Circadian-Hypoxia Link and its Potential for Treatment of Cardiovascular Disease

Page: [1075 - 1090] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Throughout the evolutionary time, all organisms and species on Earth evolved with an adaptation to consistent oscillations of sunlight and darkness, now recognized as ‘circadian rhythm.’ Single-cellular to multisystem organisms use circadian biology to synchronize to the external environment and provide predictive adaptation to changes in cellular homeostasis. Dysregulation of circadian biology has been implicated in numerous prevalent human diseases, and subsequently targeting the circadian machinery may provide innovative preventative or treatment strategies. Discovery of ‘peripheral circadian clocks’ unleashed widespread investigations into the potential roles of clock biology in cellular, tissue, and organ function in healthy and diseased states. Particularly, oxygen-sensing pathways (e.g. hypoxia inducible factor, HIF1), are critical for adaptation to changes in oxygen availability in diseases such as myocardial ischemia. Recent investigations have identified a connection between the circadian rhythm protein Period 2 (PER2) and HIF1A that may elucidate an evolutionarily conserved cellular network that can be targeted to manipulate metabolic function in stressed conditions like hypoxia or ischemia. Understanding the link between circadian and hypoxia pathways may provide insights and subsequent innovative therapeutic strategies for patients with myocardial ischemia. This review addresses our current understanding of the connection between light-sensing pathways (PER2), and oxygen-sensing pathways (HIF1A), in the context of myocardial ischemia and lays the groundwork for future studies to take advantage of these two evolutionarily conserved pathways in the treatment of myocardial ischemia.

Keywords: PER2, hypoxia, HIF1, circadian biology, circadian disruption, myocardial ischemia.

[1]
Zerkle AL, Poulton SW, Newton RJ, et al. Onset of the aerobic nitrogen cycle during the Great Oxidation Event. Nature 2017; 542(7642): 465-7.
[http://dx.doi.org/10.1038/nature20826] [PMID: 28166535]
[2]
Gaudana SB, Krishnakumar S, Alagesan S, et al. Rhythmic and sustained oscillations in metabolism and gene expression of Cyanothece sp. ATCC 51142 under constant light. Front Microbiol 2013; 4: 374.
[http://dx.doi.org/10.3389/fmicb.2013.00374] [PMID: 24367360]
[3]
Saha R, Liu D, Hoynes-O’Connor A, et al. Diurnal Regulation of Cellular Processes in the Cyanobacterium Synechocystis sp. Strain PCC 6803: Insights from Transcriptomic, Fluxomic, and Physiological Analyses. MBio 2016; 7(3): 7.
[http://dx.doi.org/10.1128/mBio.00464-16] [PMID: 27143387]
[4]
Brainard J, Gobel M, Bartels K, Scott B, Koeppen M, Eckle T. Circadian rhythms in anesthesia and critical care medicine: potential importance of circadian disruptions. Semin Cardiothorac Vasc Anesth 2015; 19(1): 49-60.
[http://dx.doi.org/10.1177/1089253214553066] [PMID: 25294583]
[5]
Brainard J, Gobel M, Scott B, Koeppen M, Eckle T. Health implications of disrupted circadian rhythms and the potential for daylight as therapy. Anesthesiology 2015; 122(5): 1170-5.
[http://dx.doi.org/10.1097/ALN.0000000000000596] [PMID: 25635592]
[6]
Jakubcakova V, Oster H, Tamanini F, et al. Light entrainment of the mammalian circadian clock by a PRKCA-dependent posttranslational mechanism. Neuron 2007; 54(5): 831-43.
[http://dx.doi.org/10.1016/j.neuron.2007.04.031] [PMID: 17553429]
[7]
Takahashi JS, Hong HK, Ko CH, McDearmon EL. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 2008; 9(10): 764-75.
[http://dx.doi.org/10.1038/nrg2430] [PMID: 18802415]
[8]
Güler AD, Ecker JL, Lall GS, et al. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 2008; 453(7191): 102-5.
[http://dx.doi.org/10.1038/nature06829] [PMID: 18432195]
[9]
Pilorz V, Tam SK, Hughes S, et al. Melanopsin Regulates Both Sleep-Promoting and Arousal-Promoting Responses to Light. PLoS Biol 2016; 14(6): e1002482.
[http://dx.doi.org/10.1371/journal.pbio.1002482] [PMID: 27276063]
[10]
Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP. Light suppresses melatonin secretion in humans. Science 1980; 210(4475): 1267-9.
[http://dx.doi.org/10.1126/science.7434030] [PMID: 7434030]
[11]
Toh KL, Jones CR, He Y, et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 2001; 291(5506): 1040-3.
[http://dx.doi.org/10.1126/science.1057499] [PMID: 11232563]
[12]
Ptácek LJ, Jones CR, Fu YH. Novel insights from genetic and molecular characterization of the human clock. Cold Spring Harb Symp Quant Biol 2007; 72: 273-7.
[http://dx.doi.org/10.1101/sqb.2007.72.017] [PMID: 18419283]
[13]
He Y, Jones CR, Fujiki N, et al. The transcriptional repressor DEC2 regulates sleep length in mammals. Science 2009; 325(5942): 866-70.
[http://dx.doi.org/10.1126/science.1174443] [PMID: 19679812]
[14]
Albrecht U. Circadian clocks and mood-related behaviors. Handb Exp Pharmacol 2013; (217): 227-39.
[http://dx.doi.org/10.1007/978-3-642-25950-0_9] [PMID: 23604481]
[15]
Cuninkova L, Brown SA. Peripheral circadian oscillators: interesting mechanisms and powerful tools. Ann N Y Acad Sci 2008; 1129: 358-70.
[http://dx.doi.org/10.1196/annals.1417.005] [PMID: 18591495]
[16]
van Amelsvoort LG, Schouten EG, Kok FJ. Impact of one year of shift work on cardiovascular disease risk factors. J Occup Environ Med 2004; 46(7): 699-706.
[http://dx.doi.org/10.1097/01.jom.0000131794.83723.45] [PMID: 15247809]
[17]
Kivimäki M, Virtanen M, Elovainio M, Väänänen A, Keltikangas-Järvinen L, Vahtera J. Prevalent cardiovascular disease, risk factors and selection out of shift work. Scand J Work Environ Health 2006; 32(3): 204-8.
[http://dx.doi.org/10.5271/sjweh.1000] [PMID: 16804623]
[18]
Härmä M. Shift work and cardiovascular disease--from etiologic studies to prevention through scheduling. Scand J Work Environ Health 2001; 27(2): 85-6.
[http://dx.doi.org/10.5271/sjweh.593] [PMID: 11409600]
[19]
Bøggild H, Knutsson A. Shift work, risk factors and cardiovascular disease. Scand J Work Environ Health 1999; 25(2): 85-99.
[http://dx.doi.org/10.5271/sjweh.410] [PMID: 10360463]
[20]
Akerstedt T, Knutsson A, Alfredsson L, Theorell T. Shift work and cardiovascular disease. Scand J Work Environ Health 1984; 10(6 Spec No): 409-14.
[http://dx.doi.org/10.5271/sjweh.2302]] [PMID: 6535244]
[21]
Akerstedt T, Knutsson A. Cardiovascular disease and shift work. Scand J Work Environ Health 1997; 23(4): 241-2.
