Viewing the Emphasis on State-of-the-Art Magnetic Nanoparticles: Synthesis, Physical Properties, and Applications in Cancer Theranostics

Page: [1505 - 1523] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Cancer-related mortality is a leading cause of death among both men and women around the world. Target-specific therapeutic drugs, early diagnosis, and treatment are crucial to reducing the mortality rate. One of the recent trends in modern medicine is “Theranostics,” a combination of therapeutics and diagnosis. Extensive interest in magnetic nanoparticles (MNPs) and ultrasmall superparamagnetic iron oxide nanoparticles (NPs) has been increasing due to their biocompatibility, superparamagnetism, less-toxicity, enhanced programmed cell death, and auto-phagocytosis on cancer cells. MNPs act as a multifunctional, noninvasive, ligand conjugated nano-imaging vehicle in targeted drug delivery and diagnosis. In this review, we primarily discuss the significance of the crystal structure, magnetic properties, and the most common method for synthesis of the smaller sized MNPs and their limitations. Next, the recent applications of MNPs in cancer therapy and theranostics are discussed, with certain preclinical and clinical experiments. The focus is on implementation and understanding of the mechanism of action of MNPs in cancer therapy through passive and active targeting drug delivery (magnetic drug targeting and targeting ligand conjugated MNPs). In addition, the theranostic application of MNPs with a dual and multimodal imaging system for early diagnosis and treatment of various cancer types including breast, cervical, glioblastoma, and lung cancer is reviewed. In the near future, the theranostic potential of MNPs with multimodality imaging techniques may enhance the acuity of personalized medicine in the diagnosis and treatment of individual patients.

Keywords: Active targeting, cancer, diagnosis, magnetic nanoparticles, magnetic resonance imaging, spinel ferrites, theranostics.

[1]
Pizon AF, Abesamis M, King AM, Menke N. Prosthetic hip-associated cobalt toxicity. J Med Toxicol 2013; 9(4): 416-7.
[http://dx.doi.org/10.1007/s13181-013-0321-z] [PMID: 24258006]
[2]
Kong L, Hu W, Lu C, Cheng K, Tang M. Mechanisms underlying nickel nanoparticle induced reproductive toxicity and chemo-protective effects of vitamin C in male rats. Chemosphere 2019; 218: 259-65.
[http://dx.doi.org/10.1016/j.chemosphere.2018.11.128] [PMID: 30472609]
[3]
Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 2011; 63(1-2): 24-46.
[http://dx.doi.org/10.1016/j.addr.2010.05.006] [PMID: 20685224]
[4]
Wang X, Yang L, Zhang H, et al. Fluorescent magnetic PEI-PLGA nanoparticles loaded with paclitaxel for concurrent cell imaging, enhanced apoptosis and autophagy in human brain cancer. Colloids Surf B Biointerfaces 2018; 172: 708-17.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.033] [PMID: 30245296]
[5]
El-Zahaby SA, Elnaggar YSR, Abdallah OY. Reviewing two decades of nanomedicine implementations in targeted treatment and diagnosis of pancreatic cancer: An emphasis on state of art. J Control Release 2019; 293: 21-35.
[http://dx.doi.org/10.1016/j.jconrel.2018.11.013] [PMID: 30445002]
[6]
Davarpanah F, Khalili Yazdi A, Barani M, Mirzaei M, Torkzadeh-Mahani M. Magnetic delivery of antitumor carboplatin by using PEGylated-Niosomes. Daru 2018.
[http://dx.doi.org/10.1007/s40199-018-0215-3] [PMID: 30209759]
[7]
Manju S, Sreenivasan K. Enhanced drug loading on magnetic nanoparticles by layer-by-layer assembly using drug conjugates: Blood compatibility evaluation and targeted drug delivery in cancer cells. Langmuir 2011; 27(23): 14489-96.
[http://dx.doi.org/10.1021/la202470k] [PMID: 21988497]
[8]
Liang PC, Chen YC, Chiang CF, et al. Doxorubicin-modified magnetic nanoparticles as a drug delivery system for magnetic resonance imaging-monitoring magnet-enhancing tumor chemotherapy. Int J Nanomedicine 2016; 11: 2021-37.
[PMID: 27274233]
[9]
Mosafer J, Abnous K, Tafaghodi M, Mokhtarzadeh A, Ramezani M. In vitro and in vivo evaluation of anti-nucleolin-targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy. Eur J Pharm Biopharm 2017; 113: 60-74.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.009] [PMID: 28012991]
[10]
Abdalla MO, Karna P, Sajja HK, et al. Enhanced noscapine delivery using uPAR-targeted optical-MR imaging trackable nanoparticles for prostate cancer therapy. J Control Release 2011; 149(3): 314-22.
[http://dx.doi.org/10.1016/j.jconrel.2010.10.030] [PMID: 21047537]
[11]
Quarta A, Rodio M, Cassani M, Gigli G, Pellegrino T, Del Mercato LL. Multilayered magnetic nanobeads for the delivery of peptides molecules triggered by intracellular proteases. ACS Appl Mater Interfaces 2017; 9(40): 35095-104.
[http://dx.doi.org/10.1021/acsami.7b05709] [PMID: 28858466]
[12]
Ostroverkhov PV, Semkina AS, Naumenko VA, et al. Synthesis and characterization of bacteriochlorin loaded magnetic nanoparticles (MNP) for personalized MRI guided photosensitizers delivery to tumor. J Colloid Interface Sci 2019; 537: 132-41.
[http://dx.doi.org/10.1016/j.jcis.2018.10.087] [PMID: 30439612]
[13]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018; 68(1): 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[14]
Torre LA, Islami F, Siegel RL, Ward EM, Jemal A. Global cancer in women: Burden and trends. Cancer Epidemiol Biomarkers Prev 2017; 26(4): 444-57.
[http://dx.doi.org/10.1158/1055-9965.EPI-16-0858] [PMID: 28223433]
[15]
Rerucha CM, Caro RJ, Wheeler VL. Cervical cancer screening. Am Fam Physician 2018; 97(7): 441-8.
[PMID: 29671553]
[16]
Kantarjian H, Steensma D, Rius Sanjuan J, Elshaug A, Light D. High cancer drug prices in the United States: Reasons and proposed solutions. J Oncol Pract 2014; 10(4): E208-11.
[http://dx.doi.org/10.1200/JOP.2013.001351] [PMID: 24803662]
[17]
Kaur S, Baine MJ, Jain M, Sasson AR, Batra SK. Early diagnosis of pancreatic cancer: Challenges and new developments. Biomarkers Med 2012; 6(5): 597-612.
[http://dx.doi.org/10.2217/bmm.12.69] [PMID: 23075238]
[18]
Grau-Crespo R, Al-Baitai AY, Saadoune I, De Leeuw NH. Vacancy ordering and electronic structure of γ-Fe2O3 (maghemite): A theoretical investigation. J Phys Condens Matter 2010; 22(25)255401
[http://dx.doi.org/10.1088/0953-8984/22/25/255401] [PMID: 21393797]
[19]
Ficai A, Grumezescu AM, Eds. Nanostructures for antimicrobial therapy. 2017.
