Structural Diversity Attributed by Aza-Diels-Alder Reaction in Synthesis of Diverse Quinoline Scaffolds

Page: [920 - 958] Pages: 39

  • * (Excluding Mailing and Handling)

Abstract

In recent years, the synthesis of quinoline scaffold using various methodological devices has attracted considerable attention in synthetic chemist community. The most feasible method to serve this purpose is Aza-Diels-Alder reaction which provides flexibility and diversity in the synthesis of quinoline decorated with different functionalities over the scaffold. Diversity in this functionality improvises the susceptibility of the quinoline scaffold for various protein targets. This review encompasses multifactorial aspects of Aza-Diels-Alder reaction as well as provides insights into the synthetic schemes for quinoline scaffold.

Keywords: Aza-Diels-Alder, quinoline, catalysis, povarov, diastereoselective, multicomponent.

Graphical Abstract

[1]
(a) Kouznetsov, V.V.; Mendez, L.Y.; Gomez, C.M. Recent progress in the synthesis of quinolines. Curr. Org. Chem., 2005, 9, 141-161.
(b) Roma, G.; Braccio, M.D.; Grossi, G.; Mattioli, F.; Ghia, M. 1,8-Naphthyridines IV. 9-substituted N, N-dialkyl-5-(alkylamino or cycloalkylamino) [1,2,4] triazolo [4,3-a] [1,8]naphthyridine-6-carboxamides, new compounds with anti-aggressive and potent anti-inflammatory activities. Eur. J. Med. Chem., 2000, 35, 1021-1035.
(c) Phan, L.T.; Jian, T.; Chen, Z.; Qiu, Y.L.; Wang, Z.; Beach, T.; Polemeropoulos, A.; Or, Y.S. Synthesis and antibacterial activity of a novel class of 4‘-substituted 16-membered ring macrolides derived from tylosin. J. Med. Chem., 2004, 47, 2965-2968.
(d) Bailly, C.; Laine, W.; Baldeyrou, B. Pauw-Gillet de, M.C.; Colson, P.; Houssier, C.; Cimanga, K.; Miert, S.V.; Vlietinck, A.J.; Pieters, L. DNA intercalation, topoisomerase II inhibition and cytotoxic activity of the plant alkaloid neocryptolepine. Anti-Cancer Drug Res., 2000, 15, 191-201.
(e) Vargas, L.Y.; Castelli, M.V.; Kouznetsov, V.V.; Urbina, J.M.; Lopez, S.N.; Sortino, M.; Enriz, R.D.; Ribas, J.C.; Zacchino, S. In vitro antifungal activity of new series of homoallylamines and related compounds with inhibitory properties of the synthesis of fungal cell wall polymers. Bioorg. Med. Chem., 2003, 11, 1531-1550.
[2]
(a) Calus, S.; Gondek, E.; Danel, A.; Jarosz, B.; Pokladko, M.; Kityk, A.V. Electroluminescence of 6-R-1,3-diphenyl-1H-pyrazolo [3,4-b] quinoline-based organic light-emitting diodes (R=F, Br, Cl, CH3, C2H3 and N(C6H5)2). Mater. Lett., 2007, 61, 3292-3295.
(b) Caeiro, G.; Lopes, J.M.; Magnoux, P.; Ayrault, P.; Ribeiro, F.R. A FT-IR study of deactivation phenomena during methylcyclohexane transformation on H-USY zeolites: nitrogen poisoning, coke formation, and acidity-activity correlations. J. Catal., 2007, 249, 234-243.
(c)Katritzky, A.R.; Rees, C.W.; Scriven, E.F. Comprehensive heterocyclic chemistry II; Pergamon press, Elsevier: Oxford, 1996.
[3]
Heusch, R.; Leverkusen, A.G.B. Ullmann’s Encyclopedia of Industrial Chemistry; , 2000, 12, p. 458-500.
[4]
(a) Greshoff, M. Investigations of Echinopsin, a new crystalline alkaloid. Rec. Trav. Chim, 1900, 19, 360-363.
(b) Troeger, J.; Runne, H. Beiträge zur erforschung der angosturaalkaloide. Arch. Pharm., 1911, 249, 174-208.
