Sulfated Polysaccharides from Macroalgae for Bone Tissue Regeneration

Page: [1200 - 1209] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Utilization of macroalgae has gained much attention in the field of pharmaceuticals, nutraceuticals, food and bioenergy. Macroalgae has been widely consumed in Asian countries as food from ancient days and proved that it has potential bioactive compounds which are responsible for its nutritional properties. Macroalgae consists of a diverse range of bioactive compounds including proteins, lipids, pigments, polysaccharides, etc. Polysaccharides from macroalgae have been utilized in food industries as gelling agents and drug excipients in the pharmaceutical industries owing to their biocompatibility and gel forming properties. Exploration of macroalgae derived sulfated polysaccharides in biomedical applications is increasing recently.

Methods: In the current review, we have provided information of three different sulfated polysaccharides such as carrageenan, fucoidan and ulvan and their isolation procedure (enzymatic precipitation, microwave assisted method, and enzymatic hydrolysis method), structural details, and their biomedical applications exclusively for bone tissue repair and regeneration.

Results: From the scientific results on sulfated polysaccharides from macroalgae, we conclude that sulfated polysaccharides have exceptional properties in terms of hydrogel-forming ability, scaffold formation, and mimicking the extracellular matrix, increasing alkaline phosphatase activity, enhancement of biomineralization ability and stem cell differentiation for bone tissue regeneration.

Conclusion: Overall, sulfated polysaccharides from macroalgae may be promising biomaterials in bone tissue repair and regeneration.

Keywords: Sulfated polysaccharides, fucoidan, carrageenan, ulvan, bone tissue engineering, macroalgae.

[1]
http://www.mesa.edu.au/marine_algae/ In: ed.^eds., Marine Education Society of Australia
[2]
Rupérez P, Ahrazem O, Leal JA. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J Agric Food Chem 2002; 50(4): 840-5.
[http://dx.doi.org/10.1021/jf010908o] [PMID: 11829654]
[3]
Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 2007; 59(4-5): 207-33.
[http://dx.doi.org/10.1016/j.addr.2007.03.012] [PMID: 17482309]
[4]
Jiao G, Yu G, Zhang J, Ewart HS. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 2011; 9(2): 196-223.
[http://dx.doi.org/10.3390/md9020196] [PMID: 21566795]
[5]
Venkatesan J, Lowe B, Anil S, et al. Seaweed polysaccharides and their potential biomedical applications. Starke 2015; 67: 381-90.
[http://dx.doi.org/10.1002/star.201400127]
[6]
Fidelis GP, Camara RBG, Queiroz MF, et al. Proteolysis, NaOH and ultrasound-enhanced extraction of anticoagulant and antioxidant sulfated polysaccharides from the edible seaweed, Gracilaria birdiae. Molecules 2014; 19(11): 18511-26.
[http://dx.doi.org/10.3390/molecules191118511] [PMID: 25401396]
[7]
Seedevi P, Sudharsan S, Kumar SV, Srinivasan A, Vairamani S, Shanmugan A. Isolation and characterization of sulphated polysaccharides from Codium tomentosum (J. Stackhouse, 1797) collected from southeast coast of India. Adv Appl Sci Res 2013; 4: 72-7.
[8]
Rodriguez-Jasso RM, Mussatto SI, Pastrana L, Aguilar CN, Teixeira JA. Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydr Polym 2011; 86: 1137-44.
[http://dx.doi.org/10.1016/j.carbpol.2011.06.006]
[9]
Ye H, Wang K, Zhou C, Liu J, Zeng X. Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum. Food Chem 2008; 111(2): 428-32.
[http://dx.doi.org/10.1016/j.foodchem.2008.04.012] [PMID: 26047446]
[10]
McCandless E, Craigie J. Sulfated polysaccharides in red and brown algae. Annu Rev Plant Physiol 1979; 30: 41-53.
[http://dx.doi.org/10.1146/annurev.pp.30.060179.000353]
[11]
Yang C, Chung D, You S. Determination of physicochemical properties of sulphated fucans from sporophyll of Undaria pinnatifida using light scattering technique. Food Chem 2008; 111(2): 503-7.
[http://dx.doi.org/10.1016/j.foodchem.2008.03.085] [PMID: 26047457]
[12]
Marudhupandi T, Kumar TTA. Antibacterial effect of fucoidan from Sargassum wightii against the chosen human bacterial pathogens. Int Curr Pharm J 2013; 2: 156-8.