[20]
Valenzuela R. Novel applications of ferrites Phys Res Int 2012; Article ID 591839
[http://dx.doi.org/10.1155/2012/591839]
[21]
Machala L, Tucek J, Zboril R. Polymorphous transformations of nanometric iron(III) oxide: A review. Chem Mater 2011; 23: 3255-72.
[http://dx.doi.org/10.1021/cm200397g]
[22]
Morrish AH. The physical principles of magnetism. The Physical Principles of Magnetism, by Allan H Morrish, pp 696 ISBN 0- 7803-6029-X Wiley-VCH, January 2001; 2001:696.
[23]
Wagner D. Introduction to the Theory of Magnetism: International Series of Monographs in Natural Philosophy. Elsevier 2013.
[24]
Callister WD, Rethwisch DG. Materials Science and Engineering. Hoboken, New Jersey: John Wiley & Sons 2015.
[25]
Westbrook C. MRI at a Glance. John Wiley & Sons 2016.
[26]
Merhari L. Hybrid nanocomposites for nanotechnology. Springer 2009.
[27]
Coey JM. Magnetism and magnetic materials. Cambridge University Press 2010.
[http://dx.doi.org/10.1017/CBO9780511845000]
[28]
Pullar RC. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog Mater Sci 2012; 57: 1191-334.
[http://dx.doi.org/10.1016/j.pmatsci.2012.04.001]
[29]
Evans M, Heller F. Environmental magnetism: Principles and applications of enviromagnetics 2003.
[30]
Abraham AG, Manikandan A, Manikandan E, Jaganathan SK, Baykal A, Renganathan P. Enhanced opto-magneto properties of Ni x Mg1–x Fe2O4 (0.0≤ x≤ 1.0) ferrites nano-catalysts. J nanoelectron optoe 2017 12: 1326-33.
[31]
Jacintha AM, Manikandan A, Chinnaraj K, Antony SA, Neeraja P. Comparative studies of spinel MnFe2O4 nanostructures: Structural, morphological, optical, magnetic and catalytic properties. J Nanosci Nanotechnol 2015; 15(12): 9732-40.
[http://dx.doi.org/10.1166/jnn.2015.10343] [PMID: 26682405]
[32]
Hema E, Manikandan A, Gayathri M, Durka M, Antony SA, Venkatraman BR. The role of Mn2+-doping on structural, morphological, optical, magnetic and catalytic properties of spinel ZnFe2O4 nanoparticles. J Nanosci Nanotechnol 2016; 16(6): 5929-43.
[http://dx.doi.org/10.1166/jnn.2016.11037] [PMID: 27427654]
[33]
Bréchignac C, Houdy P, Lahmani M. Nanomaterials and nanochemistry 2007.
[http://dx.doi.org/10.1007/978-3-540-72993-8]
[34]
Reis M. Fundamentals of Magnetism 2013.
[35]
Sung Lee J, Myung Cha J, Young Yoon H, Lee J-K, Keun Kim Y. Magnetic multi-granule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity. Sci Rep 2015; 5: 12135.
[http://dx.doi.org/10.1038/srep12135] [PMID: 26183842]
[36]
Mathew DS, Juang RS. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng Sci 2007; 129: 51-65.
[http://dx.doi.org/10.1016/j.cej.2006.11.001]
[37]
Gingasu D, Mindru I, Mocioiu OC, et al. Synthesis of nanocrystalline cobalt ferrite through soft chemistry methods: A green chemistry approach using sesame seed extract. Mater Chem Phys 2016; 182: 219-30.
[http://dx.doi.org/10.1016/j.matchemphys.2016.07.026]
[38]
Makarov VV, Makarova SS, Love AJ, et al. Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir 2014; 30(20): 5982-8.
[http://dx.doi.org/10.1021/la5011924] [PMID: 24784347]
[39]
Tarafdar JC, Raliya R. Rapid, Low-cost, and ecofriendly approach for iron nanoparticle synthesis using Aspergillus oryzae TFR9. J Nanopart Res 2013; 2013: 4.
[40]
Bharde A, Wani A, Shouche Y, Joy PA, Prasad BL, Sastry M. Bacterial aerobic synthesis of nanocrystalline magnetite. J Am Chem Soc 2005; 127(26): 9326-7.
[http://dx.doi.org/10.1021/ja0508469] [PMID: 15984833]
[41]
Bharde AA, Parikh RY, Baidakova M, et al. Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir 2008; 24(11): 5787-94.
[http://dx.doi.org/10.1021/la704019p] [PMID: 18454562]
[42]
Dimonte A, Cifarelli A, Berzina T, et al. Magnetic nanoparticles-loaded Physarum polycephalum: Directed growth and particles distribution. Interdiscip Sci 2015; 7(4): 373-81.
[http://dx.doi.org/10.1007/s12539-015-0021-2] [PMID: 26341499]
[43]
Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 1981; 17: 1247-8.
[http://dx.doi.org/10.1109/TMAG.1981.1061188]
[44]
Itoh H, Sugimoto T. Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J Colloid Interface Sci 2003; 265(2): 283-95.
[http://dx.doi.org/10.1016/S0021-9797(03)00511-3] [PMID: 12962662]
[45]
El-Dakdouki MH, El-Boubbou K, Xia J, Kavunja H, Huang X. Methods for magnetic nanoparticle synthesis and functionalization Chemistry of Bioconjugates 2014.
[http://dx.doi.org/10.1002/9781118775882.ch10]
[46]
Antal I, Koneracka M, Kubovcikova M, et al. d,l-lysine functionalized Fe3O4 nanoparticles for detection of cancer cells. Colloids Surf B Biointerfaces 2018; 163: 236-45.
[http://dx.doi.org/10.1016/j.colsurfb.2017.12.022] [PMID: 29306846]
[47]
Rwei SP, Wang LY, Chen MJ. The study of magnetorheology of iron oxide nanowires. J Nanomater 2013; 2013: 2.
[http://dx.doi.org/10.1155/2013/745746]
[48]
Lemine OM, Omri K, Zhang B, et al. Sol-gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties. Superlattices Microstruct 2012; 52: 793-9.
[http://dx.doi.org/10.1016/j.spmi.2012.07.009]
[49]
Livage J. Sol-gel synthesis of heterogeneous catalysts from aqueous solutions. Catal Today 1998; 41: 3-19.
[http://dx.doi.org/10.1016/S0920-5861(98)00034-0]
[50]
Xu J, Yang H, Fu W, et al. Preparation and magnetic properties of magnetite nanoparticles by sol-gel method. J Magn Magn Mater 2007; 309: 307-11.
[http://dx.doi.org/10.1016/j.jmmm.2006.07.037]
[51]
Govindan B, Swarna Latha B, Nagamony P, et al. Designed synthesis of nanostructured magnetic hydroxyapatite based drug nanocarrier for anti-cancer drug delivery toward the treatment of human epidermoid carcinoma. Nanomaterials (Basel) 2017; 7(6): 138.
[http://dx.doi.org/10.3390/nano7060138] [PMID: 28587317]
[52]
Liu XD, Chen H, Liu SS, Ye LQ, Li YP. Hydrothermal synthesis of superparamagnetic Fe3O4 nanoparticles with ionic liquids as stabilizer. Mater Res Bull 2015; 62: 217-21.