(c) Beckurts, H.; Troeger, J.; Muller, W. Beiträge zur erforschung der angosturaalkaloide. ueber isomerisierung und abbau des kusparins. Arch. Pharm., 1914, 252, 459-496.
(d) Spath, E.; Papainonou, G. Monatsch., 1929, 52, 129.
[5]
(a) Shang, X-F.; Morris-Natschke, S.L.; Yang, G-Z.; Liu, Y-Q.; Guo, X.; Xu, X-S.; Goto, M.; Li, J-C.; Zhang, Z-Y.; Lee, K-H. Biologically active quinoline and quinazoline alkaloids part II. Med. Res. Rev., 2018, 38(5), 1614-1660.
(b) Prajapati, S.M.; Patel, K.D.; Vekariya, R.H.; Panchal, S.N.; Patel, H.D. Recent advances in the synthesis of quinolines: a review. RSC Adv., 2014, 4, 24463-24476.
[6]
Kouznetsov, V.V. Recent synthetic developments in a powerful imino Diels-Alder reaction (Povarov reaction): application to the synthesis of N-polyheterocycles and related alkaloids. Tetrahedron, 2009, 65(18), 2721-2750.
[7]
Nainwal, L.M.; Tasneem, S.; Akhtar, W.; Verma, G.; Khan, M.F.; Parvez, S.; Shaquiquzzaman, M.; Akhter, M.; Alam, M.M. Green recipes to quinoline: a review. Eur. J. Med. Chem., 2019, 164, 121-170.
[8]
Gómez, C.M.M.; Kouznetsov, V.V.; Sortino, M.A.; Álvarez, S.L.; Zacchino, S.A. In vitro antifungal activity of polyfunctionalized 2-(hetero) arylquinolines prepared through imino Diels-Alder reactions. Bioorg. Med. Chem., 2008, 16(17), 7908-7920.
[9]
Varma, P.P.; Sherigara, B.S.; Mahadevan, K.M.; Hulikal, V. Mild and simple access to diverse 4-amino-substituted 2-phenyl-1,2,3,4-tetrahydroquinolines and 2-phenylquinolines based on a multicomponent imino Diels-Alder reaction. Synth. Commun., 2010, 40(15), 2220-2231.
[10]
Achar, K.C.; Hosamani, K.M.; Seetharamareddy, H.R. Phosphotungstic acid: an efficient catalyst for synthesis of 2-substituted tetrahydroquinoline via imino Diels-Alder reaction and fluorescent studies. Synth. Commun., 2010, 41(1), 33-40.
[11]
Silva-Filho da. L.C.; Júnior, V.L.; Constantino, M.G.; Silva da, G.V.J. Fast and efficient synthesis of pyrano [3,2-c] quinolines catalyzed by niobium(V) chloride. Synthesis, 2008, 16, 2527-2536.
[12]
Kouznetsov, V.V.; Forero, J.S.B.; Torres, D.F.A. A simple entry to novel spiro dihydroquinoline-oxindoles using Povarov reaction between 3-N-aryliminoisatins and isoeugenol. Tetrahedron Lett., 2008, 49(41), 5855-5857.
[13]
Catti, F.; Kiuru, P.S.; Slawin, A.M.; Westwood, N.J. The synthesis of highly functionalised pyridines using Ghosez-type reactions of dihydropyrazoles. Tetrahedron, 2008, 64(40), 9561-9566.
[14]
Hosokawa, T.; Matsumura, A.; Katagiri, T.; Uneyama, K. One-Pot Synthesis of 3-fluoro-4-(trifluoromethyl)quinolines from pentafluoropropen-2-ol and their molecular modification. J. Org. Chem., 2008, 73(4), 1468-1474.
[15]
Marminon, C.; Fenet, B.; Mignosi, V. Terreux, Nebois, R.P. Diels-Alder reactions between acrolein N,N-dimethylhydrazone and N-benzylated benzotriazole-, indazole- or indole-4,7-diones. Heterocycles, 2009, 78, 2799-2809.
[16]
Bergonzini, G.; Gramigna, L.; Mazzanti, A.; Fochi, M.; Bernardi, L.; Ricci, A. Organocatalytic asymmetric Povarov reactions with 2- and 3-vinylindoles. Chem. Commun., 2010, 46, 327-329.
