Legume Proteins as a Promising Source of Anti-Inflammatory Peptides

Page: [1204 - 1217] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Legume proteins are precursors of bioactive components, such as peptides. In the present paper, different types of legume as sources of bioactive peptides and hydrolysates are considered and discussed based on their anti-inflammatory effect. Peptides with anti-inflammatory activity were included from in vitro and in vivo studies. Current strategies for obtaining bioactive peptides, as well as their structure and impact on health, were also reviewed. It was discovered that peptides derived from legume protein, mainly soybean and bean, can regulate several inflammatory markers, which include prostaglandin E2 (PGE2), nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX- 2), cytokines, and chemokines. So far, lunasin, VPY and γ-glutamyl peptides have been identified with anti-inflammatory activity but their mechanisms have not been fully elucidated. Furthermore, it is necessary to gather more information about hydrolysates containing peptides and single peptides with antiinflammatory activity. Considering the wide diversity, legume may be promising components to produce peptides efficient to ameliorate inflammatory disorders.

Keywords: Legume, bioactive peptides, hydrolysates, anti-inflammatory activity, structure-activity relationship, inflammatory markers.

Graphical Abstract

[1]
Rajagopal, V.; Pushpan, C.K.; Antony, H. Comparative effect of horse gram and black gram on inflammatory mediators and antioxidant status. J. Food Drug Anal., 2017, 25(4), 845-853.
[2]
Koenig, W.; Rosenson, R.S. Acute-phase reactants and coronary heart disease. Semin. Vasc. Med., 2002, 02(4), 417-428.
[3]
Lowe, G.D. Circulating inflammatory markers and risks of cardiovascular and non-cardiovascular disease. J. Thromb. Haemost., 2005, 3, 1618-1627.
[4]
Rao, P.; Knaus, E.E. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): Cyclooxygenase (COX) inhibition and beyond. J. Pharm. Pharm. Sci., 2008, 11(2), 81s-110s.
[5]
Kolios, G.; Valatas, V.; Ward, S.G. Nitric oxide in inflammatory bowel disease: A universal messenger in an unsolved puzzle. Immunology, 2004, 113(4), 427-437.
[6]
Dia, V.P.; Bringe, N.A.; de Mejia, E.G. Peptides in pepsin–pancreatin hydrolysates from commercially available soy products that inhibit lipopolysaccharide-induced inflammation in macrophages. Food Chem., 2014, 152, 423-431.
[7]
Rizzello, C.G.; Tagliazucchi, D.; Babini, E.; Sefora Rutella, G.; Taneyo Saa, D.L.; Gianotti, A. Bioactive peptides from vegetable food matrices: Research trends and novel biotechnologies for synthesis and recovery. J. Funct. Foods, 2016, 27, 549-569.
[8]
Tu, M.; Cheng, S.; Lu, W.; Du, M. Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. Trends Analyt. Chem., 2018, 105, 7-17.
[9]
Salehi-Abargouei, A.; Saraf-Bank, S.; Bellissimo, N.; Azadbakht, L. Effects of non-soy legume consumption on C-reactive protein: A systematic review and meta-analysis. Nutrition, 2015, 31(5), 631-639.
[10]
Chalamaiah, M.; Yu, W.; Wu, J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chem., 2018, 245, 205-222.
[11]
Jenkins, D.J.A.; Mirrahimi, A.; Srichaikul, K.; Berryman, C.E.; Wang, L.; Carleton, A.; Abdulnour, S.; Sievenpiper, J.L.; Kendall, C.W.; Kris-Etherton, P.M. Soy protein reduces serum cholesterol by both intrinsic and food displacement mechanisms. J. Nutr., 2010, 140, 2302S-2311S.
[12]
Luna Vital, D.A.; González De Mejía, E.; Dia, V.P.; Loarca-Piña, G. Peptides in common bean fractions inhibit colorectal cancer cells. Food Chem., 2014, 157, 347-355.
[13]
Scarafoni, A.; Magni, C.; Duranti, M. Molecular nutraceutics as a mean to investigate the positive effects of legume seed proteins on human health. Trends Food Sci. Technol., 2007, 18, 454-463.