[http://dx.doi.org/10.1016/j.materresbull.2014.11.022]
[53]
Hufschmid R, Arami H, Ferguson RM, et al. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 2015; 7(25): 11142-54.
[http://dx.doi.org/10.1039/C5NR01651G] [PMID: 26059262]
[54]
Park J, An K, Hwang Y, et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 2004; 3(12): 891-5.
[http://dx.doi.org/10.1038/nmat1251] [PMID: 15568032]
[55]
Hyeon T, Lee SS, Park J, Chung Y, Na HB. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 2001; 123: 12798-801.
[56]
Hunt ST. Román-Leshkov Y2 Reverse microemulsion-mediated synthesis of monometallic and bimetallic early transition metal carbide and nitride nanoparticles J Vis Exp 2015 (105).
[57]
de Carvalho JF, de Medeiros SN, Morales MA, Dantas AL, Carriço AS. Synthesis of magnetite nanoparticles by high energy ball milling. Appl Surf Sci 2013; 275: 84-7.
[http://dx.doi.org/10.1016/j.apsusc.2013.01.118]
[58]
Chen D, Yi X, Chen Z, Zhang Y, Chen B, Kang Z. Synthesis of CoFe2O4 nanoparticles by a low temperature microwave-assisted ball-milling technique. Int J Appl Ceram Technol 2014; 11: 954-9.
[http://dx.doi.org/10.1111/ijac.12110]
[59]
Goya GF. Handling the particle size and distribution of Fe3O4 nanoparticles through ball milling. Solid State Commun 2004; 130: 783-7.
[http://dx.doi.org/10.1016/j.ssc.2004.04.012]
[60]
Dhand C, Dwivedi N, Loh XJ, et al. Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview. Rsc Adv 2015; 5: 105003-37.
[http://dx.doi.org/10.1039/C5RA19388E]
[61]
Chakka V, Altuncevahir B, Jin Z, Li Y, Liu J. Magnetic nanoparticles produced by surfactant-assisted ball milling. J Appl Phys 2006; 99(8): 08E912-3.
[62]
Akdogan NG, Hadjipanayis GC, Sellmyer DJ. Anisotropic Sm-(Co, Fe) nanoparticles by surfactant-assisted ball milling. J Appl Phys 2009; 105(7): 07A710-3.
[63]
Valan MF, Manikandan A, Antony SA. Microwave Combustion Synthesis and Characterization Studies of Magnetic Zn(1-x)Cd(x)Fe2O4 (0 ≤ x ≤ 0.5) Nanoparticles. J Nanosci Nanotechnol 2015; 15(6): 4543-51.
[http://dx.doi.org/10.1166/jnn.2015.9801] [PMID: 26369078]
[64]
Joseph A, Mathew S. Ferrofluids: Synthetic strategies, stabilization, physicochemical features, characterization, and applications. ChemPlusChem 2014; 79: 1382-420.
[http://dx.doi.org/10.1002/cplu.201402202]
[65]
Jaiswal KK, Manikandan D, Murugan R, Ramaswamy AP. Microwave-assisted rapid synthesis of Fe3O4/poly(styrene-divinylbenzene-acrylic acid) polymeric magnetic composites and investigation of their structural and magnetic properties. Eur Polym J 2018; 98: 177-90.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.11.005]
[66]
Blanco-Andujar C, Ortega D, Southern P, Pankhurst QA, Thanh NT. High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: Microwave synthesis, and the role of core-to-core interactions. Nanoscale 2015; 7(5): 1768-75.
[http://dx.doi.org/10.1039/C4NR06239F] [PMID: 25515238]
[67]
Raj R, Mongia P, Kumar Sahu S, Ram A. Nanocarriers Based Anticancer Drugs: Current Scenario and Future Perceptions. Curr Drug Targets 2016; 17(2): 206-28.
[http://dx.doi.org/10.2174/1389450116666150722141607] [PMID: 26201484]
[68]
McDonald DM, Baluk P. Significance of blood vessel leakiness in cancer. Cancer Res 2002; 62(18): 5381-5.
[PMID: 12235011]
[69]
Pawar PV, Domb AJ, Kumar N. Systemic Targeting Systems-EPR Effect. Ligand Targeting Systems 2014; pp. 61-91.
[http://dx.doi.org/10.1007/978-1-4614-9434-8_3]
[70]
Maeda H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjug Chem 2010; 21(5): 797-802.
[http://dx.doi.org/10.1021/bc100070g] [PMID: 20397686]
[71]
Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 2013; 4(1): 81-9.
[http://dx.doi.org/10.7150/thno.7193] [PMID: 24396516]
[72]
Bazak R, Houri M, Achy SE, Hussein W, Refaat T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol Clin Oncol 2014; 2(6): 904-8.
[http://dx.doi.org/10.3892/mco.2014.356] [PMID: 25279172]
[73]
Du B, Yan Y, Li Y, Wang S, Zhang Z. Preparation and passive target of 5-fluorouracil solid lipid nanoparticles. Pharm Dev Technol 2010; 15(4): 346-53.
[http://dx.doi.org/10.3109/10837450903246390] [PMID: 19769532]
[74]
Owens DE III, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006; 307(1): 93-102.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.010] [PMID: 16303268]
[75]
Abdelkhaliq A, van der Zande M, Punt A, et al. Impact of nanoparticle surface functionalization on the protein corona and cellular adhesion, uptake and transport. J Nanobiotechnology 2018; 16(1): 70.
[http://dx.doi.org/10.1186/s12951-018-0394-6] [PMID: 30219059]
[76]
Wu W, Wu Z, Yu T, Jiang C, Kim WS. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 2015; 16(2)023501
[http://dx.doi.org/10.1088/1468-6996/16/2/023501] [PMID: 27877761]
[77]
Accardo A, Aloj L, Aurilio M, Morelli G, Tesauro D. Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs. Int J Nanomedicine 2014; 9: 1537-57.
[PMID: 24741304]
[78]
Domracheva NE, Pyataev AV, Manapov RA, Gruzdev MS. Magnetic resonance and Mössbauer studies of superparamagnetic γ-Fe2O3 nanoparticles encapsulated into liquid-crystalline poly(propylene imine) dendrimers. ChemPhysChem 2011; 12(16): 3009-19.
[http://dx.doi.org/10.1002/cphc.201100363] [PMID: 22038873]
[79]
Jaiswal MK, De M, Chou SS, et al. Thermoresponsive magnetic hydrogels as theranostic nanoconstructs. ACS Appl Mater Interfaces 2014; 6(9): 6237-47.
[http://dx.doi.org/10.1021/am501067j] [PMID: 24716547]
[80]
Kaewsaneha C, Jangpatarapongsa K, Tangchaikeeree T, Polpanich D, Tangboriboonrat P. Fluorescent chitosan functionalized magnetic polymeric nanoparticles: Cytotoxicity and in vitro evaluation of cellular uptake. J Biomater Appl 2014; 29(5): 761-8.