[http://dx.doi.org/10.3329/icpj.v2i10.16408]
[13]
Rani V, Shakila R, Jawahar P, Srinivasan A. Influence of Species, Geographic Location, Seasonal Variation and Extraction Method on the Fucoidan Yield of the Brown Seaweeds of Gulf of Mannar, India. Indian J Pharm Sci 2017; 79: 65-71.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000202]
[14]
Ajithkumar S, Krishnaraj G. Abdul Haleem MI, V Manivasagan, Ramesh Babu NG, Durai SP. Optimization of carrageenan extraction process from seaweed. World J Pharm Pharm Sci 2017; 6: 2205-13.
[15]
Mussatto SI. Microwave-Assisted Extraction of Fucoidan from Marine Algae. In: ed., Natural Products From Marine Algae. Springer, 2015; pp. 151-157
[http://dx.doi.org/10.1007/978-1-4939-2684-8_9]
[16]
Quitain AT, Kai T, Sasaki M, Goto M. Microwave–hydrothermal extraction and degradation of fucoidan from supercritical carbon dioxide deoiled Undaria pinnatifida. Ind Eng Chem Res 2013; 52: 7940-6.
[http://dx.doi.org/10.1021/ie400527b]
[17]
Yuan Y, Macquarrie D. Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity. Carbohydr Polym 2015; 129: 101-7.
[http://dx.doi.org/10.1016/j.carbpol.2015.04.057] [PMID: 26050894]
[18]
Lorbeer A, Lahnstein J, Fincher G, Su P, Zhang W. Kinetics of conventional and microwave-assisted fucoidan extractions from the brown alga, Ecklonia radiata. J Appl Phycol 2015; 27: 2079-87.
[http://dx.doi.org/10.1007/s10811-014-0446-8]
[19]
Yuan Y, Macquarrie DJ. Microwave assisted step-by-step process for the production of fucoidan, alginate sodium, sugars and biochar from Ascophyllum nodosum through a biorefinery concept. Bioresour Technol 2015; 198: 819-27.
[http://dx.doi.org/10.1016/j.biortech.2015.09.090] [PMID: 26454369]
[20]
Tsubaki S, Oono K, Hiraoka M, Onda A, Mitani T. Microwave-assisted hydrothermal extraction of sulfated polysaccharides from Ulva spp. and Monostroma latissimum. Food Chem 2016; 210: 311-6.
[http://dx.doi.org/10.1016/j.foodchem.2016.04.121] [PMID: 27211652]
[21]
Melo M, Feitosa J, Freitas A, De Paula R. Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea. Carbohydr Polym 2002; 49: 491-8.
[http://dx.doi.org/10.1016/S0144-8617(02)00006-1]
[22]
Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 2004; 32(3): 477-86.
[http://dx.doi.org/10.1023/B:ABME.0000017544.36001.8e] [PMID: 15095822]
[23]
Carvalho JL, de Goes AM, Gomes DA, de Carvalho PH. http://www.intechopen.com/books/advances-in-biomaterials-science-and-biomedical-applications/innovative-strategies-for-tissue-engineering Innovative Strategies for Tissue Engineering, Advances in Biomaterials Science and Biomedical Applications, Prof. Rosario Pignatello (Ed.), ISBN: 978-953-51-1051-4, InTech, DOI: 10.5772/53337. Available from:
[24]
Costa LS, Fidelis GP, Cordeiro SL, et al. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed Pharmacother 2010; 64(1): 21-8.
[http://dx.doi.org/10.1016/j.biopha.2009.03.005] [PMID: 19766438]
[25]
El Gamal AA. Biological importance of marine algae. Saudi Pharm J 2010; 18(1): 1-25.
[http://dx.doi.org/10.1016/j.jsps.2009.12.001] [PMID: 23960716]
[26]
Senthilkumar K, Ramajayam G, Venkatesan J, Kim S-K, Ahn B-C. Fucoidans in nanomedicine. Mar Drugs 2016; 14: 145.
[27]
Chollet L, Saboural P, Chauvierre C, Villemin J-N, Letourneur D, Chaubet F. Fucoidans in Nanomedicine. Mar Drugs 2016; 14(8): 145.
[http://dx.doi.org/10.3390/md14080145] [PMID: 27483292]
[28]
Wijesekara I, Pangestuti R, Kim S-K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr Polym 2011; 84: 14-21.
[http://dx.doi.org/10.1016/j.carbpol.2010.10.062]
[29]
Xue C-H, Fang Y, Lin H, et al. Chemical characters and antioxidative properties of sulfated polysaccharides from Laminaria japonica. J Appl Phycol 2001; 13: 67-70.