[17]
Pérez-Ruiz, R.; Domingo, L.R.; Jiménez, M.C.; Miranda, M.A. Experimental and theoretical studies on the radical-cation-mediated imino-Diels-Alder reaction. Org. Lett., 2011, 13(19), 5116-5119.
[18]
Xie, M.; Liu, X.; Zhu, Y.; Zhao, X.; Xia, Y.; Lin, L.; Feng, X. Asymmetric synthesis of tetrahydroquinolines with quaternary stereocenters through the Povarov reaction. Chem. Eur. J, 2011, 17(49), 13800-13805.
[19]
Gerard, B.; O’Shea, M.W.; Donckele, E.; Kesavan, S.; Akella, L.B.; Xu, H.; Jacobsen, E.N.; Marcaurelle, L.A. Application of a catalytic asymmetric Povarov reaction using chiral ureas to the synthesis of a tetrahydroquinoline library. ACS Comb. Sci., 2012, 14, 621-630.
[20]
Yu, J.; Jiang, H-J.; Zhou, Y.; Luo, S-W.; Gong, L-Z. Sodium salts of anionic chiral cobalt(III) complexes as catalysts of the enantioselective Povarov reaction. Angew. Chem. Int. Ed., 2015, 54, 11209-11213.
[21]
Huang, Y.; Qiu, C.; Li, Z.; Feng, W.; Gan, H.; Liu, J.; Guo, K. Tritylium cation as low loading lewis acidic organocatalyst in Povarov reactions. ACS Sustain. Chem.& Eng., 2016, 4(1), 47-52.
[22]
Vidal, A.S.; Miró, J.; Rosello, M.S.; Pozo, C.D.; Fustero, S. Gold-catalyzed Povarov-type reaction of fluorinated imino esters and furans. J. Org. Chem., 2016, 81(15), 6515-6524.
[23]
Wang, H.; Wang, C.; Huang, K.; Liu, L.; Chang, W.; Li, J. Copper-catalyzed cascade reaction via intramolecular hydroamination cyclization of homopropargylic amines and intermolecular Povarov reaction with imines. Org. Lett., 2016, 18(10), 2367-2370.
[24]
Ni, M.; Zhang, Y.; Gong, T.; Feng, B. Gold-oxazoline complex-catalyzed cross-dehydrogenative coupling of glycine derivatives and alkenes. Adv. Synth. Catal., 2017, 359(5), 824-831.
[25]
Ren, X.; Li, G.; Huang, J.; Wang, W.; Zhang, Y.; Xing, G.; Gao, C.; Zhao, G.; Zhao, J.; Tang, Z. Step-controlled Povarov-type reaction with 1,2-dihydroquinolines as precursors of dienophiles: direct synthesis of spirocyclic bi-tetrahydroquinolines and functionalized 1,2-dihydroquinolines. Org. Lett., 2017, 19, 58-61.
[26]
Ramesh, E.; Raghunathan, R. Indium chloride catalyzed intramolecular cyclization of N-aryl imines: synthesis of pyrrolo [2,3-d] pyrimidine annulated tetrahydroquinoline derivatives. Tetrahedron Lett., 2008, 49(16), 2583-2587.
[27]
Ramesh, E.; Manian, R.D.R.S.; Raghunathan, R.; Sainath, S.; Raghunathan, M. Synthesis and antibacterial property of quinolines with potent DNA gyrase activity. Bioorg. Med. Chem., 2009, 17(2), 660-666.
[28]
Ramesh, E.; Vidhya, T.K.S.; Raghunathan, R. Indium chloride/silica gel supported synthesis of pyrano/thiopyranoquinolines through intramolecular imino Diels-Alder reaction using microwave irradiation. Tetrahedron Lett., 2008, 49(17), 2810-2814.
[29]
Dai, X.; Cheng, C.; Ding, C.; Yao, Q.; Zhang, A. Synthesis of 2,7-naphthyridine-containing analogues of luotonin A. Synlett, 2008, 19, 2989-2992.
[30]
Desrat, S.; Weghe, P.V. Intramolecular imino diels−alder reaction: progress toward the synthesis of uncialamycin. J. Org. Chem., 2009, 74(17), 6728-6734.
