Immunoenhancement of Recombinant Neisseria meningitides PorB Protein on Porcine Circovirus Type 2 and Mycoplasma hyopneumoniae Genetically Engineered Vaccines

Page: [776 - 784] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Porcine circovirus and Mycoplasma hyopneumoniae can cause respiratory diseases in pigs, which cause serious economic loss in the worldwide pig industry. Currently, these infections are mainly prevented and controlled by vaccination. The new vaccines on the market are mainly composed of subunits and inactivated vaccines but usually have lower antigenicity than traditional live vaccines. Thus, there is an increasing need to develop new adjuvants that can cause rapid and long-lasting immunity to enhance the antigenic efficacy for vaccines. Studies have shown that meningococcal porin PorB can act as a ligand to combine with Toll-like receptors to activate the production of immunological projections and act as a vaccine immunological adjuvant.

Objective: In this article, we expressed and purified the recombinant PorB protein and verified its immunogenicity against porcine circovirus type 2 and Mycoplasma hyopneumoniae genetically engineered vaccine.

Methods: In this article, we used prokaryotic expression to express and purify recombinant PorB protein, four different concentrations of PorB protein, Freund's adjuvant with two genetically engineered vaccines were combined with subcutaneous immunization of mice.

Results: Our study shows that the appropriate dose of the recombinant protein PorB can enhance the levels of humoral and cellular responses induced by two genetically engineered vaccines in a short period of time in mice. The PorB adjuvant group may cause statistically higher antibody titers for both genetically engineered vaccines compared to Freund's commercial adjuvant (P<0.001).

Conclusion: The recombinant protein PorB may be a good candidate adjuvant for improving the protective effect of vaccines against porcine circovirus type 2 and Mycoplasma hyopneumoniae, and the protein can be used for future practical applications.

Keywords: Neisseria meningitides, PorB, porcine circovirus type 2, Mycoplasma hyopneumoniae, immunoenhancement, adjuvant, vaccine.

Graphical Abstract

[1]
Zhang, G.; Jia, P.; Cheng, G.; Jiao, S.; Ren, L.; Ji, S.; Hu, T.; Liu, H.; Du, Y. Enhanced immune response to inactivated porcine circovirus type 2 (PCV2) vaccine by conjugation of chitosan oligosaccharides. Carbohydr. Polym., 2017, 166, 64-72.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.058] [PMID: 28385249]
[2]
Beach, N.M.; Meng, X.J. Efficacy and future prospects of commercially available and experimental vaccines against porcine circovirus type 2 (PCV2). Virus Res., 2012, 164(1-2), 33-42.
[http://dx.doi.org/10.1016/j.virusres.2011.09.041] [PMID: 22005075]
[3]
Virginio, V.G.; Gonchoroski, T.; Paes, J.A.; Schuck, D.C.; Zaha, A.; Ferreira, H.B. Immune responses elicited by Mycoplasma hyopneumoniae recombinant antigens and DNA constructs with potential for use in vaccination against porcine enzootic pneumonia. Vaccine, 2014, 32(44), 5832-5838.
[http://dx.doi.org/10.1016/j.vaccine.2014.08.008] [PMID: 25148775]
[4]
Okamba, F.R.; Moreau, E.; Cheikh Saad Bouh, K.; Gagnon, C.A.; Massie, B.; Arella, M. Immune responses induced by replication-defective adenovirus expressing the C-terminal portion of the Mycoplasma hyopneumoniae P97 adhesin. Clin. Vaccine Immunol., 2007, 14(6), 767-774.
[http://dx.doi.org/10.1128/CVI.00415-06] [PMID: 17409219]
[5]
Galliher-Beckley, A.; Pappan, L.K.; Madera, R.; Burakova, Y.; Waters, A.; Nickles, M.; Li, X.; Nietfeld, J.; Schlup, J.R.; Zhong, Q.; McVey, S.; Dritz, S.S.; Shi, J. Characterization of a novel oil-in-water emulsion adjuvant for swine influenza virus and Mycoplasma hyopneumoniae vaccines. Vaccine, 2015, 33(25), 2903-2908.