[14]
Carbonaro, M.; Maselli, P.; Nucara, A. Structural aspects of legume proteins and nutraceutical properties. Food Res. Int., 2015, 76, 19-30.
[15]
Udenigwe, C.C.; Aluko, R.E. Food protein-derived bioactive peptides: Production, processing, and potential health benefits. J. Food Sci., 2012, 77, R11-R24.
[16]
Li-Chan, E.C.Y. Bioactive peptides and protein hydrolysates: research trends and challenges for application as nutraceuticals and functional food ingredients. Curr. Opin. Food Sci., 2015, 1, 28-37.
[17]
Carrasco-Castilla, J.; Hernandez-Alvarez, A.J.; Jimenez-Martınez, C.; Gutierrez-Lopez, G.F.; Davila-Ortiz, G. Use of proteomics and peptidomics methods in food bioactive peptide science and engineering. Food Eng. Rev., 2012, 4, 224-243.
[18]
Kadam, S.U.; Tiwari, B.K.; Alvarez, C.; O’Donnell, C.P. Ultrasound for the extraction, identification and delivery of food proteins and bioactive peptides. Trends Food Sci. Technol., 2015, 46(1), 60-67.
[19]
Arroume, N.; Froidevaux, R.; Kapel, R.; Cudennec, B.; Ravallec, R.; Flahaut, C.; Dhulster, P. Food peptides: Purification, identification and role in the metabolism. Curr. Opin. Food Sci., 2016, 7, 101-107.
[20]
Hur, S.J.; Lim, B.O.; Decker, E.A.; McClements, D.J. In vitro human digestion models for food applications. Food Chem., 2011, 125(1), 1-12.
[21]
Saavedra, L.; Hebert, E.M.; Minahk, C.; Ferranti, P. An overview of “omic” analytical methods applied in bioactive peptide studies. Food Res. Int., 2013, 54, 925-934.
[22]
Rani, S.; Pooja, K.; Pal, G.K. Exploration of rice protein hydrolysates and peptides with special reference to antioxidant potential: Computational derived approaches for bioactivity determination. Trends Food Sci. Technol., 2018, 80, 61-70.
[23]
Iwaniak, A.; Minkiewicz, P.; Darewicz, M. Food-originating ACE inhibitors, including antihypertensive peptides, as preventive food components in blood pressure reduction. Compr. Rev. Food Sci. Food Saf., 2014, 13(2), 114-134.
[24]
Renukuntla, J.; Vadlapudi, A.D.; Patel, A.; Boddu, S.H.S.; Mitra, A.K. Approaches for enhancing oral bioavailability of peptides and proteins. Int. J. Pharm., 2013, 447(1-2), 75-93.
[25]
Li, Y.; Yu, J. Research progress in structure-activity relationship of bioactive peptides. J. Med. Food, 2015, 18(2), 147-156.
[26]
Sarmadi, B.H.; Ismail, A. Antioxidative peptides from food proteins: A review. Peptides, 2010, 31(10), 1949-1956.
[27]
Guang, C.; Phillips, R.D. Plant food-derived angiotensin I converting enzyme inhibitory peptides. J. Agric. Food Chem., 2009, 57, 5113-5130.
[28]
Brandsch, M.; Knütter, I.; Leibach, F.H. The intestinal H+/peptide symporter PEPT1: Structure–affinity relationships. Eur. J. Pharm. Sci., 2004, 21(1), 53-60.
[29]
Brandsch, M. Drug transport via the intestinal peptide transporter PepT1. Curr. Opin. Pharmacol., 2013, 13(6), 881-887.
[30]
Mizuno, S.; Nishimura, S.; Matsuura, K.; Gotou, T.; Yamamoto, N. Release of short and proline-rich antihypertensive peptides from casein hydrolysate with an Aspergillus oryzae protease. J. Dairy Sci., 2004, 87, 3183-3188.
[31]
Maestri, E.; Marmiroli, M.; Marmiroli, N. Bioactive peptides in plant-derived foodstuffs. J. Proteomics, 2016, 147, 140-155.