[http://dx.doi.org/10.1023/A:1008103611522]
[30]
Rocha de Souza MC, Marques CT, Guerra Dore CM, Ferreira da Silva FR, Oliveira Rocha HA, Leite EL. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J Appl Phycol 2007; 19(2): 153-60.
[http://dx.doi.org/10.1007/s10811-006-9121-z] [PMID: 19396353]
[31]
Hu T, Liu D, Chen Y, Wu J, Wang S. Antioxidant activity of sulfated polysaccharide fractions extracted from Undaria pinnitafida in vitro. Int J Biol Macromol 2010; 46(2): 193-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.12.004] [PMID: 20025899]
[32]
Souza BW, Cerqueira MA, Bourbon AI, et al. Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocoll 2012; 27: 287-92.
[http://dx.doi.org/10.1016/j.foodhyd.2011.10.005]
[33]
Vishchuk OS, Ermakova SP, Zvyagintseva TN. Sulfated polysaccharides from brown seaweeds Saccharina japonica and Undaria pinnatifida: isolation, structural characteristics, and antitumor activity. Carbohydr Res 2011; 346(17): 2769-76.
[http://dx.doi.org/10.1016/j.carres.2011.09.034] [PMID: 22024567]
[34]
Witvrouw M, De Clercq E. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol 1997; 29(4): 497-511.
[http://dx.doi.org/10.1016/S0306-3623(96)00563-0] [PMID: 9352294]
[35]
Ghosh T, Chattopadhyay K, Marschall M, Karmakar P, Mandal P, Ray B. Focus on antivirally active sulfated polysaccharides: from structure-activity analysis to clinical evaluation. Glycobiology 2009; 19(1): 2-15.
[http://dx.doi.org/10.1093/glycob/cwn092] [PMID: 18815291]
[36]
Takada T, Katagiri T, Ifuku M, et al. Sulfated polysaccharides enhance the biological activities of bone morphogenetic proteins. J Biol Chem 2003; 278(44): 43229-35.
[http://dx.doi.org/10.1074/jbc.M300937200] [PMID: 12912996]
[37]
Li L, Ni R, Shao Y, Mao S. Carrageenan and its applications in drug delivery. Carbohydr Polym 2014; 103: 1-11.
[http://dx.doi.org/10.1016/j.carbpol.2013.12.008] [PMID: 24528694]
[38]
Nakashima H, Kido Y, Kobayashi N, Motoki Y, Neushul M, Yamamoto N. Purification and characterization of an avian myeloblastosis and human immunodeficiency virus reverse transcriptase inhibitor, sulfated polysaccharides extracted from sea algae. Antimicrob Agents Chemother 1987; 31(10): 1524-8.
[http://dx.doi.org/10.1128/AAC.31.10.1524] [PMID: 2449120]
[39]
Baba M, Snoeck R, Pauwels R, de Clercq E. Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob Agents Chemother 1988; 32(11): 1742-5.
[http://dx.doi.org/10.1128/AAC.32.11.1742] [PMID: 2472775]
[40]
Santo VE, Frias AM, Carida M, et al. Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications. Biomacromolecules 2009; 10(6): 1392-401.
[http://dx.doi.org/10.1021/bm8014973] [PMID: 19385660]
[41]
Gashti MP, Stir M, Hulliger J. Synthesis of bone-like micro-porous calcium phosphate/iota-carrageenan composites by gel diffusion. Colloids Surf B Biointerfaces 2013; 110: 426-33.
[http://dx.doi.org/10.1016/j.colsurfb.2013.04.051] [PMID: 23759383]
[42]
Gan SL, Feng QL. [Preparation and characterization of a new injectable bone substitute-carrageenan/nano-hydroxyapatite/collagen Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2006; 28(5): 710-3.
[PMID: 17121238]
[43]
Feng W, Feng S, Tang K, He X, Jing A, Liang G. A novel composite of collagen-hydroxyapatite/kappa-carrageenan. J Alloys Compd 2017; 693: 482-9.
[http://dx.doi.org/10.1016/j.jallcom.2016.09.234]
[44]
Nourmohammadi J, Roshanfar F, Farokhi M, Haghbin Nazarpak M. Silk fibroin/kappa-carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications. Mater Sci Eng C 2017; 76: 951-8.