[http://dx.doi.org/10.5271/sjweh.216] [PMID: 9322814]
[22]
Tüchsen F, Hannerz H, Burr HA. 12 year prospective study of circulatory disease among Danish shift workers. Occup Environ Med 2006; 63(7): 451-5.
[http://dx.doi.org/10.1136/oem.2006.026716] [PMID: 16735480]
[23]
Staels B. When the Clock stops ticking, metabolic syndrome explodes. Nat Med 2006; 12(1): 54-5.
[http://dx.doi.org/10.1038/nm0106-54] [PMID: 16397568]
[24]
Muller JE, Stone PH, Turi ZG, et al. Circadian variation in the frequency of onset of acute myocardial infarction. N Engl J Med 1985; 313(21): 1315-22.
[http://dx.doi.org/10.1056/NEJM198511213132103] [PMID: 2865677]
[25]
Suárez-Barrientos A, López-Romero P, Vivas D, et al. Circadian variations of infarct size in acute myocardial infarction. Heart 2011; 97(12): 970-6.
[http://dx.doi.org/10.1136/hrt.2010.212621] [PMID: 21525526]
[26]
Braunwald E. On circadian variation of myocardial reperfusion injury. Circ Res 2012; 110(1): 6-7.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.260265] [PMID: 22223205]
[27]
Cohen MC, Rohtla KM, Lavery CE, Muller JE, Mittleman MA. Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. Am J Cardiol 1997; 79(11): 1512-6.
[http://dx.doi.org/10.1016/S0002-9149(97)00181-1] [PMID: 9185643]
[28]
Tofler GH, Brezinski D, Schafer AI, et al. Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death. N Engl J Med 1987; 316(24): 1514-8.
[http://dx.doi.org/10.1056/NEJM198706113162405] [PMID: 3587281]
[29]
Jeyaraj D, Haldar SM, Wan X, et al. Circadian rhythms govern cardiac repolarization and arrhythmogenesis. Nature 2012; 483(7387): 96-9.
[http://dx.doi.org/10.1038/nature10852] [PMID: 22367544]
[30]
Panza JA, Epstein SE, Quyyumi AA. Circadian variation in vascular tone and its relation to alpha-sympathetic vasoconstrictor activity. N Engl J Med 1991; 325(14): 986-90.
[http://dx.doi.org/10.1056/NEJM199110033251402] [PMID: 1886635]
[31]
Eckle T, Eltzschig HK. Toll-like receptor signaling during myocardial ischemia. Anesthesiology 2011; 114(3): 490-2.
[http://dx.doi.org/10.1097/ALN.0b013e31820a4d78] [PMID: 21278567]
[32]
Silver AC, Arjona A, Walker WE, Fikrig E. The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity. Immunity 2012; 36(2): 251-61.
[http://dx.doi.org/10.1016/j.immuni.2011.12.017] [PMID: 22342842]
[33]
Ballesta A, Dulong S, Abbara C, et al. A combined experimental and mathematical approach for molecular-based optimization of irinotecan circadian delivery. PLOS Comput Biol 2011; 7(9): e1002143.
[http://dx.doi.org/10.1371/journal.pcbi.1002143] [PMID: 21931543]
[34]
Innominato PF, Focan C, Gorlia T, et al. Circadian rhythm in rest and activity: a biological correlate of quality of life and a predictor of survival in patients with metastatic colorectal cancer. Cancer Res 2009; 69(11): 4700-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4747] [PMID: 19470769]
[35]
Innominato PF, Giacchetti S, Bjarnason GA, et al. Prediction of overall survival through circadian rest-activity monitoring during chemotherapy for metastatic colorectal cancer. Int J Cancer 2012; 131(11): 2684-92.
[http://dx.doi.org/10.1002/ijc.27574] [PMID: 22488038]
[36]
Innominato PF, Roche VP, Palesh OG, Ulusakarya A, Spiegel D, Lévi FA. The circadian timing system in clinical oncology. Ann Med 2014; 46(4): 191-207.
[http://dx.doi.org/10.3109/07853890.2014.916990] [PMID: 24915535]
[37]
Innominato PF, Spiegel D, Ulusakarya A, et al. Subjective sleep and overall survival in chemotherapy-naïve patients with metastatic colorectal cancer. Sleep Med 2015; 16(3): 391-8.
[http://dx.doi.org/10.1016/j.sleep.2014.10.022] [PMID: 25678361]
[38]
Ortiz-Tudela E, Iurisci I, Beau J, et al. The circadian rest-activity rhythm, a potential safety pharmacology endpoint of cancer chemotherapy. Int J Cancer 2014; 134(11): 2717-25.
[http://dx.doi.org/10.1002/ijc.28587] [PMID: 24510611]
[39]
Ortiz-Tudela E, Innominato PF, Rol MA, Lévi F, Madrid JA. Relevance of internal time and circadian robustness for cancer patients. BMC Cancer 2016; 16: 285.
[http://dx.doi.org/10.1186/s12885-016-2319-9] [PMID: 27102330]
[40]
Lévi F, Dugué PA, Innominato P, et al. Wrist actimetry circadian rhythm as a robust predictor of colorectal cancer patients survival. Chronobiol Int 2014; 31(8): 891-900.
[http://dx.doi.org/10.3109/07420528.2014.924523] [PMID: 24927369]
[41]
Ballesta A, Innominato PF, Dallmann R, Rand DA, Lévi FA. Systems Chronotherapeutics. Pharmacol Rev 2017; 69(2): 161-99.
[http://dx.doi.org/10.1124/pr.116.013441] [PMID: 28351863]
[42]
Kawakami N, Takatsuka N, Shimizu H. Sleep disturbance and onset of type 2 diabetes. Diabetes Care 2004; 27(1): 282-3.
[http://dx.doi.org/10.2337/diacare.27.1.282] [PMID: 14694011]
[43]
Spiegel K, Tasali E, Leproult R, Van Cauter E. Effects of poor and short sleep on glucose metabolism and obesity risk. Nat Rev Endocrinol 2009; 5(5): 253-61.
[http://dx.doi.org/10.1038/nrendo.2009.23] [PMID: 19444258]
[44]
Suwazono Y, Dochi M, Sakata K, et al. A longitudinal study on the effect of shift work on weight gain in male Japanese workers. Obesity (Silver Spring) 2008; 16(8): 1887-93.
[http://dx.doi.org/10.1038/oby.2008.298] [PMID: 18535539]
[45]
Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet 1999; 354(9188): 1435-9.
[http://dx.doi.org/10.1016/S0140-6736(99)01376-8] [PMID: 10543671]
[46]
Taheri S, Lin L, Austin D, Young T, Mignot E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med 2004; 1(3): e62.
[http://dx.doi.org/10.1371/journal.pmed.0010062] [PMID: 15602591]
[47]
Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 2017; 18(3): 164-79.
[http://dx.doi.org/10.1038/nrg.2016.150] [PMID: 27990019]
[48]
Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 2001; 107(7): 855-67.
[http://dx.doi.org/10.1016/S0092-8674(01)00610-9] [PMID: 11779462]
[49]
Gallego M, Virshup DM. Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 2007; 8(2): 139-48.
