Antioxidant Activities, Binding Parameters, and Electrochemical Behavior of Superoxide Anion Radicals Twords 1-Ferrocenylmethylthymine and 1-Ferrocenylmethylcytosine

Page: [10 - 22] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: An electrochemical method based on cyclic voltametry techniques was used to measure the antioxidant activity of two ferrocene-nucleobases.

Objective: The present study aims to measure the antioxidant activity of two ferrocene derivatives bearing nucleobases; the technique is based on the reaction of the in-situ electrochemical generated superoxide anion radical with ferrocene-nucleobases.

Method: The decrease in the anodic peak current density of the O2 / O2 .− redox couple following the addition of ferrocene-nucleobases was used to measure the antioxidant activity and binding parameters of 1-ferrocenylmethylthymine and 1-ferrocenylmethylcytosine with superoxide anion radical.

Conclusion: Both 1-Ferrocenylmethylthymine and 1-Ferrocenylmethylcytosine showed higher antioxidant activity (0.34 ± 0.03 and 0.045 ± 0.02 mg/mL respectively) than that of standard antioxidant α-tocopherol (3.04 ± 0.03 mg/mL). The value of the binding free energy ranging from -16.1 kJ.mol-1 for 1-ferrocenylmethylthymine to -21.8 kJ.mol-1 for 1- ferrocenylmethylcytosine suggests an electrostatic interaction of superoxide anion radical with both compounds which has been found to be the dominant interaction mode. The kinetics of the interaction reaction of the compounds was quantified having second-order rate constant values equal to 4.0 and 16.5 M-1 s-1 respectively.

Keywords: Antioxidant activity coefficient, binding free energy, cyclic voltammetry, ferrocene, homogeneous rate constant, nucleobases, superoxide, anion radicals.