[http://dx.doi.org/10.1177/0885328214540349] [PMID: 24951458]
[81]
Tomitaka A, Arami H, Huang Z, et al. Hybrid magneto-plasmonic liposomes for multimodal image-guided and brain-targeted HIV treatment. Nanoscale 2017; 10(1): 184-94.
[http://dx.doi.org/10.1039/C7NR07255D] [PMID: 29210401]
[82]
Khot VM, Salunkhe AB, Thorat ND, Ningthoujam RS, Pawar SH. Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia. Dalton Trans 2013; 42(4): 1249-58.
[http://dx.doi.org/10.1039/C2DT31114C] [PMID: 23138108]
[83]
Nahar K, Absar S, Patel B, Ahsan F. Starch-coated magnetic liposomes as an inhalable carrier for accumulation of fasudil in the pulmonary vasculature. Int J Pharm 2014; 464(1-2): 185-95.
[http://dx.doi.org/10.1016/j.ijpharm.2014.01.007] [PMID: 24463004]
[84]
Mousavi SD, Maghsoodi F, Panahandeh F, Yazdian-Robati R, Reisi-Vanani A, Tafaghodi M. Doxorubicin delivery via magnetic nanomicelles comprising from reduction-responsive poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-SS-PCL) and loaded with superparamagnetic iron oxide (SPIO) nanoparticles: Preparation, characterization and simulation. Mater Sci Eng C 2018; 92: 631-43.
[http://dx.doi.org/10.1016/j.msec.2018.06.066] [PMID: 30184790]
[85]
Demir A, Baykal A, Sozeri H. Green synthesis of Fe3O4 nanoparticles by one-pot saccharide-assisted hydrothermal method. Turk J Chem 2014; 38: 825-36.
[http://dx.doi.org/10.3906/kim-1401-73]
[86]
Abdullah NH, Shameli K, Nia PM, Etesami M, Abdullah EC, Abdullah LC. Electrocatalytic activity of starch/Fe3O4/zeolite bionanocomposite for oxygen reduction reaction. Arab J Chem 2017.
[http://dx.doi.org/10.1016/j.arabjc.2017.10.014]
[87]
Jiang W, Cai Q, Xu W, et al. Cr(VI) adsorption and reduction by humic acid coated on magnetite. Environ Sci Technol 2014; 48(14): 8078-85.
[http://dx.doi.org/10.1021/es405804m] [PMID: 24901955]
[88]
Luo Y, Zhou Z, Yue T. Synthesis and characterization of nontoxic chitosan-coated Fe3O4 particles for patulin adsorption in a juice-pH simulation aqueous. Food Chem 2017; 221: 317-23.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.008] [PMID: 27979209]
[89]
Sitthichai S, Pilapong C, Thongtem T, Thongtem S. CMC-coated Fe3O4 nanoparticles as new MRI probes for hepatocellular carcinoma. Appl Surf Sci 2015; 356: 972-7.
[http://dx.doi.org/10.1016/j.apsusc.2015.08.140]
[90]
Wang P, Yan T, Ma Q, Hu D, Wang L. Preparation of hydrazine-modified CMC/Fe3O4 hybrid magnetic particles for adsorption of Reactive Blue 21 from water. Desalination Water Treat 2016; 57: 14986-96.
[http://dx.doi.org/10.1080/19443994.2015.1067925]
[91]
Gudovan D, Balaure PC, Mihăiescu DE, Fudulu A, Purcăreanu B, Radu M. Functionalized magnetic nanoparticles for biomedical applications. Curr Pharm Des 2015; 21(42): 6038-54.
[http://dx.doi.org/10.2174/1381612821666151027151702] [PMID: 26503153]
[92]
Pratt A. Environmental Applications of Magnetic Nanoparticles. Binns C Front Nanosci 2014; 6: 259-307.
[93]
McBain SC, Yiu HH, Dobson J. Magnetic nanoparticles for gene and drug delivery. Int J Nanomedicine 2008; 3(2): 169-80.
[PMID: 18686777]
[94]
Pradhan P, Giri J, Rieken F, et al. Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J Control Release 2010; 142(1): 108-21.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.002] [PMID: 19819275]
[95]
Shapiro B, Kulkarni S, Nacev A, Muro S, Stepanov PY, Weinberg IN. Open challenges in magnetic drug targeting. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015; 7(3): 446-57.
[http://dx.doi.org/10.1002/wnan.1311] [PMID: 25377422]
[96]
Venugopal I, Habib N, Linninger A. Intrathecal magnetic drug targeting for localized delivery of therapeutics in the CNS. Nanomedicine (Lond) 2017; 12(8): 865-77.
[http://dx.doi.org/10.2217/nnm-2016-0418] [PMID: 28339319]
[97]
Wu L, Zhang F, Wei Z, et al. Magnetic delivery of Fe3O4@polydopamine nanoparticle-loaded natural killer cells suggest a promising anticancer treatment. Biomater Sci 2018; 6(10): 2714-25.
[http://dx.doi.org/10.1039/C8BM00588E] [PMID: 30151523]
[98]
Al-Jamal KT, Bai J, Wang JT-W, et al. Magnetic drug targeting: Preclinical in vivo studies, mathematical modeling, and extrapolation to humans. Nano Lett 2016; 16(9): 5652-60.
[http://dx.doi.org/10.1021/acs.nanolett.6b02261] [PMID: 27541372]
[99]
Yu H, Wang Y, Wang S, et al. Paclitaxel-loaded core-shell magnetic nanoparticles and cold atmospheric plasma inhibit non-small cell lung cancer growth. ACS Appl Mater Interfaces 2018; 10(50): 43462-71.
[http://dx.doi.org/10.1021/acsami.8b16487] [PMID: 30375840]
[100]
Alexiou C, Jurgons R, Schmid RJ, et al. Magnetic drug targeting--biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment. J Drug Target 2003; 11(3): 139-49.
[http://dx.doi.org/10.3109/1061186031000150791] [PMID: 13129824]
[101]
Wu T, Hua MY, Chen JP, et al. Effects of external magnetic field on biodistribution of nanoparticles: A histological study. J Magn Magn Mater 2007; 311: 372-5.
[http://dx.doi.org/10.1016/j.jmmm.2006.10.1202]
[102]
Stocke NA, Meenach SA, Arnold SM, Mansour HM, Hilt JZ. Formulation and characterization of inhalable magnetic nanocomposite microparticles (MnMs) for targeted pulmonary delivery via spray drying. Int J Pharm 2015; 479(2): 320-8.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.050] [PMID: 25542988]
[103]
Dames P, Gleich B, Flemmer A, et al. Targeted delivery of magnetic aerosol droplets to the lung. Nat Nanotechnol 2007; 2(8): 495-9.
[http://dx.doi.org/10.1038/nnano.2007.217] [PMID: 18654347]
[104]
Kenjereš S, Tjin JL. Numerical simulations of targeted delivery of magnetic drug aerosols in the human upper and central respiratory system: A validation study. R Soc Open Sci 2017; 4(12)170873
[http://dx.doi.org/10.1098/rsos.170873] [PMID: 29308230]
[105]
Choi WI, Lee JH, Kim JY, et al. Targeted antitumor efficacy and imaging via multifunctional nano-carrier conjugated with anti-HER2 trastuzumab. Nanomedicine (Lond) 2015; 11(2): 359-68.