[http://dx.doi.org/10.1016/j.msec.2017.03.166] [PMID: 28482612]
[45]
Venkatesan J, Bhatnagar I, Manivasagan P, Kang K-H, Kim S-K. Alginate composites for bone tissue engineering: A review. Int J Biol Macromol 2015; 72: 269-81.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.07.008] [PMID: 25020082]
[46]
Liu H, Cheng J, Chen F, et al. Biomimetic and cell-mediated mineralization of hydroxyapatite by carrageenan functionalized graphene oxide. ACS Appl Mater Interfaces 2014; 6(5): 3132-40.
[http://dx.doi.org/10.1021/am4057826] [PMID: 24527702]
[47]
Nakata R, Miyazaki T, Morita Y, Ishida E, Iwatsuki R, Ohtsuki C. Apatite formation abilities of various carrageenan gels in simulated body environment. J Ceram Soc Jpn 2010; 118: 487-90.
[http://dx.doi.org/10.2109/jcersj2.118.487]
[48]
Kim IY, Iwatsuki R, Kikuta K, Morita Y, Miyazaki T, Ohtsuki C. Thermoreversible behavior of κ-carrageenan and its apatite-forming ability in simulated body fluid. Mater Sci Eng C 2011; 31: 1472-6.
[http://dx.doi.org/10.1016/j.msec.2011.05.015]
[49]
Ale MT, Meyer AS. Fucoidans from brown seaweeds: An update on structures, extraction techniques and use of enzymes as tools for structural elucidation. RSC Advances 2013; 3: 8131-41.
[http://dx.doi.org/10.1039/C3RA23373A]
[50]
Nishino T, Yokoyama G, Dobashi K, Fujihara M, Nagumo T. Isolation, purification, and characterization of fucose-containing sulfated polysaccharides from the brown seaweed Ecklonia kurome and their blood-anticoagulant activities. Carbohydr Res 1989; 186(1): 119-29.
[http://dx.doi.org/10.1016/0008-6215(89)84010-8] [PMID: 2720702]
[51]
Wijesinghe W, Jeon Y-J. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydr Polym 2012; 88: 13-20.
[http://dx.doi.org/10.1016/j.carbpol.2011.12.029]
[52]
Cho Y-S, Jung W-K, Kim J-A, Choi I-W, Kim S-K. Beneficial effects of fucoidan on osteoblastic MG-63 cell differentiation. Food Chem 2009; 116: 990-4.
[http://dx.doi.org/10.1016/j.foodchem.2009.03.051]
[53]
Kim S-K, Cho Y-S. Pharmaceutical compositions containing fucoidan for stimulating and activating osteogenesis. In: ed. Google Patents, 2011
[54]
Park SJ, Lee KW, Lim D-S, Lee S. The sulfated polysaccharide fucoidan stimulates osteogenic differentiation of human adipose-derived stem cells. Stem Cells Dev 2012; 21(12): 2204-11.
[http://dx.doi.org/10.1089/scd.2011.0521] [PMID: 22050637]
[55]
Kim BS, Kang H-J, Park J-Y, Lee J. Fucoidan promotes osteoblast differentiation via JNK- and ERK-dependent BMP2-Smad 1/5/8 signaling in human mesenchymal stem cells. Exp Mol Med 2015; 47e128
[http://dx.doi.org/10.1038/emm.2014.95] [PMID: 25572360]
[56]
Kim BS, Yang SS, You HK, Shin HI, Lee J. Fucoidan-induced osteogenic differentiation promotes angiogenesis by inducing vascular endothelial growth factor secretion and accelerates bone repair. J Tissue Eng Regen Med 2018; 12(3): e1311-24.
[http://dx.doi.org/10.1002/term.2509] [PMID: 28714275]
[57]
Hwang P-A, Hung Y-L, Phan NN, et al. The in vitro and in vivo effects of the low molecular weight fucoidan on the bone osteogenic differentiation properties. Cytotechnology 2016; 68(4): 1349-59.
[http://dx.doi.org/10.1007/s10616-015-9894-5] [PMID: 26271462]
[58]
Venkatesan J, Bhatnagar I, Kim S-K. Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar Drugs 2014; 12(1): 300-16.
[http://dx.doi.org/10.3390/md12010300] [PMID: 24441614]
[59]
Lee JS, Jin GH, Yeo MG, Jang CH, Lee H, Kim GH. Fabrication of electrospun biocomposites comprising polycaprolactone/fucoidan for tissue regeneration. Carbohydr Polym 2012; 90(1): 181-8.