Graphical Abstract

[1]
Miller, J.S.; Epstein, A.J. Organic and organometallic molecular magnetic materials-designer magnets. Angew, 1994, 33(4), 385-415.
[2]
Nguyen, P.; Gómez-Elipe, P.; Manners, L. Organometallic polymers with transition metals in the main chain. Chem. Rev., 1999, 99(6), 1515-1548.
[3]
Sola, A.; Tárraga, A.; Molina, P. A ferrocenyl-guanidine derivative as a highly selective electrochemical and colorimetric chemosensor molecule for acetate anions. Dalton T., 2012, 41(27), 8401-8409.
[4]
Wang, Y.; He, X.; Wang, K.; Ni, X.; Su, J.; Chen, Z. Ferrocene-functionalized SWCNT for electrochemical detection of T4 polynucleotide kinase activity. Biosens. Bioelectron., 2012, 32(1), 213-218.
[5]
Du, L.Z.; Gong, J.F.; Xu, C.; Zhu, Y.; Wu, Y.J.; Song, M.P. Synthesis and structures of novel diastereomeric cyclopalladated ferrocenylimines derived from chiral β-amino alcohols. Inorg. Chem. Commun., 2006, 9(4), 410-414.
[6]
Zhang, J.; Zhao, L.; Song, M.; Mak, T.C.W.; Wu, Y. Highly efficient cyclopalladated ferrocenylimine catalyst for Suzuki cross-coupling reaction of 3-pyridylboronic pinacol ester with aryl halides. J. Organomet. Chem., 2006, 691(6), 1301-1306.
[7]
Yang, F.; Cui, X.; Li, Y.N.; Zhang, J.; Ren, G.R.; Wu, Y. Cyclopalladated ferrocenylimines: Efficient catalysts for homocoupling and Sonogashira reaction of terminal alkynes. Tetrahedron, 2007, 63(9), 1963-1969.
[8]
Ornelas, C. Application of ferrocene and its derivatives in cancer research. New J. Chem., 2011, 35(10), 1973-1985.
[9]
Snegur, V.; Zykova, S.; Simenel, A.; Nekrasov Yu, S.; Starikova, Z.A.; Peregudova, S.M.; Il’in, M.M.; Kachala, V.V.; Sviridova, I.K.; Sergeeva, N.S. Redox-active ferrocene-modified pyrimidines and adenine as antitumor agents: structure, separation of enantiomers, and inhihibition of the DNA synthesis in tumor cells. Russ. Chem. Bull., 2013, 62(9), 2056-2064.
[10]
Hocek, M. Syntheses of Purines Bearing Carbon Substituents in Positions 2, 6 or 8 by Metal‐ or Organometal‐Mediated C−C Bond‐Forming Reactions. Eur. J. Org. Chem., 2003, 2, 245-254.
[11]
Gundersen, L.; Nissen-Meyer, J.; Spilsberg, D. Synthesis and antimycobacterial activity of 6-arylpurines: The requirements for the N-9 substituent in active antimycobacterial purines. J. Med. Chem., 2002, 45(6), 1383-1386.
[12]
Cocuzza, A.; Chidester, D.; Culp, S.; Fitzgerald, L.; Gilligan, P. Use of the suzuki reaction for the synthesis of aryl-substituted heterocycles as Corticotropin-releasing Hormone (CRH) antagonists. Bioorg. Med. Chem. Lett., 1999, 9(7), 1063-1066.
[13]
Chiosis, G.; Lucas, B.; Shtil, A.; Huezo, H.; Rosen, N. Development of a purine-scaffold novel class of hsp90 binders that inhibit the proliferation of cancer cells and induce the degradation of her2 tyrosine kinase. Bioorg. Med. Chem., 2002, 10(11), 3555-3564.
[14]
De Clercq, E.; Holy, A.; Rosenberg, I.; Sakuma, T.; Balzarini, J.; Maudgal, P.C. A novel selective broad-spectrum anti-DNA virus agent. Nature, 1986, 323, 464-467.
[15]
Wagstaff, A. A reappraisal of its antiviral activity, pharmacokinetic properties and therapeutic efficacy. Drugs, 1994, 47, 153-205.
[16]
Zhao, L.; Zhang, L.; Liu, J.; Wan, L.J.; Chen, Y.Q.; Zhang, S.Q.; Yan, Z.W.; Jiang, J.H. Synthesis and antitumor activity of conjugates of 5-Fluorouracil and emodin. Eur. J. Med. Chem., 2012, 47, 255-260.
[17]
Cho, Y.; Lee, J.; Song, S. Novel Thermosensitive 5-Fluorouracil−Cyclotriphosphazene Conjugates: Synthesis, thermosensitivity, degradability, and in vitro antitumor activity. Bioconjug. Chem., 2005, 16(6), 1529-1535.
[18]
Chen, S. The syntheses and mass spectra of some N-substituted ferrocenylmethyl adenines. J. Organomet. Chem., 1980, 202(2), 183-189.
[19]
Kowalski, K. Ferrocenyl-nucleobase complexes: Synthesis, chemistry and applications. Coord. Chem., 2016, 317, 132-156.
[20]
Meunier, P.; Quattara, I.; Gautheron, B.; Tirouflet, J.; Camboli, D.; Besançon, J. Synthesis, characterization and cytotoxic properties of the first ‘metallocenonucleosides. Eur. J. Med. Chem., 1991, 26(3), 351-362.