[32]
Dia, V.P.; Torres, S.; De Lumen, B.O.; Erdman, J.W.; De Mejia, E.G. Presence of lunasin in plasma of men after soy protein consumption. J. Agric. Food Chem., 2009, 57(4), 1260-1266.
[33]
Hsieh, C.C.; Hernández-Ledesma, B.; Jeong, H.J.; Park, J.H.; de Lumen, B.O. Complementary roles in cancer prevention: Protease inhibitor makes the cancer preventive peptide lunasin bioavailable. PLoS One, 2010, 5(1)e8890
[34]
Vanplaterink, C.; Janssen, H.; Horsten, R.; Haverkamp, J. Quantification of ACE inhibiting peptides in human plasma using high performance liquid chromatography-mass spectrometry. J. Chromatogr.B. , 2006, 830(1), 151-157.
[35]
Zhao, L.; Wang, X.; Zhang, X.L.; Xie, Q.F. Purification and identification of anti-inflammatory peptides derived from simulated gastrointestinal digests of velvet antler protein (Cervus elaphus Linnaeus). J. Food Drug Anal.,, 2016, 24(2), 376-384.
[36]
Nguyen, T.T.P.; Bhandari, B.; Cichero, J.; Prakash, S. A comprehensive review on in vitro digestion of infant formula. Food Res. Int., 2015, 76, 373-386.
[37]
Garcia-Mora, P.; Martín-Martínez, M.; Angeles Bonache, M.; González-Múniz, R.; Peñas, E.; Frias, J.; Martinez-Villaluenga, C. Identification, functional gastrointestinal stability and molecular docking studies of lentil peptides with dual antioxidant and angiotensin I converting enzyme inhibitory activities. Food Chem., 2017, 221, 464-472.
[38]
Bouglé, D.; Bouhallab, S. Dietary bioactive peptides: Human studies. Crit. Rev. Food Sci. Nutr., 2017, 57(2), 335-343.
[39]
Ozuna, C.; Paniagua-Martínez, I.; Castaño-Tostado, E.; Ozimek, L.; Amaya-Llano, S.L. Innovative applications of high-intensity ultrasound in the development of functional food ingredients: Production of protein hydrolysates and bioactive peptides. Food Res. Int., 2015, 77(4), 685-696.
[40]
Sanjukta, S.; Rai, A.K. Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends Food Sci. Technol., 2016, 50, 1-10.
[41]
Hayes, M.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C. Putting microbes to work: Dairy fermentation, cell factories and bioactive peptides. Part I: overview. Biotechnol. J., 2007, 2(4), 426-434.
[42]
Dos Santos Aguilar, J.G.; Sato, H.H. Microbial proteases: Production and application in obtaining protein hydrolysates. Food Res. Int., 2018, 103, 253-262.
[43]
Kamau, S.M.; Lu, R.R.; Chen, W.; Liu, X.M.; Tian, F.W.; Shen, Y.; Gao, T. Functional significance of bioactive peptides derived from milk proteins. Food Rev. Int., 2010, 26, 386-401.
[44]
Marciniak, A.; Suwal, S.; Naderi, N.; Pouliot, Y.; Doyen, A. Enhancing enzymatic hydrolysis of food proteins and production of bioactive peptides using high hydrostatic pressure technology. Trends Food Sci. Technol., 2018, 80, 187-198.
[45]
Vizovišek, M.; Vidmar, R.; Drag, M.; Fonović, M.; Salvesen, G.S.; Turk, B. Protease specificity: Towards in vivo imaging applications and biomarker discovery. Trends Biochem. Sci., 2018, 43(10), 829-844.
[46]
Dullius, A.; Goettert, M.I.; de Souza, C.F.V. Whey protein hydrolysates as a source of bioactive peptides for functional foods – Biotechnological facilitation of industrial scale-up. J. Funct. Foods, 2018, 42, 58-74.