[http://dx.doi.org/10.1016/j.vaccine.2015.04.065] [PMID: 25936722]
[6]
Burke, J.M.; Ganley-Leal, L.M.; Khatri, A.; Wetzler, L.M. Neisseria meningitidis PorB, a TLR2 ligand, induces an antigen-specific eosinophil recall response: potential adjuvant for helminth vaccines? J. Immunol., 2007, 179(5), 3222-3230.
[http://dx.doi.org/10.4049/jimmunol.179.5.3222] [PMID: 17709538]
[7]
Tan, K.; Li, R.; Huang, X.; Liu, Q. Outer membrane vesicles: current status and future direction of these novel vaccine adjuvants. Front. Microbiol., 2018, 9, 783.
[http://dx.doi.org/10.3389/fmicb.2018.00783] [PMID: 29755431]
[8]
Marciani, D.J. Vaccine adjuvants: role and mechanisms of action in vaccine immunogenicity. Drug Discov. Today, 2003, 8(20), 934-943.
[http://dx.doi.org/10.1016/S1359-6446(03)02864-2] [PMID: 14554157]
[9]
Massari, P.; Visintin, A.; Gunawardana, J.; Halmen, K.A.; King, C.A.; Golenbock, D.T.; Wetzler, L.M. Meningococcal porin PorB binds to TLR2 and requires TLR1 for signaling. J. Immunol., 2006, 176(4), 2373-2380.
[http://dx.doi.org/10.4049/jimmunol.176.4.2373] [PMID: 16455995]
[10]
Mosaheb, M.; Wetzler, L.M. Meningococcal PorB induces a robust and diverse antigen specific T cell response as a vaccine adjuvant. Vaccine, 2018, 36(50), 7689-7699.
[http://dx.doi.org/10.1016/j.vaccine.2018.10.074] [PMID: 30381152]
[11]
Toussi, D.N.; Carraway, M.; Wetzler, L.M.; Lewis, L.A.; Liu, X.; Massari, P. The amino acid sequence of Neisseria lactamica PorB surface-exposed loops influences Toll-like receptor 2-dependent cell activation. Infect. Immun., 2012, 80(10), 3417-3428.
[http://dx.doi.org/10.1128/IAI.00683-12] [PMID: 22825445]
[12]
Chamani, J.; Heshmati, M. Mechanism for stabilization of the molten globule state of papain by sodium n-alkyl sulfates: spectroscopic and calorimetric approaches. J. Colloid Interface Sci., 2008, 322(1), 119-127.
[http://dx.doi.org/10.1016/j.jcis.2008.03.001] [PMID: 18405913]
[13]
Tanabe, M.; Iverson, T.M. Expression, purification and preliminary X-ray analysis of the Neisseria meningitidis outer membrane protein PorB. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2009, 65(Pt 10), 996-1000.
[http://dx.doi.org/10.1107/S1744309109032333] [PMID: 19851005]
[14]
Qi, H.L.; Tai, J.Y.; Blake, M.S. Expression of large amounts of neisserial porin proteins in Escherichia coli and refolding of the proteins into native trimers. Infect. Immun., 1994, 62(6), 2432-2439.
[PMID: 8188368]
[15]
Chamani, J. Energetic domains analysis of bovine α-lactalbumin upon interaction with copper and dodecyl trimethylammonium bromide. J. Mol. Struct., 2010, 979(1-3), 227-234.