[21]
Price, C.; Aslanoglu, M.; Isaac, C.J.; Elsegood, M.R.J.; Clegg, W.; Horrocks, B.R.; Houlton, A. Metallocene-nucleobase conjugates. Synthesis, structure and nucleic acid binding. J. Chem. Soc., Dalton Trans., 1996, 21, 4115-4120.
[22]
Lanez, T.; Henni, M.; Hemmami, H. Development of cyclic voltammetric method for the study of the interaction of antioxidant standards with superoxide anion radicals case of α-tocopherol. Sci. Study Res. Chem. Chem. Eng. Biotech. Food Ind., 2015, 16(2), 161-168.
[23]
Lanez, T.; Hemmami, H. Antioxidant activities of N-ferrocenylmethyl-2- and -3-nitroaniline and determination of their binding parameters with Superoxide Anion Radicals. Curr. Pharm. Anal., 2017, 13(2), 110-116.
[24]
Ahmed, S.; Shakeel, F. Antioxidant activity coefficient, mechanism, and kinetics of different derivatives of flavones and flavanones towards superoxide radical. Czech J. Food Sci., 2012, 30(2), 153-163.
[25]
Ahmed, S.; Shakeel, F. Voltammetric determination of antioxidant character in Berberis lycium Royel, Zanthoxylum armatum and Morus nigra Linn plants. Pak. J. Pharm. Sci., 2012, 25(3), 501-507.
[26]
Brett, C.M.A.; Brett, A.M.O. Electrochemistry: Principles, Methods and Applications; Oxford Science University Publications: Oxford, 1993.
[27]
Osgerby, J.M.; Pauson, P.L. 128. Ferrocene derivatives. Part VI. DL-ferrocenylalanine. J. Chem. Soc., 1958, 656-660.
[28]
Houlton, A.; Isaac, C.J.; Gibson, A.E.; Horrocks, B.R.; Clegg, W.; Elsegood, M.R.J. Synthesis, structure and redox properties of ferrocenylmethylnucleobases. J. Chem. Soc., Dalton Trans., 1999, 18, 3229-3234.
[29]
Molyneux, P. The use of stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity songklanakarin. J. Sci. Technol., 2004, 26, 211-219.
[30]
Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci., Technol., 1995, 28(1), 25-30.
[31]
Antolovich, M.; Prenzler, P.D.; Patsalides, E.; McDonald, S.; Robards, K. Methods for testing antioxidant activity. Analyst, 2002, 127, 183-198.
[32]
Korotkova, E.I.; Karbainov, Y.A.; Avramchik, O.A. Investigation of antioxidant and catalytic properties of some biologically active substances by voltammetry. Bioanal. Chem., 2003, 375(3), 465-468.
[33]
Pisoschi, A.M.; Cheregi, M.C.; Danet, A.F. Total antioxidant capacity of some commercial fruit juices: electrochemical and spectrophotometrical approaches. Molecules, 2009, 14(1), 480-493.
[34]
Milardovic, S.; Ivekovic, D.; Grabaric, B.S. A novel amperometric method for antioxidant activity determination using DPPH free radical. Bioelectrochemistry, 2006, 68(2), 175-180.
[35]
Milardovic, S.; Ivekovic, D.; Rumenjak, V.; Grabaric, B.S. Use of DPPH⋅|DPPH redox couple for biamperometric determination of antioxidant activity. Electroanalysis, 2005, 17, 1847-1853.
[36]
Pellegrini, N.; Serafini, M.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J. Nutr., 2003, 133(9), 2812-2819.
[37]
Chu, X.; Shen, G.L.; Jian, J.H.; Kang, T.F.; Xiong, B.; Yu, R.Q. Voltammetric studies of the interaction of daunomycin anticancer drug with DNA and analytical applications. Anal. Chim. Acta, 1998, 373, 29-38.
[38]
Carter, M.T.; Rodriguez, M.; Bard, A.J. Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2′-bipyridine. J. Am. Chem. Soc., 1989, 111(24), 8901-8911.
[39]
Zhao, G.C.; Zhu, J.J.; Zhang, J.J.; Chen, H.Y. Voltammetric studies of the interaction of methylene blue with DNA by means of β-cyclodextrin. Anal. Chim. Acta, 1999, 394, 337-344.
[40]
Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Kader, A.A. Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. J. Agric. Food Chem., 2002, 50(17), 4976-4982.
[41]
Nicholson, R.S.; Shain, I. Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. J. Anal. Chem., 1964, 36(4), 706-723.
[42]
Muhammad, H.; Hanif, M.; Tahiri, I.A.; Versiani, M.A.; Shah, F.; Khaliq, O.; Ali, S.T.; Ahmed, S. Electrochemical behavior of superoxide anion radical towards quinones: A mechanistic approach. Res. Chem. Intermed., 2018, 44(8), 1-14.