[47]
Welsh, G.; Ryder, K.; Brewster, J.; Walker, C.; Mros, S.; Bekhit, A.E.D.A.; McConnell, M.; Carne, A. Comparison of bioactive peptides prepared from sheep cheese whey using a food-grade bacterial and a fungal protease preparation. Int. J. Sci. Technol., 2017, 52(5), 1252-1259.
[48]
Sánchez, A.; Vazquez, A. Bioactive peptides: A review. Food Qual. Saf., 2017, 1(1), 29-46.
[49]
Bao, W.; Chen, Y.; Wang, D. Prediction of protein structure classes with flexible neural tree. Biomed. Mater. Eng., 2014, 24(6), 3797-3806.
[50]
Bao, W.; Huang, Z.; Yuan, C.A.; Huang, D.S. Pupylation sites prediction with ensemble classification model. Int. J. Data Min. Bioinform., 2017, 18(2), 91-104.
[51]
Bao, W.; Yuan, C.; Zhang, Y.; Han, K.; Nandi, A.K.; Honig, B.; Huang, D. Mutli-features prediction of protein translational modification sites. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2018, 15(5), 1453-1460.
[52]
Bao, W.; Wang, D.; Chen, Y. Classification of protein structure classes on flexible neutral tree. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2017, 14(5), 1122-1133.
[53]
Agyei, D.; Danquah, M.K. Rethinking food-derived bioactive peptides for antimicrobial and immunomodulatory activities. Trends Food Sci. Technol., 2012, 23, 62-69.
[54]
Sanchón, J.; Fernández-Tomé, S.; Miralles, B.; Hernández-Ledesma, B.; Tomé, D.; Gaudichon, C.; Recio, I. Protein degradation and peptide release from milk proteins in human jejunum. Comparison with in vitro gastrointestinal simulation. Food Chem., 2018, 239, 486-494.
[55]
Roy, F.; Boye, J.I.; Simpson, B.K. Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food Res. Int., 2010, 43, 432-442.
[56]
Hermsdorff, H.H.; Zulet, M.A.; Abete, I.; Martínez, J.A. A legume-based hypocaloric diet reduces proinflammatory status and improves metabolic features in overweight/obese subjects. Eur. J. Nutr., 2011, 50(1), 61-69.
[57]
Boye, J.; Zare, F.; Pletch, A. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res. Int., 2010, 43(2), 414-431.
[58]
Day, L. Proteins from land plants – Potential resources for human nutrition and food security. Trends Food Sci. Technol., 2013, 32(1), 25-42.
[59]
Sharif, H.R.; Williams, P.A.; Sharif, M.K.; Abbas, S.; Majeed, H.; Masamba, K.G.; Safdar, W.; Zhong, F. Current progress in the utilization of native and modified legume proteins as emulsifiers and encapsulants - A review. Food Hydrocoll., 2017, 76, 2-16.
[60]
López-Barrios, L.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bioactive peptides and hydrolysates from pulses and their potential use as functional ingredients. J. Food Sci., 2014, 79(3), R273-R283.
[61]
Udenigwe, C.C.; Okolie, C.L.; Qian, H.; Ohanenye, I.C.; Agyei, D.; Aluko, R.E. Ribulose-1,5-bisphosphate carboxylase as a sustainable and promising plant source of bioactive peptides for food applications. Trends Food Sci. Technol., 2017, 69A, 74-84.
[62]
Chakrabarti, S.; Jahandideh, F.; Wu, J. Food-derived bioactive peptides on inflammation and oxidative stress. Biomed. Res., 2014, 2014608979
[63]
Kou, X.; Gao, J.; Xue, Z.; Zhang, Z.; Wang, H.; Wang, Wu. Purification and identification of antioxidant peptides from chickpea (Cicer arietinum L.) albumin hydrolysates. LWT - Food Sci. Technol.,, 2013, 50(2), 591-598.
[64]
Malaguti, M.; Dinelli, G.; Leoncini, E.; Bregola, V.; Bosi, S.; Cicero, A.; Hrelia, S. Bioactive peptides in cereals and legumes: Agronomical, biochemical and clinical aspects. Int. J. Mol. Sci., 2014, 15(11), 21120-21135.