[31]
Nagaiah, K.; Venkatesham, A.; Rao, R.S.; Saddanapu, V.; Yadav, J.S.; Basha, S.J.; Sarma, A.V.S.; Sridhar, B.; Addalgatta, A. Synthesis of new cis-fused tetrahydrochromeno [4,3-b] quinolines and their antiproliferative activity studies against MDA-MB-231 and MCF-7 breast cancer cell lines. Bioorg. Med. Chem. Lett., 2010, 20(11), 3259-3264.
[32]
Ramesh, S.; Nagarajan, R. Synthesis of dihydrochromeno [4,3-b]pyrrolo [3,2-f]quinolines via intramolecular aza Diels-Alder reaction. Tetrahedron Lett., 2011, 52(38), 4857-4860.
[33]
Dong, W.; Yuan, Y.; Gao, X.; Hu, B.; Xie, X.; Zhang, Z. Merging visible-light photoredox and Lewis acid catalysis for the intramolecular Aza-Diels-Alder reaction: synthesis of substituted chromeno [4,3-b]quinolines and [1,6]naphthyridines. ChemCatChem, 2018, 10(13), 2878-2886.
[34]
Rahimzadeh, G.; Soheilizad, M.; Kianmehr, E.; Larijani, B.; Mahdavi, M. Copper-catalyzed intramolecular domino synthesis of 6H-chromeno [4,3-b]quinolines in green condition. ARKIVOC, 2018, 5, 20-28.
[35]
Xu, P.; Liu, G-S.; Xi, J.; Wang, S.; Yao, Z-J. Efficient synthesis of furoquinolinones using Hendrickson reagent-initiated cascade annulation. Tetrahedron, 2011, 67(30), 5455-5460.
[36]
Zhang, H-R.; Dong, Z-W.; Yang, Y-J.; Wang, P-L.; Hui, X-P. N-heterocyclic carbene-catalyzed stereoselective cascade reaction: synthesis of functionalized tetrahydroquinolines. Org. Lett., 2013, 15, 4750-4753.
[37]
Min, C.; Lin, C-T.; Seidel, D. Catalytic enantioselective intramolecular Aza-Diels-Alder reactions. Angew. Chem. Int. Ed., 2015, 127, 6608-6612.
[38]
An, X-D.; Yu, S. Visible-light-promoted and one-pot synthesis of phenanthridines and quinolines from aldehydes and O-acyl hydroxylamine. Org. Lett., 2015, 17(11), 2692-2695.
[39]
Dong, W.; Hu, B.; Gao, X.; Li, Y.; Xie, X.; Zhang, Z. Visible-light-induced photocatalytic aerobic oxidation/Povarov cyclization reaction: synthesis of substituted quinoline-fused lactones. J. Org. Chem., 2016, 81(19), 8770-8776.
[40]
Yu, X-L.; Kuang, L.; Chen, S.; Zhu, X-L.; Li, Z-L.; Tan, B.; Liu, X-Y. Counteranion-controlled unprecedented diastereo- and enantioselective tandem formal Povarov reaction for construction of bioactive octahydro-dipyrroloquinolines. ACS Catal., 2016, 6(9), 6182-6190.
[41]
Liu, Q.; Wang, C.; Li, Q.; Hou, Y.; Wu, Y.; Liu, L.; Chang, W.; Li, J. Povarov reaction of cycloiminium formed in situ via hydroamination cycloisomerization of homopropargylic amines with electron-rich olefins. J. Org. Chem., 2017, 82(2), 950-958.
[42]
Sridharan, V.; Avendano, C.; Menendez, J.C. New findings on the cerium(IV) ammonium nitrate catalyzed Povarov reaction: stereoselective synthesis of 4-Alkoxy-2-aryl-1,2,3,4-tetrahydroquinoline derivatives. Synthesis, 2008, 7, 1039-1044.
[43]
Barluenga, J.; Mendoza, A.; Rodriguez, F.; Fananas, F.J. Synthesis of spiroquinolines through a one-pot multicatalytic and multicomponent cascade reaction. Angew. Chem. Int. Ed., 2008, 47(37), 7044-7047.