[http://dx.doi.org/10.1016/j.molstruc.2010.06.035]
[16]
Nikpoor, A.R.; Tavakkol-Afshari, J.; Gholizadeh, Z.; Sadri, K.; Babaei, M.H.; Chamani, J.; Badiee, A.; Jalali, S.A.; Jaafari, M.R. Nanoliposome-mediated targeting of antibodies to tumors: IVIG antibodies as a model. Int. J. Pharm., 2015, 495(1), 162-170.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.048] [PMID: 26302860]
[17]
Zaveckas, M.; Snipaitis, S.; Pesliakas, H.; Nainys, J.; Gedvilaite, A. Purification of recombinant virus-like particles of porcine circovirus type 2 capsid protein using ion-exchange monolith chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 991, 21-28.
[http://dx.doi.org/10.1016/j.jchromb.2015.04.004] [PMID: 25910233]
[18]
Galli, V.; Simionatto, S.; Marchioro, S.B.; Fisch, A.; Gomes, C.K.; Conceição, F.R.; Dellagostin, O.A. Immunisation of mice with Mycoplasma hyopneumoniae antigens P37, P42, P46 and P95 delivered as recombinant subunit or DNA vaccines. Vaccine, 2012, 31(1), 135-140.
[http://dx.doi.org/10.1016/j.vaccine.2012.10.088] [PMID: 23137841]
[19]
Wang, X.; Jiang, W.; Jiang, P.; Li, Y.; Feng, Z.; Xu, J. Construction and immunogenicity of recombinant adenovirus expressing the capsid protein of porcine circovirus 2 (PCV2) in mice. Vaccine, 2006, 24(16), 3374-3380.
[http://dx.doi.org/10.1016/j.vaccine.2005.12.068] [PMID: 16524646]
[20]
Barate, A.K.; Cho, Y.; Truong, Q.L.; Hahn, T.W. Immunogenicity of IMS 1113 plus soluble subunit and chimeric proteins containing Mycoplasma hyopneumoniae P97 C-terminal repeat regions. FEMS Microbiol. Lett., 2014, 352(2), 213-220.
[http://dx.doi.org/10.1111/1574-6968.12389] [PMID: 24461070]
[21]
Bastos, R.G.; Dellagostin, O.A.; Barletta, R.G.; Doster, A.R.; Nelson, E.; Osorio, F.A. Construction and immunogenicity of recombinant Mycobacterium bovis BCG expressing GP5 and M protein of porcine reproductive respiratory syndrome virus. Vaccine, 2002, 21(1-2), 21-29.
[http://dx.doi.org/10.1016/S0264-410X(02)00443-7] [PMID: 12443659]
[22]
Fort, M.; Sibila, M.; Nofrarías, M.; Pérez-Martín, E.; Olvera, A.; Mateu, E.; Segalés, J. Porcine circovirus type 2 (PCV2) Cap and Rep proteins are involved in the development of cell-mediated immunity upon PCV2 infection. Vet. Immunol. Immunopathol., 2010, 137(3-4), 226-234.
[http://dx.doi.org/10.1016/j.vetimm.2010.05.013] [PMID: 20566220]
[23]
Li, P.C.; Qiao, X.W.; Zheng, Q.S.; Hou, J.B. Immunogenicity and immunoprotection of porcine circovirus type 2 (PCV2) Cap protein displayed by Lactococcus lactis. Vaccine, 2016, 34(5), 696-702.
[http://dx.doi.org/10.1016/j.vaccine.2015.09.007] [PMID: 26372858]
[24]
Chen, Y.; Song, T.; Xiao, Y.L.; Wan, X.; Yang, L.; Li, J.; Zeng, G.; Fang, P.; Wang, Z.Z.; Gao, R. Enhancement of immune response of piglets to PCV-2 vaccine by porcine IL-2 and fusion IL-4/6 gene entrapped in chitosan nanoparticles. Res. Vet. Sci., 2018, 117, 224-232.