[http://dx.doi.org/10.1016/j.nano.2014.09.009] [PMID: 25262581]
[106]
Luo XJ, Li J, Zhou CW. [Preclinical application of MR and fluorescent dual-modality imaging combined with photothermal therapy in HER-2 positive breast cancer Zhonghua Zhong Liu Za Zhi 2018; 40(8): 587-93.
[PMID: 30139028]
[107]
Jin YH, Hua QF, Zheng JJ, et al. Diagnostic Value of ER, PR, FR and HER-2-targeted molecular probes for magnetic resonance imaging in patients with breast cancer. Cell Physiol Biochem 2018; 49(1): 271-81.
[http://dx.doi.org/10.1159/000492877] [PMID: 30138940]
[108]
Zhou H, Qian W, Uckun FM, et al. IGF1 receptor targeted theranostic nanoparticles for targeted and image-guided therapy of pancreatic cancer. ACS Nano 2015; 9(8): 7976-91.
[http://dx.doi.org/10.1021/acsnano.5b01288] [PMID: 26242412]
[109]
Chen TJ, Cheng TH, Chen CY, et al. Targeted Herceptin-dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI. J Biol Inorg Chem 2009; 14(2): 253-60.
[http://dx.doi.org/10.1007/s00775-008-0445-9] [PMID: 18975017]
[110]
Ding N, Sano K, Kanazaki K, et al. In vivo HER2-targeted magnetic resonance tumor imaging using iron oxide nanoparticles conjugated with anti-HER2 fragment antibody. Mol Imaging Biol 2016; 18(6): 870-6.
[http://dx.doi.org/10.1007/s11307-016-0977-2] [PMID: 27351762]
[111]
Li DL, Tan JE, Tian Y, et al. Multifunctional superparamagnetic nanoparticles conjugated with fluorescein-labeled designed ankyrin repeat protein as an efficient HER2-targeted probe in breast cancer. Biomaterials 2017; 147: 86-98.
[http://dx.doi.org/10.1016/j.biomaterials.2017.09.010] [PMID: 28938164]
[112]
Kaliamurthi S, Selvaraj G, Junaid M, Khan A, Gu K, Wei DQ. Cancer immunoinformatics: A promising era in the development of peptide vaccines for human papillomavirus-induced cervical cancer. Curr Pharm Des 2018; 24(32): 3791-817.
[http://dx.doi.org/10.2174/1381612824666181106094133] [PMID: 30398106]
[113]
Kaliamurthi S, Selvaraj G, Kaushik AC, Gu KR, Wei DQ. Designing of CD8+ and CD8+-overlapped CD4+ epitope vaccine by targeting late and early proteins of human papillomavirus. Biologics 2018; 12: 107-25.
[PMID: 30323556]
[114]
Kaliamurthi S, Selvaraj G, Chinnasamy S, et al. Exploring the papillomaviral proteome to identify potential candidates for a chimeric vaccine against cervix papilloma using immunomics and computational structural vaccinology. Viruses 2019; 11(1)E63
[http://dx.doi.org/10.3390/v11010063] [PMID: 30650527]
[115]
Miller-Kleinhenz J, Guo X, Qian W, et al. Dual-targeting Wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer. Biomaterials 2018; 152: 47-62.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.035] [PMID: 29107218]
[116]
Balas M, Dumitrache F, Badea MA, et al. Coating dependent in vitro biocompatibility of new Fe-Si nanoparticles. Nanomaterials (Basel) 2018; 8(7)E495
[http://dx.doi.org/10.3390/nano8070495] [PMID: 29976868]
[117]
Issa B, Obaidat IM, Albiss BA, Haik Y. Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int J Mol Sci 2013; 14(11): 21266-305.
[http://dx.doi.org/10.3390/ijms141121266] [PMID: 24232575]
[118]
Sun J, Yang L, Jiang M, Shi Y, Xu B, Ma HL. Stability and activity of immobilized trypsin on carboxymethyl chitosan-functionalized magnetic nanoparticles cross-linked with carbodiimide and glutaraldehyde. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1054: 57-63.
[http://dx.doi.org/10.1016/j.jchromb.2017.04.016] [PMID: 28419926]
[119]
Kaliamurthi S, Selvaraj G, Thirugnanasambandam R, Thangavel B. Influence of rutoside loaded solid lipid nanoparticles to enhance oral bioavailability: Characterization, pharmacokinetic, and pharmacodynamic studies. Adv Sci Eng Med 2016; 8: 350-9.
[http://dx.doi.org/10.1166/asem.2016.1864]
[120]
Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine (Lond) 2008; 3(5): 703-17.
[http://dx.doi.org/10.2217/17435889.3.5.703] [PMID: 18817471]
[121]
Tang S, Peng C, Xu J, et al. Tailoring renal clearance and tumor targeting of ultrasmall metal nanoparticles with particle density. Angew Chem Int Ed Engl 2016; 55(52): 16039-43.
[http://dx.doi.org/10.1002/anie.201609043] [PMID: 27882633]
[122]
Bourrinet P, Bengele HH, Bonnemain B, et al. Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest Radiol 2006; 41(3): 313-24.
[http://dx.doi.org/10.1097/01.rli.0000197669.80475.dd] [PMID: 16481915]
[123]
Turner JH. An introduction to the clinical practice of theranostics in oncology. Br J Radiol 2018; 91(1091)20180440
[http://dx.doi.org/10.1259/bjr.20180440] [PMID: 30179054]
[124]
Prokop M. Lung cancer screening: The radiologist’s perspective. Seminars in respiratory and critical care medicine 2014.
[125]
Kaliamurthi S, Selvaraj G, Çakmak ZE, Çakmak T. Production and characterization of spherical thermostable silver nanoparticles from Spirulina platensis (Cyanophyceae). Phycologia 2016; 55: 568-76.
[http://dx.doi.org/10.2216/15-98.1]
[126]
Liu G, Feng D-Q, Li Z, Feng Y. Target-activatable gold nanoparticle-based aptasensing for protein biomarkers using stimuli-responsive aggregation. Talanta 2019; 192: 112-7.
[http://dx.doi.org/10.1016/j.talanta.2018.08.034] [PMID: 30348365]
[127]
Mintz K, Waidely E, Zhou Y, et al. Carbon dots and gold nanoparticles based immunoassay for detection of alpha-L-fucosidase. Anal Chim Acta 2018; 1041: 114-21.
[http://dx.doi.org/10.1016/j.aca.2018.08.055] [PMID: 30340683]
[128]
Satyavani K, Gurudeeban S, Deepak V, Ramanathan T. Heliotropium curassavicum mediated silver nanoparticles for environmental application. Res J Chem Environ 2013; 17: 27-33.
[129]
Satyavani K, Gurudeeban S, Ramanathan T, Balasubramanian T. Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. J Nanobiotechnology 2011; 9: 43.
[http://dx.doi.org/10.1186/1477-3155-9-43] [PMID: 21943321]
[130]
Satyavani K, Gurudeeban S, Ramanathan T, Balasubramanian T. Toxicity study of silver nanoparticles synthesized from Suaeda monoica on Hep-2 cell line. Avicenna J Med Biotechnol 2012; 4(1): 35-9.