[http://dx.doi.org/10.1038/nrm2106] [PMID: 17245414]
[50]
Eng GWL. Edison, Virshup DM. Site-specific phosphorylation of casein kinase 1 δ (CK1δ) regulates its activity towards the circadian regulator PER2. PLoS One 2017; 12(5): e0177834.
[http://dx.doi.org/10.1371/journal.pone.0177834] [PMID: 28545154]
[51]
Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev 2010; 24(4): 345-57.
[http://dx.doi.org/10.1101/gad.564110] [PMID: 20159955]
[52]
Welch RD, Flaveny CA. REV-ERB and ROR: therapeutic targets for treating myopathies. Phys Biol 2017; 14(4): 045002.
[http://dx.doi.org/10.1088/1478-3975/14/4/045002] [PMID: 28586319]
[53]
Semenza GL. Life with oxygen. Science 2007; 318(5847): 62-4.
[http://dx.doi.org/10.1126/science.1147949] [PMID: 17916722]
[54]
McIntosh BE, Hogenesch JB, Bradfield CA. Mammalian Per-Arnt-Sim proteins in environmental adaptation. Annu Rev Physiol 2010; 72: 625-45.
[http://dx.doi.org/10.1146/annurev-physiol-021909-135922] [PMID: 20148691]
[55]
Semenza GL. Hypoxia and human disease-and the Journal of Molecular Medicine. J Mol Med (Berl) 2007; 85(12): 1293-4.
[http://dx.doi.org/10.1007/s00109-007-0285-z] [PMID: 18026915]
[56]
Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 2000; 88(4): 1474-80.
[http://dx.doi.org/10.1152/jappl.2000.88.4.1474] [PMID: 10749844]
[57]
Liu W, Shen SM, Zhao XY, Chen GQ. Targeted genes and interacting proteins of hypoxia inducible factor-1. Int J Biochem Mol Biol 2012; 3(2): 165-78.
[PMID: 22773957]
[58]
Semenza GL, Jiang BH, Leung SW, et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 1996; 271(51): 32529-37.
[http://dx.doi.org/10.1074/jbc.271.51.32529] [PMID: 8955077]
[59]
Wenger RH, Gassmann M. Oxygen(es) and the hypoxia-inducible factor-1. Biol Chem 1997; 378(7): 609-16.
[PMID: 9278140]
[60]
Gu YZ, Hogenesch JB, Bradfield CA. The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol 2000; 40: 519-61.
[http://dx.doi.org/10.1146/annurev.pharmtox.40.1.519] [PMID: 10836146]
[61]
Semenza GL. Regulation of tissue perfusion in mammals by hypoxia-inducible factor 1. Exp Physiol 2007; 92(6): 988-91.
[http://dx.doi.org/10.1113/expphysiol.2006.036343] [PMID: 17720748]
[62]
Semenza GL. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 2007; 405(1): 1-9.
[http://dx.doi.org/10.1042/BJ20070389] [PMID: 17555402]
[63]
Semenza GL. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 2007; 2007(407): cm8.
[http://dx.doi.org/10.1126/stke.4072007cm8] [PMID: 17925579]
[64]
Hogenesch JB, Gu YZ, Jain S, Bradfield CA. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci USA 1998; 95(10): 5474-9.
[http://dx.doi.org/10.1073/pnas.95.10.5474] [PMID: 9576906]
[65]
Huang LE, Arany Z, Livingston DM, Bunn HF. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 1996; 271(50): 32253-9.
[http://dx.doi.org/10.1074/jbc.271.50.32253] [PMID: 8943284]
[66]
Salceda S, Caro J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 1997; 272(36): 22642-7.
[http://dx.doi.org/10.1074/jbc.272.36.22642] [PMID: 9278421]
[67]
Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 1998; 95(20): 11715-20.
[http://dx.doi.org/10.1073/pnas.95.20.11715] [PMID: 9751731]
[68]
Haase C, Yu L, Eisenbarth G, Markholst H. Antigen-dependent immunotherapy of non-obese diabetic mice with immature dendritic cells. Clin Exp Immunol 2010; 160(3): 331-9.
[http://dx.doi.org/10.1111/j.1365-2249.2010.04104.x] [PMID: 20180832]
[69]
Haase VH. The sweet side of HIF. Kidney Int 2010; 78(1): 10-3.
[http://dx.doi.org/10.1038/ki.2010.112] [PMID: 20551925]
[70]
Isoe T, Makino Y, Mizumoto K, et al. High glucose activates HIF-1-mediated signal transduction in glomerular mesangial cells through a carbohydrate response element binding protein. Kidney Int 2010; 78(1): 48-59.
[http://dx.doi.org/10.1038/ki.2010.99] [PMID: 20375990]
[71]
Edgar RS, Green EW, Zhao Y, et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature 2012; 485(7399): 459-64.
[http://dx.doi.org/10.1038/nature11088] [PMID: 22622569]
[72]
Taylor BL, Zhulin IB. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 1999; 63(2): 479-506.
[PMID: 10357859]
[73]
Button EL, Bersten DC, Whitelaw ML. HIF has Biff - Crosstalk between HIF1a and the family of bHLH/PAS proteins. Exp Cell Res 2017; 356(2): 141-5.
[http://dx.doi.org/10.1016/j.yexcr.2017.03.055] [PMID: 28366537]
[74]
Apstein CS, Taegtmeyer H. Glucose-insulin-potassium in acute myocardial infarction: the time has come for a large, prospective trial. Circulation 1997; 96(4): 1074-7.
[http://dx.doi.org/10.1161/01.CIR.96.4.1074] [PMID: 9286931]
[75]
Kessler G, Friedman J. Metabolism of fatty acids and glucose. Circulation 1998; 98(13): 1351.
[http://dx.doi.org/10.1161/circ.98.13.1350/a] [PMID: 9751689]
[76]
O’Neill JS, Feeney KA. Circadian redox and metabolic oscillations in mammalian systems. Antioxid Redox Signal 2014; 20(18): 2966-81.
[http://dx.doi.org/10.1089/ars.2013.5582] [PMID: 24063592]
[77]
Aon MA, Cortassa S, Marbán E, O’Rourke B. Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J Biol Chem 2003; 278(45): 44735-44.
[http://dx.doi.org/10.1074/jbc.M302673200] [PMID: 12930841]
[78]
Chandel NS, McClintock DS, Feliciano CE, et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 2000; 275(33): 25130-8.
[http://dx.doi.org/10.1074/jbc.M001914200] [PMID: 10833514]
[79]
Pinto AR, Ilinykh A, Ivey MJ, et al. Revisiting Cardiac Cellular Composition. Circ Res 2016; 118(3): 400-9.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.307778] [PMID: 26635390]
[80]
Zhou P, Pu WT. Recounting Cardiac Cellular Composition. Circ Res 2016; 118(3): 368-70.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308139] [PMID: 26846633]
[81]
Yang Q, He GW, Underwood MJ, Yu CM. Cellular and molecular mechanisms of endothelial ischemia/reperfusion injury: perspectives and implications for postischemic myocardial protection. Am J Transl Res 2016; 8(2): 765-77.