[65]
Siebert, K.J. Quantitative structure−activity relationship modeling of peptide and protein behavior as a function of amino acid composition. J. Agric. Food Chem., 2001, 49(2), 851-858.
[66]
Wu, J.; Aluko, R.E.; Nakai, S. Structural requirements of angiotensin I-converting enzyme inhibitory peptides: Quantitative structure−activity relationship study of di- and tripeptides. J. Agric. Food Chem., 2006, 54(3), 732-738.
[67]
Wu, J.; Aluko, R.E. Quantitative structure-activity relationship study of bitter di- and tripeptides including relationship with angiotensin I-converting enzyme inhibitory activity. J. Pept. Sci., 2007, 13, 63-69.
[68]
Daskaya-Dikmen, C.; Yucetepe, A.; Karbancioglu-Guler, F.; Daskaya, H.; Ozcelik, B. Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from plants. Nutrients, 2017, 9(4), 316.
[69]
Ferreira, I.M.P.L.V.O.; Pinho, O.; Mota, M.V. Preparation of ingredients containing an ACE-inhibitory peptide by tryptic hydrolysis of whey protein concentrates. Int. Dairy J., 2007, 17, 481-487.
[70]
Pihlanto-Leppälä, A. Bioactive peptides derived from bovine whey proteins: Opioid and ACE-inhibitory peptides. Trends Food Sci. Technol., 2000, 11(9-10), 347-356.
[71]
Saito, K.; Jin, D.H.; Ogawa, T. Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry. J. Agric. Food Chem., 2003, 51, 3668-3674.
[72]
Ghribi, A.M.; Sila, A.; Przybylski, R.; Nedjar-Arroume, N.; Makhlouf, I.; Blecker, C.; Attia, H.; Dhulster, P.; Bougatef, A.; Besbes, S. Purification and identification of novel antioxidant peptides from enzymatic hydrolysate of chickpea (Cicer arietinum L.) protein concentrate. J. Funct. Foods, 2015, 12, 516-525.
[73]
Wang, J.R.; Teng, D.; Tian, Z.G. Preparation and mechanism of functional antioxidant peptides. Nat. Product Res. Dev., 2008, 20, 371-375.
[74]
Singh, B.P.; Vij, S.; Hati, S. Functional significance of bioactive peptides derived from soybean. Peptides, 2014, 54, 171-179.
[75]
Kong, X.; Guo, M.; Hua, Y.; Cao, D.; Zhang, C. Enzymatic preparation of immunomodulating hydrolysates from soy proteins. Bioresour. Technol., 2008, 99, 8873-8879.
[76]
Rodríguez-Carrio, J.; Fernández, A.; Riera, F.A.; Suárez, A. Immunomodulatory activities of whey β-lactoglobulin tryptic-digested fractions. Int. Dairy J., 2014, 34(1), 65-73.
[77]
Hou, H.; Fan, Y.; Li, B.; Xue, C.; Yu, G. Preparation of immunomodulatory hydrolysates from Alaska pollock frame. J. Sci. Food Agric., 2012, 92(15), 3029-3038.
[78]
Jumeri; Kim, S.M. Antioxidant and anticancer activities of enzymatic hydrolysates of solitary tunicate (Styela clava). Food Sci. Biotechnol., 2011, 20(4), 1075-1085.
[79]
Hung, C.; Yang, Y.; Kuo, P.; Hsu, K. Protein hydrolysates from tuna cooking juice inhibit cell growth and induce apoptosis of human breast cancer cell line MCF-7. J. Funct. Foods, 2014, 11, 563-570.
[80]
Chi, C.; Hu, F.; Wang, B.; Li, T.; Ding, G. Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. J. Funct. Foods, 2015, 15, 301-313.
[81]
Pan, X.; Zhao, Y.; Hu, F.; Chi, C.; Wang, B. Anticancer activity of a hexapeptide from skate (Raja porosa) cartilage protein hydrolysate in HeLa cells. Mar. Drugs, 2016, 14, 153.
[82]
Wang, Z.; Zhang, X. Isolation and identification of anti-proliferative peptides from Spirulina platensis using three-step hydrolysis. J. Sci. Food Agric., 2017, 97(3), 918-922.