[PMID: 23407847]
[131]
Satyavani K, Ramanathan T, Gurudeeban S. Green synthesis of silver nanoparticles by using stem derived callus extract of bitter apple (Citrullus colocynthis). Dig J Nanomater Biostruct 2011; 6: 1019-24.
[132]
Li K, Nejadnik H, Daldrup-Link HE. Next-generation superparamagnetic iron oxide nanoparticles for cancer theranostics. Drug Discov Today 2017; 22(9): 1421-9.
[http://dx.doi.org/10.1016/j.drudis.2017.04.008] [PMID: 28454771]
[133]
Scholz AM, Bünger L, Kongsro J, Baulain U, Mitchell AD. Non-invasive methods for the determination of body and carcass composition in livestock: Dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: Invited review. Animal 2015; 9(7): 1250-64.
[http://dx.doi.org/10.1017/S1751731115000336] [PMID: 25743562]
[134]
Xing Y, Zhao J, Conti PS, Chen K. Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics 2014; 4(3): 290-306.
[http://dx.doi.org/10.7150/thno.7341] [PMID: 24505237]
[135]
Kang SK. Measuring the value of MRI: Comparative effectiveness & outcomes research. J Magn Reson Imaging 2019; 49(7): E78-84.
[http://dx.doi.org/10.1002/jmri.26647] [PMID: 30632255]
[136]
Callahan MJ, MacDougall RD, Bixby SD, Voss SD, Robertson RL, Cravero JP. Ionizing radiation from computed tomography versus anesthesia for magnetic resonance imaging in infants and children: Patient safety considerations. Pediatr Radiol 2018; 48(1): 21-30.
[http://dx.doi.org/10.1007/s00247-017-4023-6] [PMID: 29181580]
[137]
Winfield JM, Payne GS, Weller A, deSouza NM. DCE-MRI, DW-MRI, and MRS in Cancer: Challenges and Advantages of Implementing Qualitative and Quantitative Multi-parametric Imaging in the Clinic. Top Magn Reson Imaging 2016; 25(5): 245-54.
[http://dx.doi.org/10.1097/RMR.0000000000000103] [PMID: 27748710]
[138]
Connor SEJ, Dudau C, Pai I, Gaganasiou M. Is CT or MRI the optimal imaging investigation for the diagnosis of large vestibular aqueduct syndrome and large endolymphatic sac anomaly? Eur Arch Otorhinolaryngol 2019; 276(3): 693-702.
[http://dx.doi.org/10.1007/s00405-019-05279-x] [PMID: 30635710]
[139]
Fraum TJ, Ludwig DR, Bashir MR, Fowler KJ. Gadolinium-based contrast agents: A comprehensive risk assessment. J Magn Reson Imaging 2017; 46(2): 338-53.
[http://dx.doi.org/10.1002/jmri.25625] [PMID: 28083913]
[140]
Karabulut N. Gadolinium deposition in the brain: Another concern regarding gadolinium-based contrast agents. Diagn Interv Radiol 2015; 21(4): 269-70.
[http://dx.doi.org/10.5152/dir.2015.001] [PMID: 26133320]
[141]
Golman K, Petersson JS, Magnusson P, et al. Cardiac metabolism measured noninvasively by hyperpolarized 13C MRI. Magn Reson Med 2008; 59(5): 1005-13.
[http://dx.doi.org/10.1002/mrm.21460] [PMID: 18429038]
[142]
Sato K, Yokosuka S, Takigami Y, et al. Size-tunable silicon/iron oxide hybrid nanoparticles with fluorescence, superparamagnetism, and biocompatibility. J Am Chem Soc 2011; 133(46): 18626-33.
[http://dx.doi.org/10.1021/ja202466m] [PMID: 21991945]
[143]
Tyler DJ. Cardiovascular applications of hyperpolarized MRI. Curr Cardiovasc Imaging Rep 2011; 4(2): 108-15.
[http://dx.doi.org/10.1007/s12410-011-9066-8] [PMID: 21475403]
[144]
Yuan Y, He Y, Bo R, et al. A facile approach to fabricate self-assembled magnetic nanotheranostics for drug delivery and imaging. Nanoscale 2018; 10(46): 21634-9.
[http://dx.doi.org/10.1039/C8NR05141K] [PMID: 30457141]
[145]
Cho HR, Choi SH, Lee N, Hyeon T, Kim H, Moon WK. Macrophages homing to metastatic lymph nodes can be monitored with ultrasensitive ferromagnetic iron-oxide nanocubes and a 1.5T clinical MR scanner. PLoS One 2012; 7(1)E29575
[http://dx.doi.org/10.1371/journal.pone.0029575] [PMID: 22253739]
[146]
Eccles SA, Aboagye EO, Ali S, et al. Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Res 2013; 15(5): R92.
[http://dx.doi.org/10.1186/bcr3493] [PMID: 24286369]
[147]
Howell A, Anderson AS, Clarke RB, et al. Risk determination and prevention of breast cancer. Breast Cancer Res 2014; 16(5): 446.
[http://dx.doi.org/10.1186/s13058-014-0446-2] [PMID: 25467785]
[148]
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin 2016; 66(2): 115-32.
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[149]
Mantovani A, Allavena P. The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med 2015; 212(4): 435-45.
[http://dx.doi.org/10.1084/jem.20150295] [PMID: 25753580]
[150]
Miyasato Y, Shiota T, Ohnishi K, et al. High density of CD204-positive macrophages predicts worse clinical prognosis in patients with breast cancer. Cancer Sci 2017; 108(8): 1693-700.
[http://dx.doi.org/10.1111/cas.13287] [PMID: 28574667]
[151]
Yang L, Zhang Y. Tumor-associated macrophages, potential targets for cancer treatment. Biomark Res 2017; 5: 25.
[http://dx.doi.org/10.1186/s40364-017-0106-7] [PMID: 28804638]
[152]
Sousa S, Brion R, Lintunen M, et al. Human breast cancer cells educate macrophages toward the M2 activation status. Breast Cancer Res 2015; 17: 101.
[http://dx.doi.org/10.1186/s13058-015-0621-0] [PMID: 26243145]
[153]
Shin SH, Park SH, Kang SH, Kim SW, Kim M, Kim D. Fluorine-19 Magnetic Resonance Imaging and Positron Emission Tomography of Tumor-Associated Macrophages and Tumor Metabolism. Contrast Media Mol Imaging 2017; 20174896310
[http://dx.doi.org/10.1155/2017/4896310] [PMID: 29362559]
[154]
Karageorgou MA, Vranješ-Djurić S, Radović M, et al. Gallium-68 Labeled Iron Oxide Nanoparticles Coated with 2,3-Dicarboxypropane-1,1-diphosphonic Acid as a Potential PET/MR Imaging Agent: A Proof-of-Concept Study. Contrast Media Mol Imaging 2017; 20176951240
[http://dx.doi.org/10.1155/2017/6951240] [PMID: 29445321]
[155]
Shakil MS, Hasan MA, Sarker SR. Iron oxide nanoparticles for breast cancer theranostics. Curr Drug Metab 2018.