[PMID: 27158368]
[82]
Singhal AK, Symons JD, Boudina S, Jaishy B, Shiu YT. Role of Endothelial Cells in Myocardial Ischemia-Reperfusion Injury. Vasc Dis Prev 2010; 7: 1-14.
[http://dx.doi.org/10.2174/1874120701007010001] [PMID: 25558187]
[83]
Lefer AM, Tsao PS, Lefer DJ, Ma XL. Role of endothelial dysfunction in the pathogenesis of reperfusion injury after myocardial ischemia. FASEB J 1991; 5(7): 2029-34.
[http://dx.doi.org/10.1096/fasebj.5.7.2010056] [PMID: 2010056]
[84]
Lefer AM, Lefer DJ. Endothelial dysfunction in myocardial ischemia and reperfusion: role of oxygen-derived free radicals. Basic Res Cardiol 1991; 86(Suppl. 2): 109-16.
[PMID: 1659371]
[85]
Davidson SM, Duchen MR. Endothelial mitochondria: contributing to vascular function and disease. Circ Res 2007; 100(8): 1128-41.
[http://dx.doi.org/10.1161/01.RES.0000261970.18328.1d] [PMID: 17463328]
[86]
Quintero M, Colombo SL, Godfrey A, Moncada S. Mitochondria as signaling organelles in the vascular endothelium. Proc Natl Acad Sci USA 2006; 103(14): 5379-84.
[http://dx.doi.org/10.1073/pnas.0601026103] [PMID: 16565215]
[87]
Ricci JE, Waterhouse N, Green DR. Mitochondrial functions during cell death, a complex (I-V) dilemma. Cell Death Differ 2003; 10(5): 488-92.
[http://dx.doi.org/10.1038/sj.cdd.4401225] [PMID: 12728246]
[88]
Mattson MP, Kroemer G. Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends Mol Med 2003; 9(5): 196-205.
[http://dx.doi.org/10.1016/S1471-4914(03)00046-7] [PMID: 12763524]
[89]
Bierhansl L, Conradi LC, Treps L, Dewerchin M, Carmeliet P. Central Role of Metabolism in Endothelial Cell Function and Vascular Disease. Physiology (Bethesda) 2017; 32(2): 126-40.
[http://dx.doi.org/10.1152/physiol.00031.2016] [PMID: 28202623]
[90]
Eelen G, de Zeeuw P, Simons M, Carmeliet P. Endothelial cell metabolism in normal and diseased vasculature. Circ Res 2015; 116(7): 1231-44.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.302855] [PMID: 25814684]
[91]
Fedalen PA, Piacentino V III, Jeevanandam V, et al. Pharmacologic pre-conditioning and controlled reperfusion prevent ischemia-reperfusion injury after 30 minutes of hypoxia/ischemia in porcine hearts. J Heart Lung Transplant 2003; 22(11): 1234-44.
[http://dx.doi.org/10.1016/S1053-2498(02)01237-8] [PMID: 14585385]
[92]
Mohara J, Aguilera I, Goldman BI, et al. Effects of nutrient and hemoglobin enriched cell free perfusates upon ex vivo isolated rat heart preparation. ASAIO J 2005; 51(3): 288-95.
[http://dx.doi.org/10.1097/01.MAT.0000159380.07922.D1] [PMID: 15968961]
[93]
Oriowo B, Thirunavukkarasu M, Selvaraju V, et al. Targeted gene deletion of prolyl hydroxylase domain protein 3 triggers angiogenesis and preserves cardiac function by stabilizing hypoxia inducible factor 1 alpha following myocardial infarction. Curr Pharm Des 2014; 20(9): 1305-10.
[http://dx.doi.org/10.2174/13816128113199990549] [PMID: 23978105]
[94]
Adluri RS, Thirunavukkarasu M, Dunna NR, et al. Disruption of hypoxia-inducible transcription factor-prolyl hydroxylase domain-1 (PHD-1-/-) attenuates ex vivo myocardial ischemia/reperfusion injury through hypoxia-inducible factor-1α transcription factor and its target genes in mice. Antioxid Redox Signal 2011; 15(7): 1789-97.
[http://dx.doi.org/10.1089/ars.2010.3769] [PMID: 21083501]
[95]
Wang J, Hong Z, Zeng C, Yu Q, Wang H. NADPH oxidase 4 promotes cardiac microvascular angiogenesis after hypoxia/reoxygenation in vitro. Free Radic Biol Med 2014; 69: 278-88.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.01.027] [PMID: 24480752]
[96]
Selvaraju V, Parinandi NL, Adluri RS, et al. Molecular mechanisms of action and therapeutic uses of pharmacological inhibitors of HIF-prolyl 4-hydroxylases for treatment of ischemic diseases. Antioxid Redox Signal 2014; 20(16): 2631-65.
[http://dx.doi.org/10.1089/ars.2013.5186] [PMID: 23992027]
[97]
Tan SC, Gomes RS, Yeoh KK, et al. Preconditioning of Cardiosphere-Derived Cells With Hypoxia or Prolyl-4-Hydroxylase Inhibitors Increases Stemness and Decreases Reliance on Oxidative Metabolism. Cell Transplant 2016; 25(1): 35-53.
[http://dx.doi.org/10.3727/096368915X687697] [PMID: 25751158]
[98]
Yang D, Wang J, Xiao M, Zhou T, Shi X. Role of Mir-155 in Controlling HIF-1α Level and Promoting Endothelial Cell Maturation. Sci Rep 2016; 6: 35316.
[http://dx.doi.org/10.1038/srep35316] [PMID: 27731397]
[99]
De Miguel MP, Alcaina Y, de la Maza DS, Lopez-Iglesias P. Cell metabolism under microenvironmental low oxygen tension levels in stemness, proliferation and pluripotency. Curr Mol Med 2015; 15(4): 343-59.
[http://dx.doi.org/10.2174/1566524015666150505160406] [PMID: 25941818]
[100]
Solaini G, Baracca A, Lenaz G, Sgarbi G. Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta 2010; 1797(6-7): 1171-7.
[http://dx.doi.org/10.1016/j.bbabio.2010.02.011] [PMID: 20153717]
[101]
Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006; 3(3): 177-85.
[http://dx.doi.org/10.1016/j.cmet.2006.02.002] [PMID: 16517405]
[102]
Semenza GL. Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta 2011; 1813(7): 1263-8.
[http://dx.doi.org/10.1016/j.bbamcr.2010.08.006] [PMID: 20732359]
[103]
Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 2007; 129(1): 111-22.
[http://dx.doi.org/10.1016/j.cell.2007.01.047] [PMID: 17418790]
[104]
Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation 2014; 129(3): e28-e292.
[http://dx.doi.org/10.1161/01.cir.0000441139.02102.80] [PMID: 24352519]
[105]
Berne RM. Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol 1963; 204: 317-22.
[http://dx.doi.org/10.1152/ajplegacy.1963.204.2.317] [PMID: 13971060]
[106]
Dobson GP, Arsyad A, Letson HL. The Adenosine Hypothesis Revisited: Modulation of Coupling between Myocardial Perfusion and Arterial Compliance. Front Physiol 2017; 8: 824.
[http://dx.doi.org/10.3389/fphys.2017.00824] [PMID: 29104545]
[107]
Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74(5): 1124-36.