[44]
Xiao, F.; Chen, Y.; Liu, Y.; Wang, J. Sequential catalytic process: synthesis of quinoline derivatives by AuCl3/CuBr-catalyzed three-component reaction of aldehydes, amines, and alkynes. Tetrahedron, 2008, 64(12), 2755-2761.
[45]
Cao, K.; Zhang, F.M.; Tu, Y.Q.; Zhuo, X.T.; Fan, C.A. Iron(III)‐catalyzed and air-mediated tandem reaction of aldehydes, alkynes and amines: an efficient approach to substituted quinolines. Chem. Eur. J, 2009, 15(26), 6332-6334.
[46]
Huang, H.; Jiang, H.; Chen, K.; Liu, H. A simple and convenient copper-catalyzed tandem synthesis of quinoline-2-carboxylates at room temperature. J. Org. Chem., 2009, 74(15), 5476-5480.
[47]
Khadem, S.; Udachin, K.A.; Enright, G.D.; Prakesch, M.; Arya, P. One-pot construction of isoindolo [2,1-a] quinoline system. Tetrahedron Lett., 2009, 50(48), 6661-6664.
[48]
Sridharan, V.; Avendaño, C.; Menéndez, J.C. Convenient, two-step synthesis of 2-styrylquinolines: an application of the CAN-catalyzed vinylogous type-II Povarov reaction. Tetrahedron, 2009, 65(10), 2087-2096.
[49]
Desimoni, G.; Faita, G.; Mella, M.; Toscanini, M.; Boiocchi, M. Multicomponent reactions of indole, ethyl glyoxylate and anilines: from friedel-crafts to Aza-Diels-Alder reactions catalysed by scandium triflate. Eur. J. Org. Chem., 2009, 16, 2627-2634.
[50]
Camps, P.; Formosa, X.; Galdeano, C.; Torrero, D.M.; Ramírez, L.; Gómez, E.; Isambert, N.; Lavilla, R.; Badia, A.; Clos, M.V.; Bartolini, M.; Mancini, F.; Andrisano, V.; Arce, M.P.; Franco, M.I.R.; Huertas, Ó.; Dafni, T.; Luque, F.J. Pyrano [3,2-c]quinoline−6-chlorotacrine hybrids as a novel family of acetylcholinesterase- and β-amyloid-directed anti-alzheimer compounds. J. Med. Chem., 2009, 52(17), 5365-5379.
[51]
Smith, C.D.; Gavrilyuk, J.I.; Lough, A.J.; Batey, R.A. Lewis acid catalyzed three-component hetero-Diels−Alder (Povarov) reaction of N-arylimines with strained norbornene-derived dienophiles. J. Org. Chem., 2010, 75(3), 702-715.
[52]
Saavedra, L.A.; Vallejos, G.; Kouznetsov, V.V.; Gutierrez, M.; Gómez, C.M.M.; Méndez, L.Y.V.; Jaimes, J.H.B. Synthesis of new diversely linked biquinoline derivatives by multicomponent imino-Diels-Alder cycloaddition and intramolecular friedel-crafts cyclization. Synthesis, 2010, 4, 593-600.
[53]
Schiemann, K.; Finsinger, D.; Zenke, F.; Amendt, C.; Knöchel, T.; Bruge, D. The discovery and optimization of hexahydro-2H-pyrano [3,2-c] quinolines (HHPQs) as potent and selective inhibitors of the mitotic kinesin-5. Bioorg. Med. Chem. Lett., 2010, 20(5), 1491-1495.
[54]
García, E.V.; Catti, F.; Ramón, R.; Lavilla, R. Unsaturated lactams: new inputs for Povarov-type multicomponent reactions. Org. Lett., 2010, 12(4), 860-863.
[55]
Sueki, S.; Okamoto, C.; Shimizu, I.; Seto, K.; Furukawa, Y. One-pot synthesis and fluorescence properties of 2-arylquinolines. Bull. Chem. Soc. Jpn., 2010, 83(4), 385-390.
[56]
Wang, X-S.; Zhou, J.; Yang, K.; Yao, C-S. Yb(OTf)3: an efficient catalyst for the synthesis of 3-arylbenzo [f]quinoline-1,2-dicarboxylate derivatives via imino-Diels-Alder reaction. Tetrahedron Lett., 2010, 51(43), 5721-5723.