[83]
Schweizer, F. Cationic amphiphilic peptides with cancer-selective toxicity. Eur. J. Pharmacol., 2009, 625, 190-194.
[84]
Dennison, S.R.; Whittaker, M.; Harris, F.; Phoenix, D.A. Anticancer alpha-helical peptides and structure/function relationships underpinning their interactions with tumour cell membranes. Curr. Protein Pept. Sci., 2006, 7, 487-499.
[85]
de Mejia, E.G.; Dia, V.P. Lunasin and lunasin-like peptides inhibit inflammation through suppression of NF-κβ. Peptides, 2009, 30(12), 2388-2398.
[86]
Kovacs-Nolan, J.; Zhang, H.; Ibuki, M.; Nakamori, T.; Yoshiura, K.; Turner, P.V.; Matsui, T.; Mine, Y. The PepT1-transportable soy tripeptide VPY reduces intestinal inflammation. Biochim. Biophys. Acta, 2012, 1820(11), 1753-1763.
[87]
Zhang, H.; Kovacs-Nolan, J.; Kodera, T.; Eto, Y.; Mine, Y. γ-Glutamyl cysteine and γ-glutamyl valine inhibit TNF-α signaling in intestinal epithelial cells and reduce inflammation in a mouse model of colitis via allosteric activation of the calcium-sensing receptor. Biochim. Biophys. Acta, 2015, 1852(5), 792-804.
[88]
Ialenti, A.; Santagada, V.; Caliendo, G.; Severino, B.; Fiorino, F.; Maffia, P.; Ianaro, A.; Morelli, F.; Di Micco, B.; Cartenì, M. Synthesis of novel anti-inflammatory peptides derived from the amino-acid sequence of the bioactive protein SV-IV. Eur. J. Biochem., 2001, 268(12), 3399-3406.
[89]
Shang, D.; Liang, H.; Wei, S.; Yan, X.; Yang, Q.; Sun, Y. Effects of antimicrobial peptide L-K6, a temporin-1CEb analog on oral pathogen growth, Streptococcus mutans biofilm formation, and anti-inflammatory activity. Appl. Microbiol. Biotechnol., 2014, 98, 8685-8695.
[90]
Garcia-Mora, P.; Frias, J.; Peñas, E.; Zieliński, H.; Giménez-Bastida, J.A.; Wiczkowski, W.; Zielińska, D.; Martínez-Villaluenga, C. Simultaneous release of peptides and phenolics with antioxidant, ACE-inhibitory and anti-inflammatory activities from pinto bean (Phaseolus vulgaris L. var. pinto) proteins by subtilisins. J. Funct. Foods, 2015, 18, 319-332.
[91]
Martinez-Villaluenga, C.; Dia, V.P.; Berhow, M.; Bringe, N.A.; Gonzalez de Mejia, E. Protein hydrolysates from beta-conglycinin enriched soybean genotypes inhibit lipid accumulation and inflammation in vitro. Mol. Nutr. Food Res., 2009, 53, 1007-1018.
[92]
Oseguera-Toledo, M.E.; de Mejia, E.G.; Dia, V.P.; Amaya-Llano, S.L. Common bean (Phaseolus vulgaris L.) hydrolysates inhibit inflammation in LPS-induced macrophages through suppression of NF-κB pathways. Food Chem., 2011, 127, 1175-1185.
[93]
Vernaza, M.G.; Dia, V.P.; de Mejia, E.G.; Chang, Y.K. Antioxidant and antiinflammatory properties of germinated and hydrolysed Brazilian soybean flours. Food Chem., 2012, 134(4), 2217-2225.
[94]
Dia, V.P.; Wang, W.; Oh, V.L.; De Lumen, V.L.; González de Mejia, E. Isolation, purification and characterization of lunasin from defatted soybean flour and in vitro evaluation of its anti-inflammatory activity. Food Chem., 2009, 114(1), 108-115.