[http://dx.doi.org/10.1016/j.rvsc.2017.12.004] [PMID: 29306151]
[25]
Zhu, S.; Zhang, C.; Wang, J.; Wei, L.; Quan, R.; Yang, J.; Yan, X.; Li, Z.; She, R.; Hu, F.; Liu, J. Immunity elicited by an experimental vaccine based on recombinant flagellin-porcine Circovirus type 2 Cap fusion protein in piglets. PLoS One, 2016, 11(2)e0147432
[http://dx.doi.org/10.1371/journal.pone.0147432] [PMID: 26848967]
[26]
Sibila, M.; Pieters, M.; Molitor, T.; Maes, D.; Haesebrouck, F.; Segalés, J. Current perspectives on the diagnosis and epidemiology of Mycoplasma hyopneumoniae infection. Vet. J., 2009, 181(3), 221-231.
[http://dx.doi.org/10.1016/j.tvjl.2008.02.020] [PMID: 18396428]
[27]
Maes, D.; Segales, J.; Meyns, T.; Sibila, M.; Pieters, M.; Haesebrouck, F. Control of Mycoplasma hyopneumoniae infections in pigs. Vet. Microbiol., 2008, 126(4), 297-309.
[http://dx.doi.org/10.1016/j.vetmic.2007.09.008] [PMID: 17964089]
[28]
Conceição, F.R.; Moreira, A.N.; Dellagostin, O.A. A recombinant chimera composed of R1 repeat region of Mycoplasma hyopneumoniae P97 adhesin with Escherichia coli heat-labile enterotoxin B subunit elicits immune response in mice. Vaccine, 2006, 24(29-30), 5734-5743.
[http://dx.doi.org/10.1016/j.vaccine.2006.04.036] [PMID: 16730864]
[29]
Simionatto, S.; Marchioro, S.B.; Maes, D.; Dellagostin, O.A. Mycoplasma hyopneumoniae: From disease to vaccine development. Vet. Microbiol., 2013, 165(3-4), 234-242.
[http://dx.doi.org/10.1016/j.vetmic.2013.04.019] [PMID: 23680109]
[30]
Garza-Moreno, L.; Segalés, J.; Pieters, M.; Romagosa, A.; Sibila, M. Acclimation strategies in gilts to control Mycoplasma hyopneumoniae infection. Vet. Microbiol., 2018, 219, 23-29.
[http://dx.doi.org/10.1016/j.vetmic.2018.04.005] [PMID: 29778201]
[31]
Perrie, Y.; Mohammed, A.R.; Kirby, D.J.; McNeil, S.E.; Bramwell, V.W. Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. Int. J. Pharm., 2008, 364(2), 272-280.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.036] [PMID: 18555624]
[32]
Singh, M.; O’Hagan, D. Advances in vaccine adjuvants. Nat. Biotechnol., 1999, 17(11), 1075-1081.
[http://dx.doi.org/10.1038/15058] [PMID: 10545912]
[33]
Cheng, G.; Zhao, X.; Yan, W.; Wang, W.; Zuo, X.; Huang, K.; Liu, Y.; Chen, J.; Wang, J.; Cong, W.; Liu, M.; Gao, H.; Chen, J.; Lu, Y.; Zheng, Z. Alpha interferon is a powerful adjuvant for a recombinant protein vaccine against foot-and-mouth disease virus in swine, and an effective stimulus of in vivo immune response. Vaccine, 2007, 25(28), 5199-5208.
[http://dx.doi.org/10.1016/j.vaccine.2007.04.089] [PMID: 17555848]
[34]
van Deuren, M.; Brandtzaeg, P.; van der Meer, J.W. Update on meningococcal disease with emphasis on pathogenesis and clinical management. Clin. Microbiol. Rev., 2000, 13(1), 144-166.
[http://dx.doi.org/10.1128/CMR.13.1.144] [PMID: 10627495]
[35]
Peeters, C.C.; Claassen, I.J.; Schuller, M.; Kersten, G.F.; van der Voort, E.M.; Poolman, J.T. Immunogenicity of various presentation forms of PorA outer membrane protein of Neisseria meningitidis in mice. Vaccine, 1999, 17(20-21), 2702-2712.