[http://dx.doi.org/10.1016/j.carbpol.2012.05.012] [PMID: 24751028]
[60]
Jin G, Kim GH. Rapid-prototyped PCL/fucoidan composite scaffolds for bone tissue regeneration: design, fabrication, and physical/biological properties. J Mater Chem 2011; 21: 17710-8.
[http://dx.doi.org/10.1039/c1jm12915e]
[61]
Jin G, Kim G. Multi-layered polycaprolactone-alginate-fucoidan biocomposites supplemented with controlled release of fucoidan for bone tissue regeneration: fabrication, physical properties, and cellular activities. Soft Matter 2012; 8: 6264-72.
[http://dx.doi.org/10.1039/c2sm07256d]
[62]
Changotade SI, Korb G, Bassil J, et al. Potential effects of a low-molecular-weight fucoidan extracted from brown algae on bone biomaterial osteoconductive properties. J Biomed Mater Res A 2008; 87(3): 666-75.
[http://dx.doi.org/10.1002/jbm.a.31819] [PMID: 18189302]
[63]
Jin X, Zhu L, Li X, et al. Low-molecular weight fucoidan inhibits the differentiation of osteoclasts and reduces osteoporosis in ovariectomized rats. Mol Med Rep 2017; 15(2): 890-8.
[http://dx.doi.org/10.3892/mmr.2016.6062] [PMID: 28000877]
[64]
Jeong H-S, Venkatesan J, Kim S-K. Hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. Int J Biol Macromol 2013; 57: 138-41.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.03.011] [PMID: 23500439]
[65]
Tae Young A, Kang JH, Kang DJ, et al. Interaction of stem cells with nano hydroxyapatite-fucoidan bionanocomposites for bone tissue regeneration. Int J Biol Macromol 2016; 93(Pt B): 1488-91. [[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.027] [PMID: 27402459]
[66]
Lowe B, Venkatesan J, Anil S, Shim MS, Kim S-K. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering Int J Biol Macromol 2016; 93(Pt B): 1479-87. [[http://dx.doi.org/10.1016/j.ijbiomac.2016.02.054] [PMID: 26921504]
[67]
Lu H-T, Lu T-W, Chen C-H, Lu K-Y, Mi F-L. Development of nanocomposite scaffolds based on biomineralization of N, Ocarboxymethyl chitosan/fucoidan conjugates for bone tissue engineering. Int J Biol Macromol 2018; 120(Pt B): 2335-45. [[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.179] [PMID: 30189280]
[68]
Pajovich HT, Banerjee IA. Biomineralization of Fucoidan-Peptide Blends and Their Potential Applications in Bone Tissue Regeneration. J Funct Biomater 2017; 8(3): 41.
[http://dx.doi.org/10.3390/jfb8030041] [PMID: 29036882]
[69]
Puvaneswary S, Talebian S, Raghavendran HB, et al. Fabrication and in vitro biological activity of βTCP-Chitosan-Fucoidan composite for bone tissue engineering. Carbohydr Polym 2015; 134: 799-807.
[http://dx.doi.org/10.1016/j.carbpol.2015.07.098] [PMID: 26428187]
[70]
Puvaneswary S, Raghavendran HB, Talebian S, et al. Incorporation of Fucoidan in β-Tricalcium phosphate-Chitosan scaffold prompts the differentiation of human bone marrow stromal cells into osteogenic lineage. Sci Rep 2016; 6: 24202.
[http://dx.doi.org/10.1038/srep24202] [PMID: 27068453]
[71]
Lahaye M, Robic A. Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 2007; 8(6): 1765-74.
[http://dx.doi.org/10.1021/bm061185q] [PMID: 17458931]
[72]
Ray B, Lahaye M. Cell-wall polysaccharides from the marine green alga Ulva “rigida”(Ulvales, Chlorophyta). Chemical structure of ulvan. Carbohydr Res 1995; 274: 313-8.
[http://dx.doi.org/10.1016/0008-6215(95)00059-3]
[73]
Alves A, Sousa RA, Reis RL. A practical perspective on ulvan extracted from green algae. J Appl Phycol 2012; 25: 407-24.