[95]
Hwang, J.S.; Yoo, H.J.; Songa, H.J.; Kimb, K.K.; Chunc, Y.J.; Matsui, T.; Kim, H.B. Inflammation-related signaling pathways implicating TGFβ are revealed in the expression profiling of MCF7 cell treated with fermented soybean, Chungkookjang. Nutr. Cancer, 2011, 63(4), 645-652.
[96]
Young, D.; Ibuki, M.; Nakamori, T.; Fan, M.; Mine, Y. Soy-derived di- and tripeptides alleviate colon and ileum inflammation in pigs with dextran sodium sulfate-induced colitis. J. Nutr., 2012, 142, 363-368.
[97]
González-Montoya, M.; Hernández-Ledesma, B.; Silván, J.M.; Mora-Escobedo, R.; Martínez-Villaluenga, C. Peptides derived from in vitro gastrointestinal digestion of germinated soybean proteins inhibit human colon cancer cells proliferation and inflammation. Food Chem., 2018, 242, 75-82.
[98]
López-Barrios, L.; Antunes-Ricardo, M.; Gutiérrez-Uribe, J.A. Changes in antioxidant and antiinflammatory activity of black bean (Phaseolus vulgaris L.) protein isolates due to germination and enzymatic digestion. Food Chem., 2016, 203, 417-424.
[99]
Ndiaye, F.; Vuong, T.; Duarte, J.; Aluko, R.E.; Matar, C. Anti-oxidant, anti-inflammatory and immunomodulating properties of an enzymatic protein hydrolysate from yellow field pea seeds. Eur. J. Nutr., 2012, 51, 29-37.
[100]
Bautista-Expósito, S.; Peñas, E.; Silván, J.M.; Frias, J.; Martínez-Villaluenga, C. pH-controlled fermentation in mild alkaline conditions enhances bioactive compounds and functional features of lentil to ameliorate metabolic disturbances. Food Chem., 2018, 248, 262-271.
[101]
Milán-Noris, A.K.; Gutiérrez-Uribe, J.A.; Santacruz, A.; Serna-Saldívar, S.O.; Martínez-Villaluenga, C. Peptides and isoflavones in gastrointestinal digests contribute to the anti-inflammatory potential of cooked or germinated desi and kabuli chickpea (Cicer arietinum L.). Food Chem., 2018, 268, 66-76.
[102]
Hernández-Ledesma, B.; Hsieh, C.C.; de Lumen, B.O. Antioxidant and anti-inflammatory properties of cancer preventive peptide lunasin in RAW 264.7 macrophages. Biochem. Biophys. Res. Commun., 2009, 390, 803-808.
[103]
Zhang, H.; Kodera, T.; Eto, Y.; Mine, Y. γ-Glutamyl valine supplementation-induced mitigation of gut inflammation in a porcine model of colitis. J. Funct. Foods, 2016, 24, 558-567.
[104]
Herman, E.M. Soybean seed proteome rebalancing. Front. Plant Sci., 2014, 5, 437.
[105]
Gomes, L.S.; Senna, R.; Sandim, V.; Silva-Neto, M.A.C.; Perales, J.E.A.; Zingali, R.B.; Soares, M.; Fialho, E. Four conventional soybean [Glycine max (L.) Merrill] seeds exhibit different protein profiles as revealed by proteomic analysis. J. Agric. Food Chem., 2014, 62, 1283-1293.
[106]
Capriotti, A.L.; Caruso, G.; Cavaliere, C.; Samperi, R.; Ventura, S.; Zenezini Chiozzi, R.; Laganà, A. Identification of potential bioactive peptides generated by simulated gastrointestinal digestion of soybean seeds and soy milk proteins. J. Food Compos. Anal., 2015, 44, 205-213.
[107]
Campos-Vega, R.; Reynoso-Camacho, R.; Pedraza-Aboytes, G.; Acosta-Gallegos, J.A.; Guzman-Maldonado, S.H.; Paredes-Lopez, O.; Oomah, B.D.; Loarca-Piña, G. Chemical composition and in vitro polysaccharide fermentation of different beans. J. Food Sci., 2009, 74(7), 59-65.