[http://dx.doi.org/10.1016/S0264-410X(99)00011-0] [PMID: 10418921]
[36]
Massari, P.; Ram, S.; Macleod, H.; Wetzler, L.M. The role of porins in neisserial pathogenesis and immunity. Trends Microbiol., 2003, 11(2), 87-93.
[http://dx.doi.org/10.1016/S0966-842X(02)00037-9] [PMID: 12598131]
[37]
Massari, P.; King, C.A.; MacLeod, H.; Wetzler, L.M. Improved purification of native meningococcal porin PorB and studies on its structure/function. Protein Expr. Purif., 2005, 44(2), 136-146.
[http://dx.doi.org/10.1016/j.pep.2005.04.021] [PMID: 16027004]
[38]
Reiser, M.L.; Mosaheb, M.M.; Lisk, C.; Platt, A.; Wetzler, L.M. The TLR2 binding Neisserial porin PorB enhances antigen presenting cell trafficking and cross-presentation. Sci. Rep., 2017, 7(1), 736.
[http://dx.doi.org/10.1038/s41598-017-00555-4] [PMID: 28389664]
[39]
Singleton, T.E.; Massari, P.; Wetzler, L.M. Neisserial porin-induced dendritic cell activation is MyD88 and TLR2 dependent. J. Immunol., 2005, 174(6), 3545-3550.
[http://dx.doi.org/10.4049/jimmunol.174.6.3545] [PMID: 15749891]
[40]
Wetzler, L.M. Innate immune function of the neisserial porins and the relationship to vaccine adjuvant activity. Future Microbiol., 2010, 5(5), 749-758.
[http://dx.doi.org/10.2217/fmb.10.41] [PMID: 20441547]
[41]
Wetzler, L.M.; Ho, Y.; Reiser, H. Neisserial porins induce B lymphocytes to express costimulatory B7-2 molecules and to proliferate. J. Exp. Med., 1996, 183(3), 1151-1159.
[http://dx.doi.org/10.1084/jem.183.3.1151] [PMID: 8642257]
[42]
Liu, X.; Wetzler, L.M.; Massari, P. The PorB porin from commensal Neisseria lactamica induces Th1 and Th2 immune responses to ovalbumin in mice and is a potential immune adjuvant. Vaccine, 2008, 26(6), 786-796.
[http://dx.doi.org/10.1016/j.vaccine.2007.11.080] [PMID: 18191311]
[43]
Lowell, G.H.; Ballou, W.R.; Smith, L.F.; Wirtz, R.A.; Zollinger, W.D.; Hockmeyer, W.T. Proteosome-lipopeptide vaccines: enhancement of immunogenicity for malaria CS peptides. Science, 1988, 240(4853), 800-802.
[http://dx.doi.org/10.1126/science.2452484] [PMID: 2452484]
[44]
Alonso, D.F.; Gabri, M.R.; Guthmann, M.D.; Fainboim, L.; Gomez, D.E. A novel hydrophobized GM3 ganglioside/Neisseria meningitidis outer-membrane-protein complex vaccine induces tumor protection in B16 murine melanoma. Int. J. Oncol., 1999, 15(1), 59-66.
[http://dx.doi.org/10.3892/ijo.15.1.59] [PMID: 10375594]
[45]
Wetzler, L.M. Immunopotentiating ability of neisserial major outer membrane proteins. Use as an adjuvant for poorly immunogenic substances and potential use in vaccines. Ann. N. Y. Acad. Sci., 1994, 730, 367-370.
[http://dx.doi.org/10.1111/j.1749-6632.1994.tb44295.x] [PMID: 8080211]
[46]
Donnelly, J.J.; Deck, R.R.; Liu, M.A. Immunogenicity of a Haemophilus influenzae polysaccharide-Neisseria meningitidis outer membrane protein complex conjugate vaccine. J. Immunol., 1990, 145(9), 3071-3079.
[PMID: 2120344]