[http://dx.doi.org/10.1161/01.CIR.74.5.1124] [PMID: 3769170]
[108]
Köhler D, Eckle T, Faigle M, et al. CD39/ectonucleoside triphosphate diphosphohydrolase 1 provides myocardial protection during cardiac ischemia/reperfusion injury. Circulation 2007; 116(16): 1784-94.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.690180] [PMID: 17909107]
[109]
Eckle T, Krahn T, Grenz A, et al. Cardioprotection by ecto-5′-nucleotidase (CD73) and A2B adenosine receptors. Circulation 2007; 115(12): 1581-90.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.669697] [PMID: 17353435]
[110]
Eckle T, Hartmann K, Bonney S, et al. Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nat Med 2012; 18(5): 774-82.
[http://dx.doi.org/10.1038/nm.2728] [PMID: 22504483]
[111]
Bendová Z, Sumová A. Photoperiodic regulation of PER1 and PER2 protein expression in rat peripheral tissues. Physiol Res 2006; 55(6): 623-32.
[PMID: 16497110]
[112]
Zhang J, Kaasik K, Blackburn MR, Lee CC. Constant darkness is a circadian metabolic signal in mammals. Nature 2006; 439(7074): 340-3.
[http://dx.doi.org/10.1038/nature04368] [PMID: 16421573]
[113]
Bonney S, Hughes K, Harter PN, Mittelbronn M, Walker L, Eckle T. Cardiac period 2 in myocardial ischemia: clinical implications of a light dependent protein. Int J Biochem Cell Biol 2013; 45(3): 667-71.
[http://dx.doi.org/10.1016/j.biocel.2012.12.022] [PMID: 23291353]
[114]
Cai Z, Zhong H, Bosch-Marce M, et al. Complete loss of ischaemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1 alpha. Cardiovasc Res 2008; 77(3): 463-70.
[http://dx.doi.org/10.1093/cvr/cvm035] [PMID: 18006459]
[115]
Eckle T, Köhler D, Lehmann R, El Kasmi K, Eltzschig HK. Hypoxia-inducible factor-1 is central to cardioprotection: a new paradigm for ischemic preconditioning. Circulation 2008; 118(2): 166-75.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.758516] [PMID: 18591435]
[116]
Synnestvedt K, Furuta GT, Comerford KM, et al. Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest 2002; 110(7): 993-1002.
[http://dx.doi.org/10.1172/JCI0215337] [PMID: 12370277]
[117]
Peek CB, Levine DC, Cedernaes J, et al. Circadian Clock Interaction with HIF1α Mediates Oxygenic Metabolism and Anaerobic Glycolysis in Skeletal Muscle. Cell Metab 2017; 25(1): 86-92.
[http://dx.doi.org/10.1016/j.cmet.2016.09.010] [PMID: 27773696]
[118]
Wu Y, Tang D, Liu N, et al. Reciprocal Regulation between the Circadian Clock and Hypoxia Signaling at the Genome Level in Mammals. Cell Metab 2017; 25(1): 73-85.
[http://dx.doi.org/10.1016/j.cmet.2016.09.009] [PMID: 27773697]
[119]
Kobayashi M, Morinibu A, Koyasu S, Goto Y, Hiraoka M, Harada H. A circadian clock gene, PER2, activates HIF-1 as an effector molecule for recruitment of HIF-1α to promoter regions of its downstream genes. FEBS J 2017; 284(22): 3804-16.
[http://dx.doi.org/10.1111/febs.14280] [PMID: 28963769]
[120]
Egg M, Köblitz L, Hirayama J, et al. Linking oxygen to time: the bidirectional interaction between the hypoxic signaling pathway and the circadian clock. Chronobiol Int 2013; 30(4): 510-29.
[http://dx.doi.org/10.3109/07420528.2012.754447] [PMID: 23421720]
[121]
Adamovich Y, Ladeuix B, Golik M, Koeners MP, Asher G. Rhythmic Oxygen Levels Reset Circadian Clocks through HIF1α. Cell Metab 2017; 25(1): 93-101.
[http://dx.doi.org/10.1016/j.cmet.2016.09.014] [PMID: 27773695]
[122]
Minami Y, Kasukawa T, Kakazu Y, et al. Measurement of internal body time by blood metabolomics. Proc Natl Acad Sci USA 2009; 106(24): 9890-5.
[http://dx.doi.org/10.1073/pnas.0900617106] [PMID: 19487679]
[123]
Dallmann R, Viola AU, Tarokh L, Cajochen C, Brown SA. The human circadian metabolome. Proc Natl Acad Sci USA 2012; 109(7): 2625-9.
[http://dx.doi.org/10.1073/pnas.1114410109] [PMID: 22308371]
[124]
Kasukawa T, Sugimoto M, Hida A, et al. Human blood metabolite timetable indicates internal body time. Proc Natl Acad Sci USA 2012; 109(37): 15036-41.
[http://dx.doi.org/10.1073/pnas.1207768109] [PMID: 22927403]
[125]
Zamboni N, Saghatelian A, Patti GJ. Defining the metabolome: size, flux, and regulation. Mol Cell 2015; 58(4): 699-706.
[http://dx.doi.org/10.1016/j.molcel.2015.04.021] [PMID: 26000853]
[126]
Davies SK, Ang JE, Revell VL, et al. Effect of sleep deprivation on the human metabolome. Proc Natl Acad Sci USA 2014; 111(29): 10761-6.
[http://dx.doi.org/10.1073/pnas.1402663111] [PMID: 25002497]
[127]
West AC, Smith L, Ray DW, Loudon ASI, Brown TM, Bechtold DA. Misalignment with the external light environment drives metabolic and cardiac dysfunction. Nat Commun 2017; 8(1): 417.
[http://dx.doi.org/10.1038/s41467-017-00462-2] [PMID: 28900189]
[128]
Krishnaiah SY, Wu G, Altman BJ, et al. Clock Regulation of Metabolites Reveals Coupling between Transcription and Metabolism. Cell Metab 2017; 25(5): 1206.
[http://dx.doi.org/10.1016/j.cmet.2017.04.023] [PMID: 28467936]
[129]
Putker M, Crosby P, Feeney KA, et al. Mammalian Circadian Period, But Not Phase and Amplitude, Is Robust Against Redox and Metabolic Perturbations. Antioxid Redox Signal 2018; 28(7): 507-20.
[http://dx.doi.org/10.1089/ars.2016.6911] [PMID: 28506121]
[130]
Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 2000; 273(2): 793-8.
[http://dx.doi.org/10.1006/bbrc.2000.3000] [PMID: 10873683]
[131]
Etchegaray JP, Lee C, Wade PA, Reppert SM. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 2003; 421(6919): 177-82.
[http://dx.doi.org/10.1038/nature01314] [PMID: 12483227]
[132]
Kincaid B, Bossy-Wetzel E. Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Front Aging Neurosci 2013; 5: 48.
[http://dx.doi.org/10.3389/fnagi.2013.00048] [PMID: 24046746]
[133]
Mauvoisin D, Atger F, Dayon L, et al. Circadian and Feeding Rhythms Orchestrate the Diurnal Liver Acetylome. Cell Rep 2017; 20(7): 1729-43.