[108]
Nagai, H.; Kumamoto, H.; Fukuda, M.; Takahashi, T. Inducible nitric oxide synthase and apoptosis-related factors in the synovial tissues of temporomandibular joints with internal derangement and osteoarthritis. J. Oral Maxillofac. Surg., 2003, 61(7), 801-807.
[109]
Mora-Escobedo, R.; Robles-Ramírez, M.C.; Ramón-Gallegos, E.; Reza-Alemán, R. Effect of protein hydrolysates from germinated soybean on cancerous cells of the human cervix: an in vitro study. Plant Foods Hum. Nutr., 2009, 64(4), 271-278.
[110]
Paucar-Menacho, L.M.; Berhow, M.A.; Mandarino, J.M.G.; de Mejia, E.G.; Chang, Y.K. Optimisation of germination time and temperature on the concentration of bioactive compounds in Brazilian soybean cultivar BRS 133 using response surface methodology. Food Chem., 2010, 119(2), 636-642.
[111]
Dia, V.P.; Gomez, T.; Vernaza, G.; Berhow, M.; Chang, Y.K.; de Mejia, E.G. Bowman-Birk and Kunitz protease inhibitors among antinutrients and bioactives modified by germination and hydrolysis in brazilian soybean cultivar BRS 133. J. Agric. Food Chem., 2012, 60(32), 7886-7894.
[112]
Hernández-Ledesma, B.; García-Nebot, M.J.; Fernández-Tomé, S.; Amigo, L.; Recio, I. Dairy protein hydrolysates: Peptides for health benefits. Int. Dairy J., 2014, 38, 82-100.
[113]
Hernández-Ledesma, B.; Hsieh, C.C.; de Lumen, B.O. Lunasin, a novel seed peptide for cancer prevention. Peptides, 2009, 30, 426-430.
[114]
Galvez, A.F.; Chen, N.; Macasieb, J.; de Lumen, B.O. Chemopreventive property of a soybean peptide (lunasin) that binds to deacetylated histones and inhibits acetylation. Cancer Res., 2001, 61, 7473-7478.
[115]
Lam, Y.; Galvez, A.F.; de Lumen, B.O. Lunasin suppresses E1A-mediated transformation of mammalian cells but does not inhibit growth of immortalized and established cancer cell lines. Nutr. Cancer, 2003, 47, 88-94.
[116]
Smyth, E.M.; Grosser, T.; Wang, M.; Yu, Y.; FitzGerald, G.A. Prostanoids in health and disease. J. Lipid Res., 2009, 50, S423-S428.
[117]
Kawai, T.; Akira, S. Signaling to NF-κB by toll-like receptors. Trends Mol. Med., 2007, 13, 460-469.
[118]
Ogawara, K.; Kuldo, J.M.; Oosterhuis, K.; Kroesen, B.J.; Rots, M.G.; Trautwein, C.; Kimura, T.; Haisma, H.J.; Molema, J. Functional inhibition of NF-kappa B signal transduction in αvβ3 integrin expressing endothelial cells by using RGD-PEG modified adenovirus with a mutant IκB gene. Arthritis Res. Ther., 2006, 8(1), R32.
[119]
Jobin, C.; Balfour Sartor, R. The IκB/NF-κB system: A key determinant of mucosal inflammation and protection. Am. J. Physiol. Cell Physiol., 2000, 278, C451-C462.
[120]
Xu, G.L.; Liu, F.; Ao, G.Z.; He, S.Y.; Ju, M.; Zhao, Y.; Xue, T. Anti-inflammatory effects and gastrointestinal safety of NNU-hdpa, a novel dual COX/5-LOX inhibitor. Eur. J. Pharmacol., 2009, 611, 100-106.
[121]
Dinarello, C.A. Proinflammatory cytokines. Chest, 2000, 118, 503-508.
[122]
Laing, K. Chemokines. Dev. Comp. Immunol., 2004, 28(5), 443-460.
[123]
Saleh, L.S.; Bryant, S.J. In vitro and in vivo models for assessing the host response to biomaterials. Drug Discov. Today Dis. Models, 2017, 24, 13-21.