[http://dx.doi.org/10.2174/1389200220666181122105043] [PMID: 30465497]
[156]
Tudoran OM, Balacescu O, Berindan-Neagoe I. Breast cancer stem-like cells: Clinical implications and therapeutic strategies. Clujul Med 2016; 89(2): 193-8.
[PMID: 27152067]
[157]
Sun Y, Kim HS, Kang S, Piao YJ, Jon S, Moon WK. Magnetic Resonance Imaging-Guided Drug Delivery to Breast Cancer Stem-Like Cells. Adv Healthc Mater 2018; 7(21)E1800266
[http://dx.doi.org/10.1002/adhm.201800266] [PMID: 30146770]
[158]
Wang L, Chen S, Zhu Y, et al. Triple-Modal Imaging-Guided Chemo-Photothermal Synergistic Therapy for Breast Cancer with Magnetically Targeted Phase-Shifted Nanoparticles. ACS Appl Mater Interfaces 2018; 10(49): 42102-14.
[http://dx.doi.org/10.1021/acsami.8b16323] [PMID: 30431261]
[159]
Whittaker S, Marais R, Zhu AX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene 2010; 29(36): 4989-5005.
[http://dx.doi.org/10.1038/onc.2010.236] [PMID: 20639898]
[160]
Hu B, Chang X, Liu X. Predicting Functional Modules of Liver Cancer Based on Differential Network Analysis. Interdiscip Sci 2019.
[http://dx.doi.org/10.1007/s12539-018-0314-3] [PMID: 30603844]
[161]
Ferreira J, Correia S, Rocha M. Analysing algorithms and data sources for the tissue-specific reconstruction of liver healthy and cancer cells. Interdiscip Sci 2017; 9(1): 36-45.
[http://dx.doi.org/10.1007/s12539-017-0214-y] [PMID: 28255832]
[162]
Chen X, Qin Z, Zhao J, et al. Pulsed magnetic field stimuli can promote chondrogenic differentiation of superparamagnetic iron oxide nanoparticles-labeled mesenchymal stem cells in rats. J Biomed Nanotechnol 2018; 14(12): 2135-45.
[http://dx.doi.org/10.1166/jbn.2018.2644] [PMID: 30305220]
[163]
Faidah M, Noorwali A, Atta H, et al. Mesenchymal stem cell therapy of hepatocellular carcinoma in rats: Detection of cell homing and tumor mass by magnetic resonance imaging using iron oxide nanoparticles. Adv Clin Exp Med 2017; 26(8): 1171-8.
[http://dx.doi.org/10.17219/acem/67563] [PMID: 29264872]
[164]
Touat M, Idbaih A, Sanson M, Ligon KL. Glioblastoma targeted therapy: Updated approaches from recent biological insights. Ann Oncol 2017; 28(7): 1457-72.
[http://dx.doi.org/10.1093/annonc/mdx106] [PMID: 28863449]
[165]
Shevtsov M, Nikolaev B, Marchenko Y, et al. Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs). Int J Nanomedicine 2018; 13: 1471-82.
[http://dx.doi.org/10.2147/IJN.S152461] [PMID: 29559776]
[166]
Zou L, Wang H, He B, et al. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics 2016; 6(6): 762-72.
[http://dx.doi.org/10.7150/thno.14988] [PMID: 27162548]
[167]
Xu C, Wang Y, Yu H, Tian H, Chen X. Multifunctional theranostic nanoparticles derived from fruit-extracted anthocyanins with dynamic disassembly and elimination abilities. ACS Nano 2018; 12(8): 8255-65.
[http://dx.doi.org/10.1021/acsnano.8b03525] [PMID: 30088914]
[168]
Yang K, Xu H, Cheng L, Sun C, Wang J, Liu Z. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv Mater 2012; 24(41): 5586-92.
[http://dx.doi.org/10.1002/adma.201202625] [PMID: 22907876]
[169]
Yan D, Liu X, Deng G, et al. Facile assembling of novel polypyrrole nanocomposites theranostic agent for magnetic resonance and computed tomography imaging guided efficient photothermal ablation of tumors. J Colloid Interface Sci 2018; 530: 547-55.
[http://dx.doi.org/10.1016/j.jcis.2018.07.001] [PMID: 30005231]
[170]
Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006; 6(4): 259-69.
[http://dx.doi.org/10.1038/nrc1840] [PMID: 16557279]
[171]
Huang S, He X. The role of microRNAs in liver cancer progression. Br J Cancer 2011; 104(2): 235-40.
[http://dx.doi.org/10.1038/sj.bjc.6606010] [PMID: 21102580]
[172]
Ma R, Wang C, Wang J, Wang D, Xu J. miRNA-mRNA Interaction Network in Non-small Cell Lung Cancer. Interdiscip Sci 2016; 8(3): 209-19.
[http://dx.doi.org/10.1007/s12539-015-0117-8] [PMID: 26338522]
[173]
Jc Bose R, Uday Kumar S, Zeng Y, et al. Tumor Cell-Derived Extracellular Vesicle-Coated Nanocarriers: An Efficient Theranostic Platform for the Cancer-Specific Delivery of Anti-miR-21 and Imaging Agents. ACS Nano 2018; 12(11): 10817-32.
[http://dx.doi.org/10.1021/acsnano.8b02587] [PMID: 30346694]
[174]
Wang J, Zhao H, Zhou Z, et al. MR/SPECT Imaging Guided Photothermal Therapy of Tumor-Targeting Fe@Fe3O4 nanoparticles in vivo with low mononuclear phagocyte uptake. ACS Appl Mater Interfaces 2016; 8(31): 19872-82.
[http://dx.doi.org/10.1021/acsami.6b04639] [PMID: 27428929]
[175]
Liu XL, Ng CT, Chandrasekharan P, et al. Synthesis of ferromagnetic Fe0.6 Mn0.4 O nanoflowers as a new class of magnetic theranostic platform for in vivo T1 -T2 dual-mode magnetic resonance imaging and magnetic hyperthermia therapy. Adv Healthc Mater 2016; 5(16): 2092-104.
[http://dx.doi.org/10.1002/adhm.201600357] [PMID: 27297640]
[176]
Selvaraj G, Kaliamurthi S, Kaushik AC, et al. Identification of target gene and prognostic evaluation for lung adenocarcinoma using gene expression meta-analysis, network analysis and neural network algorithms. J Biomed Inform 2018; 86: 120-34.
[http://dx.doi.org/10.1016/j.jbi.2018.09.004] [PMID: 30195659]
[177]
Selvaraj G, Kaliamurthi S, Lin S, Gu K, Wei DQ. Prognostic Impact of Tissue Inhibitor of Metalloproteinase-1 in Non-Small Cell Lung Cancer: Systematic Review and Meta-Analysis. Curr Med Chem 2018.
[http://dx.doi.org/10.2174/0929867325666180904114455] [PMID: 30182835]
[178]
Kanwal S, Jamil F, Ali A, Sehgal SA. Comparative Modeling, Molecular Docking, and Revealing of Potential Binding Pockets of RASSF2; a Candidate Cancer Gene. Interdiscip Sci 2017; 9(2): 214-23.