[57]
Wang, C.; Han, Z-Y.; Luo, H-W.; Gong, L-Z. Highly enantioselective relay catalysis in the three-component reaction for direct construction of structurally complex heterocycles. Org. Lett., 2010, 12(10), 2266-2269.
[58]
Kumar, A.; Srivastava, S.; Gupta, G. Supramolecular carbohydrate scaffold-catalyzed synthesis of tetrahydroquinolines. Tetrahedron Lett., 2010, 51(3), 517-520.
[59]
Jia, X-d.; Ren, Y.; Huo, C-d.; Wang, W-J.; Chen, X-N.; Xu, X-L.; Wang, X-c. Radical cation salt induced tandem cyclization between anilines and N-vinyl amides: synthesis of 2-methyl-4-anilino-1,2,3,4-tetrahydroquinoline derivatives. Tetrahedron Lett., 2010, 51(51), 6779-6782.
[60]
De, K.; Legros, J.; Crousse, B.; Chandrasekaran, S.; Delpon, D.B. Synthesis of substituted 8-aminoquinolines and phenanthrolines through a Povarov approach. Org. Biomol. Chem., 2011, 9, 347-350.
[61]
Reddy, B.V.S.; Grewal, H. Iodine-catalyzed formation of aza-dienes: a novel synthesis of angularly fused hexahydropyrano- and furo [3,2-c]quinoline derivatives. Tetrahedron Lett., 2011, 52(7), 761-763.
[62]
Zhang, W.; Dai, Y.; Wang, X.; Zhang, W. One-pot synthesis of pyrrolidino- and piperidinoquinolinones by three-component aza-Diels-Alder reactions of in situ generated N-arylimines and cyclic enamides. Tetrahedron Lett., 2011, 52(46), 6122-6126.
[63]
Rajanarendar, E.; Reddy, M.N.; Reddy, K.G.; Krishna, S.R. L-Proline catalyzed efficient one-pot three-component aza-Diels-Alder reactions on nitrostyrylisoxazoles: a facile synthesis of new isoxazolyl tetrahydroquinolines and isoxazolo [2,3-a] pyrimidines. Tetrahedron Lett., 2012, 53(23), 2909-2913.
[64]
Suresh, R.; Muthusubramanian, S.; Senthilkumaran, R.; Manickam, G. SnCl2-catalyzed selective atom economic imino Diels-Alder reaction: Synthesis of 2-(1H-pyrrolo [2,3-b] pyridin-3-yl) quinolines. J. Org. Chem., 2012, 77(3), 1468-1476.
[65]
Palaniappan, S.; Rajender, B.; Umashankar, M. Controllable stereoselective synthesis of cis or trans pyrano and furano tetrahydroquinolines: polyaniline-p-toluenesulfonate salt catalyzed one-pot aza-Diels-Alder reactions. J. Mol. Catal. A: Chem., 2012, 352, 70-74.
[66]
Bhuyan, D.; Sarma, R.; Prajapati, D. Microwave-assisted efficient synthesis of spiroquinoline derivatives via a catalyst- and solvent-free aza-Diels-Alder reaction. Tetrahedron Lett., 2012, 53(47), 6460-6463.
[67]
Balci, F.M.; Imrich, H.G.; Conrad, J.; Beifuss, U. Influence of guanidinium salts and other ionic liquids on the three-component aza-Diels-Alder reaction. Helv. Chim. Acta, 2013, 96, 1681-1692.
[68]
Zanwar, M.R.; Gawande, S.D.; Kavala, V.; Kuo, C-W.; Yaoa, C-F. Iron(III) chloride catalyzed synthesis of highly substituted indolyl-tetrahydroquinoline derivatives by using indolylnitroalkene as dienophiles and its application to the synthesis of indolo-benzonaphthyridine derivatives. Adv. Synth. Catal., 2014, 356(18), 3849-3860.
[69]
Luo, X-H.; Niu, Y-H.; Cao, X-P.; Shan, Ye. X.-S. Cyclopropenes for the synthesis of cyclopropane-fused dihydroquinolines and benzazepines. Adv. Synth. Catal., 2015, 357(13), 2893-2902.