[http://dx.doi.org/10.1016/j.celrep.2017.07.065] [PMID: 28813682]
[134]
Peek CB, Affinati AH, Ramsey KM, et al. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 2013; 342(6158): 1243417.
[http://dx.doi.org/10.1126/science.1243417] [PMID: 24051248]
[135]
Ramsey KM, Yoshino J, Brace CS, et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 2009; 324(5927): 651-4.
[http://dx.doi.org/10.1126/science.1171641] [PMID: 19299583]
[136]
Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008; 134(2): 317-28.
[http://dx.doi.org/10.1016/j.cell.2008.06.050] [PMID: 18662546]
[137]
Lombard DB, Alt FW, Cheng HL, et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 2007; 27(24): 8807-14.
[http://dx.doi.org/10.1128/MCB.01636-07] [PMID: 17923681]
[138]
Ahn BH, Kim HS, Song S, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA 2008; 105(38): 14447-52.
[http://dx.doi.org/10.1073/pnas.0803790105] [PMID: 18794531]
[139]
Gurd BJ, Holloway GP, Yoshida Y, Bonen A. In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphate-activated protein kinase-independent manner. Metabolism 2012; 61(5): 733-41.
[http://dx.doi.org/10.1016/j.metabol.2011.09.016] [PMID: 22078938]
[140]
Cui XX, Li X, Dong SY, Guo YJ, Liu T, Wu YC. SIRT3 deacetylated and increased citrate synthase activity in PD model. Biochem Biophys Res Commun 2017; 484(4): 767-73.
[http://dx.doi.org/10.1016/j.bbrc.2017.01.163] [PMID: 28161643]
[141]
Sheng S, Kang Y, Guo Y, Pu Q, Cai M, Tu Z. Overexpression of Sirt3 inhibits lipid accumulation in macrophages through mitochondrial IDH2 deacetylation. Int J Clin Exp Pathol 2015; 8(8): 9196-201.
[PMID: 26464666]
[142]
Yu W, Dittenhafer-Reed KE, Denu JM. SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. J Biol Chem 2012; 287(17): 14078-86.
[http://dx.doi.org/10.1074/jbc.M112.355206] [PMID: 22416140]
[143]
Finley LW, Haas W, Desquiret-Dumas V, et al. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One 2011; 6(8): e23295.
[http://dx.doi.org/10.1371/journal.pone.0023295] [PMID: 21858060]
[144]
Cimen H, Han MJ, Yang Y, Tong Q, Koc H, Koc EC. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 2010; 49(2): 304-11.
[http://dx.doi.org/10.1021/bi901627u] [PMID: 20000467]
[145]
Porter GA, Urciuoli WR, Brookes PS, Nadtochiy SM. SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. Am J Physiol Heart Circ Physiol 2014; 306(12): H1602-9.
[http://dx.doi.org/10.1152/ajpheart.00027.2014] [PMID: 24748594]
[146]
Hirschey MD, Shimazu T, Goetzman E, et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010; 464(7285): 121-5.
[http://dx.doi.org/10.1038/nature08778] [PMID: 20203611]
[147]
Hirschey MD, Shimazu T, Jing E, et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell 2011; 44(2): 177-90.
[http://dx.doi.org/10.1016/j.molcel.2011.07.019] [PMID: 21856199]
[148]
Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB, Gupta MP. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol 2008; 28(20): 6384-401.
[http://dx.doi.org/10.1128/MCB.00426-08] [PMID: 18710944]
[149]
Bae K, Jin X, Maywood ES, Hastings MH, Reppert SM, Weaver DR. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 2001; 30(2): 525-36.
[http://dx.doi.org/10.1016/S0896-6273(01)00302-6] [PMID: 11395012]
[150]
Grimaldi B, Bellet MM, Katada S, et al. PER2 controls lipid metabolism by direct regulation of PPARγ. Cell Metab 2010; 12(5): 509-20.
[http://dx.doi.org/10.1016/j.cmet.2010.10.005] [PMID: 21035761]
[151]
Grimaldi B, Nakahata Y, Sahar S, et al. Chromatin remodeling and circadian control: master regulator CLOCK is an enzyme. Cold Spring Harb Symp Quant Biol 2007; 72: 105-12.
[http://dx.doi.org/10.1101/sqb.2007.72.049] [PMID: 18419267]
[152]
Yin L, Wu N, Curtin JC, et al. Rev-erbalpha, a heme sensor that coordinates metabolic and circadian pathways. Science 2007; 318(5857): 1786-9.
[http://dx.doi.org/10.1126/science.1150179] [PMID: 18006707]
[153]
Le Martelot G, Claudel T, Gatfield D, et al. REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol 2009; 7(9): e1000181.
[http://dx.doi.org/10.1371/journal.pbio.1000181] [PMID: 19721697]
[154]
Panda S, Antoch MP, Miller BH, et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002; 109(3): 307-20.
[http://dx.doi.org/10.1016/S0092-8674(02)00722-5] [PMID: 12015981]
[155]
Storch KF, Lipan O, Leykin I, et al. Extensive and divergent circadian gene expression in liver and heart. Nature 2002; 417(6884): 78-83.
[http://dx.doi.org/10.1038/nature744] [PMID: 11967526]
[156]
Eckle T, Koeppen M, Eltzschig H. Use of a hanging weight system for coronary artery occlusion in mice. J Vis Exp 2011; (50): 2526.
[http://dx.doi.org/10.3791/2526] [PMID: 21540816]
[157]
Bonney S, Kominsky D, Brodsky K, Eltzschig H, Walker L, Eckle T. Cardiac Per2 functions as novel link between fatty acid metabolism and myocardial inflammation during ischemia and reperfusion injury of the heart. PLoS One 2013; 8(8): e71493.
[http://dx.doi.org/10.1371/journal.pone.0071493] [PMID: 23977055]
[158]
Luo X, Zhang Y, Ruan X, et al. Fasting-induced protein phosphatase 1 regulatory subunit contributes to postprandial blood glucose homeostasis via regulation of hepatic glycogenesis. Diabetes 2011; 60(5): 1435-45.
[http://dx.doi.org/10.2337/db10-1663] [PMID: 21471512]
[159]
Jaswal JS, Keung W, Wang W, Ussher JR, Lopaschuk GD. Targeting fatty acid and carbohydrate oxidation--a novel therapeutic intervention in the ischemic and failing heart. Biochim Biophys Acta 2011; 1813(7): 1333-50.
[http://dx.doi.org/10.1016/j.bbamcr.2011.01.015] [PMID: 21256164]
[160]
Lopaschuk GD, McNeil GF, McVeigh JJ. Glucose oxidation is stimulated in reperfused ischemic hearts with the carnitine palmitoyltransferase 1 inhibitor, Etomoxir. Mol Cell Biochem 1989; 88(1-2): 175-9.
[http://dx.doi.org/10.1007/BF00223440] [PMID: 2779537]
[161]
Finley LW, Carracedo A, Lee J, et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell 2011; 19(3): 416-28.
[http://dx.doi.org/10.1016/j.ccr.2011.02.014] [PMID: 21397863]
[162]
Eckel-Mahan K, Sassone-Corsi P. Metabolism and the circadian clock converge. Physiol Rev 2013; 93(1): 107-35.