[http://dx.doi.org/10.1007/s12539-016-0145-z] [PMID: 26782783]
[179]
Ao P, Galas D, Hood L, Yin L, Zhu XM. Towards predictive stochastic dynamical modeling of cancer genesis and progression. Interdiscip Sci 2010; 2(2): 140-4.
[http://dx.doi.org/10.1007/s12539-010-0072-3] [PMID: 20640781]
[180]
Hsu FT, Liu H-S, Ali AAA, et al. Assessing the selective therapeutic efficacy of superparamagnetic erlotinib nanoparticles in lung cancer by using quantitative magnetic resonance imaging and a nuclear factor kappa-B reporter gene system. Nanomedicine (Lond) 2018; 14(3): 1019-31.
[http://dx.doi.org/10.1016/j.nano.2018.01.010] [PMID: 29391212]
[181]
Mezquita L, Varga A, Planchard D. Safety of osimertinib in EGFR-mutated non-small cell lung cancer. Expert Opin Drug Saf 2018; 17(12): 1239-48.
[http://dx.doi.org/10.1080/14740338.2018.1549222] [PMID: 30457891]
[182]
Namba K, Shien K, Takahashi Y, et al. Activation of AXL as a preclinical acquired resistance mechanism against osimertinib treatment in EGFR-mutant non-small cell lung cancer cells. Mol Cancer Res 2019; 17(2): 499-507.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-0628] [PMID: 30463991]
[183]
Jolesz FA, Hynynen K. Magnetic resonance image-guided focused ultrasound surgery. Cancer J 2002; 8(Suppl. 1): S100-12.
[PMID: 12075696]
[184]
Chen Y, Chen H, Sun Y, et al. Multifunctional mesoporous composite nanocapsules for highly efficient MRI-guided high-intensity focused ultrasound cancer surgery. Angew Chem Int Ed Engl 2011; 50(52): 12505-9.
[http://dx.doi.org/10.1002/anie.201106180] [PMID: 22076783]
[185]
Wang Z, Qiao R, Tang N, et al. Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer. Biomaterials 2017; 127: 25-35.
[http://dx.doi.org/10.1016/j.biomaterials.2017.02.037] [PMID: 28279919]
[186]
Kaliamurthi S, Selvaraj G, Chinnasamy S, et al. Immunomics Datasets and Tools: To Identify Potential Epitope Segments for Designing Chimeric Vaccine Candidate to Cervix Papilloma. Data (Basel) 2019; 4: 31.
[http://dx.doi.org/10.3390/data4010031]
[187]
Zhou Z, Liu X, Hu K, Zhang F. The clinical value of PET and PET/CT in the diagnosis and management of suspected cervical cancer recurrence. Nucl Med Commun 2018; 39(2): 97-102.
[PMID: 29189444]
[188]
Siwowska K, Schmid RM, Cohrs S, Schibli R, Müller C. Folate Receptor-positive gynecological cancer cells: In vitro and in vivo characterization. Pharmaceuticals (Basel) 2017; 10E72
[189]
Zhu J, Li H, Xiong Z, et al. Polyethyleneimine-Coated Manganese Oxide Nanoparticles for Targeted Tumor PET/MR Imaging. ACS Appl Mater Interfaces 2018; 10(41): 34954-64.
[http://dx.doi.org/10.1021/acsami.8b12355] [PMID: 30234287]
[190]
Zhan Y, Ehlerding EB, Shi S, et al. Intrinsically Zirconium-89-Labeled Manganese Oxide Nanoparticles for In Vivo Dual-Modality Positron Emission Tomography and Magnetic Resonance Imaging. J Biomed Nanotechnol 2018; 14(5): 900-9.
[http://dx.doi.org/10.1166/jbn.2018.2498] [PMID: 29883560]
[191]
Selvaraj G, Kaliyamurthi S, Thirugnanasambandam R. Alpha glucosidase inhibitory effect and enzyme kinetics of coastal medicinal plants. Bangladesh J Pharmacol 2012; 7: 186-91.
[192]
Selvaraj G, Kaliyamurthi S, Thirugnanasambandam R. Influence of Rhizophora apiculata Blume extracts on α-glucosidase: Enzyme kinetics and molecular docking studies. Biocatal Agric Biotechnol 2015; 4: 653-60.
[http://dx.doi.org/10.1016/j.bcab.2015.07.005]
[193]
Selvaraj G, Kaliamurthi S, Thirugnasambandan R. Effect of Glycosin alkaloid from Rhizophora apiculata in non-insulin dependent diabetic rats and its mechanism of action: In vivo and in silico studies. Phytomedicine 2016; 23(6): 632-40.
[http://dx.doi.org/10.1016/j.phymed.2016.03.004] [PMID: 27161404]
[194]
Zhang S, Wu D, Li H, et al. Rapid identification of α-glucosidase inhibitors from Dioscorea opposita Thunb peel extract by enzyme functionalized Fe3O4 magnetic nanoparticles coupled with HPLC-MS/MS. Food Funct 2017; 8(9): 3219-27.
[http://dx.doi.org/10.1039/C7FO00928C] [PMID: 28809420]
[195]
Su H, Wang Y, Gu Y, Bowman L, Zhao J, Ding M. Potential applications and human biosafety of nanomaterials used in nanomedicine. J Appl Toxicol 2018; 38(1): 3-24.
[http://dx.doi.org/10.1002/jat.3476] [PMID: 28589558]
[196]
Choi HS, Liu W, Misra P, et al. Renal Clearance of Nanoparticles Nat Biotechnol 2007; 25(10): 1165-70.
[197]
Liu J, Yu M, Zhou C, Zheng J. Renal clearable inorganic nanoparticles: A new frontier of bionanotechnology. Mater Today 2013; 16: 477-86.
[http://dx.doi.org/10.1016/j.mattod.2013.11.003]
[198]
Gobbo OL, Sjaastad K, Radomski MW, Volkov Y, Prina-Mello A. Magnetic nanoparticles in cancer theranostics. Theranostics 2015; 5(11): 1249-63.
[http://dx.doi.org/10.7150/thno.11544] [PMID: 26379790]
[199]
Mount NM, Ward SJ, Kefalas P, Hyllner J. Cell-based therapy technology classifications and translational challenges. Philos Trans R Soc Lond B Biol Sci. 2017; 370(1680): 20150017.
[http://dx.doi.org/10.1098/rstb.2015.0017] [PMID: 26416686]
[200]
Niccoli Asabella A, Di Palo A, Altini C, Ferrari C, Rubini G. Multimodality Imaging in Tumor Angiogenesis: Present Status and Perspectives. Int J Mol Sci 2017; 18(9)E1864
[http://dx.doi.org/10.3390/ijms18091864] [PMID: 28846661]
[201]
Adams C, Israel LL, Ostrovsky S, et al. Development of Multifunctional Magnetic Nanoparticles for Genetic Engineering and Tracking of Neural Stem Cells. Adv Healthc Mater 2016; 5(7): 841-9.
[http://dx.doi.org/10.1002/adhm.201500885] [PMID: 26867130]