[70]
Imrich, H-G.; Conrad, J.; Bubrin, D.; Beifuss, U. From nitrobenzenes to substituted tetrahydroquinolines in a single step by a domino reduction/imine formation/aza-Diels-Alder reaction. J. Org. Chem., 2015, 80(4), 2319-2332.
[71]
Dai, W.; Jiang, X-L.; Tao, J-Y.; Shi, F. Application of 3-methyl-2-vinylindoles in catalytic asymmetric Povarov reaction: diastereo- and enantioselective synthesis of indole-derived tetrahydroquinolines. J. Org. Chem., 2016, 81(1), 185-192.
[72]
Vasconcelos, S.N.S. Silva da, V.H.M.; Braga, A.A.C.; Shamim, A.; Souza, F.B.; Pimenta, D.C.; Stefani, H.A. 3-Alkenyltyrosines accessed by suzuki-miyaura coupling: A key intermediate in the synthesis and mechanistic study of Povarov multicomponent reactions. Asian J. Org. Chem., 2017, 6(7), 913-920.
[73]
Wang, X-S.; Li, Q.; Yao, C-S.; Tu, S-J. An efficient method for the synthesis of benzo[f]quinoline and benzo[a]phenanthridine derivatives catalyzed by iodine by a three-component reaction of arenecarbaldehyde, naphthalene-2-amine, and cyclic ketone. Eur. J. Org. Chem., 2008, 20, 3513-3518.
[74]
Wang, X-S.; Li, Q.; Wu, J-R.; Li, Y-L.; Yao, C-S.; Tu, S-J. An efficient and highly selective method for the synthesis of 3-arylbenzo-quinoline derivatives catalyzed by iodine via three-component reactions. Synthesis, 2008, 12, 1902-1910.
[75]
Li, Q.; Yao, C-S.; Zhang, M-M.; Tu, S-J.; Wang, X-S.I. 2‐catalyzed reactions of schiff base and alkyl aldehyde towards benzo[f]quinoline derivatives. J. Heterocycl. Chem., 2008, 45(4), 1027-1031.
[76]
Shi, F.; Zhou, D.; Tu, S.; Shao, Q.; Li, C.; Cao, L. An efficient microwave-assisted synthesis furo [3,4-b]- [4,7] phenanthroline and indeno [2,1-b][4,7]phenanthroline derivatives in water. J. Heterocycl. Chem., 2008, 45(4), 1065-1070.
[77]
Tu, S.; Wu, S.; Yan, S.; Hao, W.; Zhang, X.; Cao, X.; Han, Z.; Jiang, B.; Shi, F.; Xia, M.; Zhou, J. Design and microwave-assisted synthesis of naphtho [2,3-f]quinoline derivatives and their luminescent properties. J. Comb. Chem., 2008, 11(2), 239-242.
[78]
Wang, X-S.; Li, Q.; Wu, J-R.; Zhang, M-M. Green method for the synthesis of benzo[f]pyrimido [4,5-b]quinoline derivatives catalyzed by iodine in aqueous media. Synth. Commun., 2009, 39(17), 3069-3080.
[79]
Wang, X-S.; Li, Q.; Wu, J-R.; Yao, C-S.; Tu, S-J. A novel and efficient method for the synthesis of 5‐arylnaphtho [2,1-c] [2,7]naphthyridine derivatives catalyzed by iodine. J. Heterocycl. Chem., 2009, 46(6), 1229-1234.
[80]
Bala, B.D.; Balamurugan, K.; Perumal, S. Facile, four-component, domino reactions for the regioselective synthesis of tetrahydrobenzo[g]quinolines. Tetrahedron Lett., 2011, 52(35), 4562-4566.
[81]
Gao, Q.; Liu, S.; Wu, X.; Wu, A. Povarov-type reaction using methyl as new input: direct synthesis of substituted quinolines by I2-mediated formal [3+2+1] cycloaddition. Org. Lett., 2014, 16(17), 4582-4585.
[82]
Gao, Q.; Liu, S.; Wu, X.; Zhang, J.; Wu, A. Coproduct promoted Povarov reaction: synthesis of substituted quinolines from methyl ketones, arylamines, and α-ketoesters. J. Org. Chem., 2015, 80(11), 5984-5991.