[http://dx.doi.org/10.1152/physrev.00016.2012] [PMID: 23303907]
[163]
Kantermann T, Juda M, Merrow M, Roenneberg T. The human circadian clock’s seasonal adjustment is disrupted by daylight saving time. Curr Biol 2007; 17(22): 1996-2000.
[http://dx.doi.org/10.1016/j.cub.2007.10.025] [PMID: 17964164]
[164]
Roenneberg T, Aschoff J. Annual rhythm of human reproduction: I. Biology, sociology, or both? J Biol Rhythms 1990; 5(3): 195-216.
[http://dx.doi.org/10.1177/074873049000500303] [PMID: 2133132]
[165]
Roenneberg T, Aschoff J. Annual rhythm of human reproduction: II. Environmental correlations. J Biol Rhythms 1990; 5(3): 217-39.
[http://dx.doi.org/10.1177/074873049000500304] [PMID: 2133133]
[166]
Stothard ER, McHill AW, Depner CM, et al. Circadian Entrainment to the Natural Light-Dark Cycle across Seasons and the Weekend. Curr Biol 2017; 27(4): 508-13.
[http://dx.doi.org/10.1016/j.cub.2016.12.041] [PMID: 28162893]
[167]
Leocadio-Miguel MA, Louzada FM, Duarte LL, et al. Latitudinal cline of chronotype. Sci Rep 2017; 7(1): 5437.
[http://dx.doi.org/10.1038/s41598-017-05797-w] [PMID: 28710358]
[168]
Schroeder AM, Colwell CS. How to fix a broken clock. Trends Pharmacol Sci 2013; 34(11): 605-19.
[http://dx.doi.org/10.1016/j.tips.2013.09.002] [PMID: 24120229]
[169]
Haus E, Smolensky M. Biological clocks and shift work: circadian dysregulation and potential long-term effects. Cancer Causes Control 2006; 17(4): 489-500.
[http://dx.doi.org/10.1007/s10552-005-9015-4] [PMID: 16596302]
[170]
Mosendane T, Mosendane T, Raal FJ. Shift work and its effects on the cardiovascular system. Cardiovasc J Afr 2008; 19(4): 210-5.
[PMID: 18776968]
[171]
Segawa K, Nakazawa S, Tsukamoto Y, et al. Peptic ulcer is prevalent among shift workers. Dig Dis Sci 1987; 32(5): 449-53.
[http://dx.doi.org/10.1007/BF01296025] [PMID: 3568932]
[172]
Davis S, Mirick DK, Stevens RG. Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst 2001; 93(20): 1557-62.
[http://dx.doi.org/10.1093/jnci/93.20.1557] [PMID: 11604479]
[173]
Persson HE, Svanborg E. Sleep deprivation worsens obstructive sleep apnea. Comparison between diurnal and nocturnal polysomnography. Chest 1996; 109(3): 645-50.
[http://dx.doi.org/10.1378/chest.109.3.645] [PMID: 8617071]
[174]
Depner CM, Stothard ER, Wright KP Jr. Metabolic consequences of sleep and circadian disorders. Curr Diab Rep 2014; 14(7): 507.
[http://dx.doi.org/10.1007/s11892-014-0507-z] [PMID: 24816752]
[175]
Spencer FA, Goldberg RJ, Becker RC, Gore JM. Seasonal distribution of acute myocardial infarction in the second National Registry of Myocardial Infarction. J Am Coll Cardiol 1998; 31(6): 1226-33.
[http://dx.doi.org/10.1016/S0735-1097(98)00098-9] [PMID: 9581712]
[176]
Zhang XW, Tan ZJ, Li YL, Wang B, Yu A, Zhang GQ. A study on yearly and daily circadian rhythm of cardiovascular events. Zhonghua Nei Ke Za Zhi 2009; 48(10): 818-20.
[PMID: 20079221]
[177]
Schloss MJ, Horckmans M, Nitz K, et al. The time-of-day of myocardial infarction onset affects healing through oscillations in cardiac neutrophil recruitment. EMBO Mol Med 2016; 8(8): 937-48.
[http://dx.doi.org/10.15252/emmm.201506083] [PMID: 27226028]
[178]
Ritchie HK, Stothard ER, Wright KP. Entrainment of the Human Circadian Clock to the Light-Dark Cycle and its Impact on Patients in the ICU and Nursing Home Settings. Curr Pharm Des 2015; 21(24): 3438-42.
[http://dx.doi.org/10.2174/1381612821666150706111155] [PMID: 26144935]
[179]
Arble DM, Ramsey KM, Bass J, Turek FW. Circadian disruption and metabolic disease: findings from animal models. Best Pract Res Clin Endocrinol Metab 2010; 24(5): 785-800.
[http://dx.doi.org/10.1016/j.beem.2010.08.003] [PMID: 21112026]
[180]
Foster RG, Peirson SN, Wulff K, Winnebeck E, Vetter C, Roenneberg T. Sleep and circadian rhythm disruption in social jetlag and mental illness. Prog Mol Biol Transl Sci 2013; 119: 325-46.
[http://dx.doi.org/10.1016/B978-0-12-396971-2.00011-7] [PMID: 23899602]
[181]
Hatori M, Vollmers C, Zarrinpar A, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 2012; 15(6): 848-60.
[http://dx.doi.org/10.1016/j.cmet.2012.04.019] [PMID: 22608008]
[182]
Noyan H, El-Mounayri O, Isserlin R, et al. Cardioprotective Signature of Short-Term Caloric Restriction. PLoS One 2015; 10(6): e0130658.
[http://dx.doi.org/10.1371/journal.pone.0130658] [PMID: 26098549]
[183]
Schroeder AM, Truong D, Loh DH, Jordan MC, Roos KP, Colwell CS. Voluntary scheduled exercise alters diurnal rhythms of behaviour, physiology and gene expression in wild-type and vasoactive intestinal peptide-deficient mice. J Physiol 2012; 590(23): 6213-26.
[http://dx.doi.org/10.1113/jphysiol.2012.233676] [PMID: 22988135]
[184]
Dauchy RT, Wren-Dail MA, Hoffman AE, et al. Effects of Daytime Exposure to Light from Blue-Enriched Light-Emitting Diodes on the Nighttime Melatonin Amplitude and Circadian Regulation of Rodent Metabolism and Physiology. Comp Med 2016; 66(5): 373-83.
[PMID: 27780004]
[185]
Martino TA, Tata N, Belsham DD, et al. Disturbed diurnal rhythm alters gene expression and exacerbates cardiovascular disease with rescue by resynchronization. Hypertension 2007; 49(5): 1104-13.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.106.083568] [PMID: 17339537]
[186]
Lucassen EA, Coomans CP, van Putten M, et al. Environmental 24-hr Cycles Are Essential for Health. Curr Biol 2016; 26(14): 1843-53.
[http://dx.doi.org/10.1016/j.cub.2016.05.038] [PMID: 27426518]
[187]
Korompeli A, Muurlink O, Kavrochorianou N, Katsoulas T, Fildissis G, Baltopoulos G. Circadian disruption of ICU patients: A review of pathways, expression, and interventions. J Crit Care 2017; 38: 269-77.