[http://dx.doi.org/10.1007/s10811-012-9875-4]
[74]
Chiellini F, Morelli A. Ulvan: A versatile platform of biomaterials from renewable resources. In: ed., Biomaterials-Physics and Chemistry. InTech, 2011. [[http://dx.doi.org/10.5772/24901]
[75]
Morelli A, Puppi D, Chiellini F. Morelli A, Puppi D, Chiellini F. Perspectives on Biomedical Applications of Ulvan. In: ed.^eds., Seaweed Polysaccharides. Elsevier, 2017; pp. 305-330. [[http://dx.doi.org/10.1016/B978-0-12-809816-5.00016-5]
[76]
Alves A, Pinho ED, Neves NM, Sousa RA, Reis RL. Processing ulvan into 2D structures: cross-linked ulvan membranes as new biomaterials for drug delivery applications. Int J Pharm 2012; 426(1-2): 76-81.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.021] [PMID: 22281048]
[77]
Dash M, Samal SK, Bartoli C, et al. Biofunctionalization of ulvan scaffolds for bone tissue engineering. ACS Appl Mater Interfaces 2014; 6(5): 3211-8.
[http://dx.doi.org/10.1021/am404912c] [PMID: 24494863]
[78]
Dash M, Samal SK, Morelli A, et al. Ulvan-chitosan polyelectrolyte complexes as matrices for enzyme induced biomimetic mineralization. Carbohydr Polym 2018; 182: 254-64.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.016] [PMID: 29279122]
[79]
Alves A, Duarte ARC, Mano JF, Sousa RA, Reis RL. PDLLA enriched with ulvan particles as a novel 3D porous scaffold targeted for bone engineering. J Supercrit Fluids 2012; 65: 32-8.
[http://dx.doi.org/10.1016/j.supflu.2012.02.023]
[80]
Barros AA, Alves A, Nunes C, Coimbra MA, Pires RA, Reis RL. Carboxymethylation of ulvan and chitosan and their use as polymeric components of bone cements. Acta Biomater 2013; 9(11): 9086-97.
[http://dx.doi.org/10.1016/j.actbio.2013.06.036] [PMID: 23816652]
[81]
Toskas G, Heinemann S, Heinemann C, et al. Ulvan and ulvan/chitosan polyelectrolyte nanofibrous membranes as a potential substrate material for the cultivation of osteoblasts. Carbohydr Polym 2012; 89(3): 997-1002.
[http://dx.doi.org/10.1016/j.carbpol.2012.04.045] [PMID: 24750891]
[82]
Udani J, Hesslink R. The potential use of fucoidans from brown seaweed as a dietary supplement. J Nutr Food Sci 2012; 2: 2.
[http://dx.doi.org/10.4172/2155-9600.1000171]
[83]
Yoon M, Cho S. Triphlorethol A, a Dietary polyphenol from seaweed, decreases sleep latency and increases non-rapid eye movement sleep in mice. Mar Drugs 2018; 16(5): 139.
[http://dx.doi.org/10.3390/md16050139] [PMID: 29695101]
[84]
Venkatesan J, Kim S-K. In: ed., Springer Handbook of Marine Biotechnology. Springer, 2015; pp. 1195-1215. [[http://dx.doi.org/10.1007/978-3-642-53971-8_53]
[85]
Gashti MP, Stir M, Hulliger J. Synthesis of bone-like micro-porous calcium phosphate/iota-carrageenan composites by gel diffusion. Colloids Surf B Biointerfaces 2013; 110: 426-33.
[http://dx.doi.org/10.1016/j.colsurfb.2013.04.051] [PMID: 23759383]
[86]
Nourmohammadi J, Roshanfar F, Farokhi M, Haghbin Nazarpak M. Silk fibroin/kappa-carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications. Mater Sci Eng C 2017; 76: 951-8.
[http://dx.doi.org/10.1016/j.msec.2017.03.166] [PMID: 28482612]
[87]
Mihaila SM, Popa EG, Reis RL, Marques AP, Gomes ME. Fabrication of endothelial cell-laden carrageenan microfibers for microvascularized bone tissue engineering applications. Biomacromolecules 2014; 15(8): 2849-60.
[http://dx.doi.org/10.1021/bm500036a] [PMID: 24963559]
[88]
González Ocampo JI, Machado de Paula MM, Bassous NJ, Lobo AO, Ossa Orozco CP, Webster TJ. Osteoblast responses to injectable bone substitutes of kappa-carrageenan and nano hydroxyapatite. Acta Biomater 2019; 83: 425-34.
[http://dx.doi.org/10.1016/j.actbio.2018.10.023] [PMID: 30342285]
[89]
Boateng JS, Pawar HV, Tetteh J. Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing. Int J Pharm 2013; 441(1-2): 181-91.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.045] [PMID: 23228898]
[90]
Kikionis S, Ioannou E, Toskas G, Roussis V. Electrospun biocomposite nanofibers of ulvan/PCL and ulvan/PEO. J Appl Polym Sci 2015; 132(26): 132.