior and square-wave voltammetric determination of cefotaxime in urine. J. Electroanal. Chem., 2006, 593, 258-266.
[http://dx.doi.org/10.1016/j.jelechem.2006.06.011]
[84]
Dehdashtian, S.; Abdipur, Z. Fabrication of an ultrasensitive electrochemical sensor based on a mesoporous silica material functionalized by copper ion (sba-15-cu(ii)) modified carbon paste electrode for determination of antibiotic ceftazidime and its application in pharmaceutical and biological samples. J. Indian Chem. Soc., 2017, 14, 1699-1709.
[http://dx.doi.org/10.1007/s13738-017-1111-3]
[85]
He, X.-M.; Qu, X.-G.; Li, Y.-F.; Zhang, Z.-Q. Electroanalytical characteristics of cefotaxime in the presence of a surfactant. IJC-A, 1999, 38A(10)
[86]
p.; Mohan, S.; Kundu, S.; Prakash, R. Trace analysis of cefotaxime at carbon paste electrode modified with novel schiff base Zn(II). Complex. Talanta, 2009, 77, 1426-1431.
[http://dx.doi.org/10.1016/j.talanta.2008.09.026] [PMID: 19084660]
[87]
Shahrokhian, S.; Rastgar, S. Construction of an electrochemical sensor based on the electrodeposition of Au-Pt nanoparticles mixtures on multi-walled carbon nanotubes film for voltammetric determination of cefotaxime. Analyst (Lond.), 2012, 137(11), 2706-2715.
[http://dx.doi.org/10.1039/c2an35182j] [PMID: 22543355]
[88]
Yang, G.; Zhao, F.; Zeng, B. Electrochemical determination of cefotaxime based on a three-dimensional molecularly imprinted film sensor. Biosens. Bioelectron., 2014, 53, 447-452.
[http://dx.doi.org/10.1016/j.bios.2013.10.029] [PMID: 24211456]
[89]
Zhang, F.; Gu, S.; Ding, Y.; Zhou, L.; Zhang, Z.; Li, L. Electrooxidation and determination of cefotaxime on au nanoparticles/poly (l-arginine) modified carbon paste electrode. J. Electroanal. Chem., 2013, 698, 25-30.
[http://dx.doi.org/10.1016/j.jelechem.2013.03.010]
[90]
Xu, F.; Wu, F. Le Chen, Zhengyu Cai, X.W. Electrochemical determination of cefotaxime using nafion-graphene oxide modified electrode. Asian J. Chem., 2016, 28, 111-115.
[http://dx.doi.org/10.14233/ajchem.2016.19261]
[91]
M.; Xu, X.; Yang, J.; Yang, X.; Tong, Z. Investigation of the electrocatalytic function of Fe3O4 nanoparticles and the application as cefotaxime sodium sensor. Micro & amp. Nano Lett., 2006, 6, 284-288.
[92]
Zhang, Yuzhong; Li, Shuping.; Kan, Xianwen.; Li, Maoguo.; F., Bin. Determination of degradation product of cefotaxime by differential pulse cathodic stripping voltammetry at silver microdisk electrode. Chin. J. Anal. Chem., 2000, 28(11), 1373-1374.
[93]
Aleksić, M.; Ilić, M.; Kapetanović, V. Adsorptive properties of cefpodoxime proxetil as a tool for a new method of its determination in urine. J. Pharm. Biomed. Anal., 2004, 36(4), 899-903.
[http://dx.doi.org/10.1016/j.jpba.2004.08.035] [PMID: 15533687]
[94]
Jain, R.; Mishra, R.; Dwivedi, A. Voltammetric behaviour of an antibiotic drug and its enhancement determination in presence of cetyltrimethylammonium bromide. J. Sci. Ind. Res. (India), 2009, 68, 945-950.
[95]
Chandio, T.A.; Khan, M.N. Sirajuddin.; Solangi, A.; Siddiqui, S.; Shaikh, T. Quantitative voltammetric determination of cephradine in biological fluids and in pharmaceutical products. Sens. Lett., 2017, 15, 142-148.
[http://dx.doi.org/10.1166/sl.2017.3776]
[96]
Jiang, Q.; Ying, Y.; Wang, J.; Ye, Z.; Li, Y. Detection of cephradine through the electrochemical study of the degradation product of cephradine. Proceedings of the SPIE, Volume 5994, 238-245.2005,
[http://dx.doi.org/10.1117/12.630648]
[97]
Zeng, Y.M.H. Electrochemical behaviour of cephradine. J. Anal. Chem., 1997, 9, 3.
[98]
Ferreira, V.S.; Zanoni, M.V.B.; Fogg, A.G. Cathodic stripping voltammetric determination of ceftazidime in urine at a hanging mercury drop electrode. Microchem. J., 1997, 57, 115-122.
[http://dx.doi.org/10.1006/mchj.1997.1516]
[99]
Ferreira, V.S.; Zanoni, M.V.B.; Furlan, M.; Fogg, A.G. Differential pulse polarographic determination of ceftazidime in urine samples with and without prior extraction. Anal. Chim. Acta, 1997, 351, 105-114.
[http://dx.doi.org/10.1016/S0003-2670(97)00347-4]
[100]
Ferreira, V.S.; Zanoni, M.V.B.; Fogg, A.G. Indirect cathodic-stripping voltammetric determination of ceftazidime as a mercury salt. Anal. Chim. Acta, 1998, 367, 255-259.
[http://dx.doi.org/10.1016/S0003-2670(98)00163-9]
[101]
Torkashvand, M.; Gholivand, M.B.; Malekzadeh, G. Construction of a new electrochemical sensor based on molecular imprinting recognition sites on multiwall carbon nanotube surface for analysis of ceftazidime in real samples. Sens. Actuators B Chem., 2016, 231, 759-767.
[http://dx.doi.org/10.1016/j.snb.2016.03.061]
[102]
Muslu, H.; Golcu, A.; Ozkan, A.S. Electrochemical study of ceftazidime-copper (ii) complex: synthesis, characterization, biological activity and analytical application to pharmaceutical dosage forms. Curr. Anal. Chem., 2010, 6, 299-309.
[http://dx.doi.org/10.2174/1573411011006040299]
[103]
Biryol, H. Inci, Yilmaz, N.; Anodic. Voltammetry of Ceftriaxone. Acta Pol. Pharm., 1998, 55, 3-8.
[104]
Majdi, S.; Jabbari, A.; Heli, H.; Yadegari, H.; Moosavi-Movahedi, A.A.; Haghgoo, S. Electrochemical oxidation and determination of ceftriaxone on a glassy carbon and carbon-nanotube-modified glassy carbon electrodes. J. Solid State Electrochem., 2009, 13, 407-416.
[http://dx.doi.org/10.1007/s10008-008-0567-6]