[http://dx.doi.org/10.1016/j.jcrc.2016.12.006] [PMID: 28012425]
[188]
Danielson SJ, Rappaport CA, Loher MK, Gehlbach BK. Looking for light in the din: An examination of the circadian-disrupting properties of a medical intensive care unit. Intensive Crit Care Nurs 2018; 46: 57-63.
[http://dx.doi.org/10.1016/j.iccn.2017.12.006] [PMID: 29605239]
[189]
Smolensky MH, Hermida RC, Reinberg A, Sackett-Lundeen L, Portaluppi F. Circadian disruption: New clinical perspective of disease pathology and basis for chronotherapeutic intervention. Chronobiol Int 2016; 33(8): 1101-19.
[http://dx.doi.org/10.1080/07420528.2016.1184678] [PMID: 27308960]
[190]
Durrington HJ, Clark R, Greer R, et al. ‘In a dark place, we find ourselves’: light intensity in critical care units. Intensive Care Med Exp 2017; 5(1): 9.
[http://dx.doi.org/10.1186/s40635-017-0122-9] [PMID: 28168516]
[191]
Ruggieri AJ, Levy RJ, Deutschman CS. Mitochondrial dysfunction and resuscitation in sepsis. Crit Care Clin 2010; 26(3): 567-75.
[PMID: 20643307]
[192]
Montaigne D, Marechal X, Modine T, et al. Daytime variation of perioperative myocardial injury in cardiac surgery and its prevention by Rev-Erbα antagonism: a single-centre propensity-matched cohort study and a randomised study. Lancet 2018; 391(10115): 59-69.
[http://dx.doi.org/10.1016/S0140-6736(17)32132-3] [PMID: 29107324]
[193]
Sudo M, Sasahara K, Moriya T, Akiyama M, Hamada T, Shibata S. Constant light housing attenuates circadian rhythms of mPer2 mRNA and mPER2 protein expression in the suprachiasmatic nucleus of mice. Neuroscience 2003; 121(2): 493-9.
[http://dx.doi.org/10.1016/S0306-4522(03)00457-3] [PMID: 14522008]
[194]
Dispersyn G, Pain L, Touitou Y. Circadian disruption of body core temperature and rest-activity rhythms after general (propofol) anesthesia in rats. Anesthesiology 2009; 110(6): 1305-15.
[http://dx.doi.org/10.1097/ALN.0b013e3181a10225] [PMID: 19417612]
[195]
Lonardo NW, Mone MC, Nirula R, et al. Propofol is associated with favorable outcomes compared with benzodiazepines in ventilated intensive care unit patients. Am J Respir Crit Care Med 2014; 189(11): 1383-94.
[http://dx.doi.org/10.1164/rccm.201312-2291OC] [PMID: 24720509]
[196]
Rivo J, Raphael J, Drenger B, Berenshtein E, Chevion M, Gozal Y. Flumazenil mimics whereas midazolam abolishes ischemic preconditioning in a rabbit heart model of ischemia-reperfusion. Anesthesiology 2006; 105(1): 65-71.
[http://dx.doi.org/10.1097/00000542-200607000-00014] [PMID: 16809996]
[197]
Matsuo I, Iijima N, Takumi K, et al. Characterization of sevoflurane effects on Per2 expression using ex vivo bioluminescence imaging of the suprachiasmatic nucleus in transgenic rats. Neurosci Res 2016; 107: 30-7.
[http://dx.doi.org/10.1016/j.neures.2015.11.010] [PMID: 26696094]
[198]
Liu C, Reppert SM. GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron 2000; 25(1): 123-8.
[http://dx.doi.org/10.1016/S0896-6273(00)80876-4] [PMID: 10707977]
[199]
Wagner S, Castel M, Gainer H, Yarom Y. GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature 1997; 387(6633): 598-603.
[http://dx.doi.org/10.1038/42468] [PMID: 9177347]
[200]
Colwell CS. Circadian rhythms. Time to get excited by GABA. Nature 1997; 387(6633): 554-5.
[http://dx.doi.org/10.1038/42362] [PMID: 9177335]
[201]
Mure LS, Le HD, Benegiamo G, et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 2018; 359(6381): 359.
[http://dx.doi.org/10.1126/science.aao0318] [PMID: 29439024]
[202]
Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci USA 2014; 111(45): 16219-24.
[http://dx.doi.org/10.1073/pnas.1408886111] [PMID: 25349387]
[203]
Skarke C, Lahens NF, Rhoades SD, et al. A Pilot Characterization of the Human Chronobiome. Sci Rep 2017; 7(1): 17141.
[http://dx.doi.org/10.1038/s41598-017-17362-6] [PMID: 29215023]
[204]
Marc D, Marc D. Ruben1 GW, et al. Hogenesch. A populationbased human encyclopedia for circadian medicine. 2018.
[205]
Chen Z, Yoo SH, Takahashi JS. Small molecule modifiers of circadian clocks. Cell Mol Life Sci 2013; 70(16): 2985-98.
[http://dx.doi.org/10.1007/s00018-012-1207-y] [PMID: 23161063]
[206]
He B, Nohara K, Park N, et al. The Small Molecule Nobiletin Targets the Molecular Oscillator to Enhance Circadian Rhythms and Protect against Metabolic Syndrome. Cell Metab 2016; 23(4): 610-21.
[http://dx.doi.org/10.1016/j.cmet.2016.03.007] [PMID: 27076076]
[207]
Chen Z, Yoo SH, Park YS, et al. Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening. Proc Natl Acad Sci USA 2012; 109(1): 101-6.
[http://dx.doi.org/10.1073/pnas.1118034108] [PMID: 22184224]
[208]
Oyama Y, Bartman CM, Gile J, Sehrt D, Eckle T. The Circadian PER2 Enhancer Nobiletin Reverses the Deleterious Effects of Midazolam in Myocardial Ischemia and Reperfusion Injury. Curr Pharm Des 2018; 24(28): 3376-83.
[http://dx.doi.org/10.2174/1381612824666180924102530] [PMID: 30246635]
[209]
Stujanna EN, Murakoshi N, Tajiri K, et al. Rev-erb agonist improves adverse cardiac remodeling and survival in myocardial infarction through an anti-inflammatory mechanism. PLoS One 2017; 12(12): e0189330.
[http://dx.doi.org/10.1371/journal.pone.0189330] [PMID: 29232411]
[210]
Bartman CM, Oyama Y, Eckle T. Daytime variations in perioperative myocardial injury. Lancet 2018; 391(10135): 2104.
[http://dx.doi.org/10.1016/S0140-6736(18)30797-9] [PMID: 29856340]
[211]
Schönenberger MJ, Kovacs WJ. Hypoxia signaling pathways: modulators of oxygen-related organelles. Front Cell Dev Biol 2015; 3: 42.
[http://dx.doi.org/10.3389/fcell.2015.00042] [PMID: 26258123]
[212]
Wong BW, Kuchnio A, Bruning U, Carmeliet P. Emerging novel functions of the oxygen-sensing prolyl hydroxylase domain enzymes. Trends Biochem Sci 2013; 38(1): 3-11.
[http://dx.doi.org/10.1016/j.tibs.2012.10.004] [PMID: 23200187]