[83]
Li, X.; Xing, Q.; Li, P.; Zhao, J.; Li, F. Three-component Povarov reaction with alcohols as alkene precursors: Efficient access to 2-arylquinolines. Eur. J. Org. Chem., 2017, 3, 618-625.
[84]
Chou, S-S.P.; Cai, Y-L. Synthesis and applications of sulfur-substituted cis-hexahydro-2-quinolinones. Tetrahedron, 2011, 67(6), 1183-1186.
[85]
Varma, P.P.; Srinivasa, A.; Mahadevan, K.M. Efficient InCl3/H2O-catalyzed one-pot stereoselective synthesis of cis-2-methyl-4-amido-1,2,3,4-tetrahydroquinoline derivatives. Synth. Commun., 2011, 41(15), 2186-2194.
[86]
Wu, L.; Jiang, R.; Yang, J-M.; Wang, S-Y.; Ji, S-J. Catalyst-free diastereoselective synthesis of 2-methyl-4-amino-1,2,3,4-tetrahydro-quinoline derivatives in water. Tetrahedron Lett., 2013, 54(22), 2849-2852.
[87]
Chandrashekarappa, K.K.H.; Mahadevan, K.M.; Manjappa, K.B. High throughput one pot synthesis of 2-methylquinolines. Tetrahedron Lett., 2013, 54(11), 1368-1370.
[88]
Symeonidis, T.S.; Litinas, K.E. Synthesis of methyl substituted [5,6]- and [7,8]-fused pyridocoumarins via the iodine-catalyzed reaction of aminocoumarins with n-butyl vinyl ether. Tetrahedron Lett., 2013, 54(48), 6517-6519.
[89]
Bunescu, A.; Wang, Q.; Zhu, J. Three-component Povarov reaction-heteroannulation with arynes: synthesis of 5,6-dihydroindolo [1,2-a]quinolines. Org. Lett., 2014, 16(6), 1756-1759.
[90]
Min, C.; Sanchawala, A.; Seidel, D. Dual C-H Functionalization of N-Aryl Amines: synthesis of polycyclic amines via an oxidative Povarov approach. Org. Lett., 2014, 16(10), 2756-2759.
[91]
Rehan, M.; Hazra, G.; Ghorai, P. Synthesis of polysubstituted quinolines via transition-metal-free oxidative cycloisomerization of o-cinnamylanilines. Org. Lett., 2015, 17(7), 1668-1671.
[92]
Huo, C.; Chen, F.; Yuan, Y.; Xie, H.; Wang, Y. Iron catalyzed dual-oxidative dehydrogenative (DOD) tandem annulation of glycine derivatives with tetrahydrofurans. Org. Lett., 2015, 17(20), 5028-5031.
[93]
Wu, X.; Geng, X.; Zhao, P.; Zhang, J.; Gong, X.; Wu, Y-d.; Wu, A-I. 2-promoted Povarov-type reaction using 1,4-dithane-2,5-diol as an ethylene surrogate: Formal [4+2] synthesis of quinolines. Org. Lett., 2017, 19(7), 1550-1553.
[94]
Kobayashi, S.; Furuya, T.; Otani, T.; Saito, T. A diene-transmissive Diels-Alder reaction involving inverse electron-demand hetero-Diels-Alder cycloaddition of cross-conjugated azatrienes. Tetrahedron Lett., 2008, 49, 4513-4515.
[95]
Kobayashi, S.; Furuya, T.; Otani, T.; Saito, T. A novel and facile stereocontrolled synthetic method for polyhydro-quinolines and pyridopyridazines via a diene-transmissive Diels-Alder reaction involving inverse electron-demand hetero Diels-Alder cycloaddition of cross-conjugated azatrienes. Tetrahedron, 2008, 64(41), 9705-9716.
[96]
Kobayashi, S.; Semba, T.; Takahashi, T.; Yoshida, S.; Dai, K.; Otani, T.; Saito, T. A novel and efficient stereo-controlled synthesis of hexahydroquinolinones via the diene-transmissive hetero-Diels-Alder reaction of cross-conjugated azatrienes with ketenes and electrophilic dienophiles. Tetrahedron, 2009, 65(4), 920-933.
[97]
Lee, Y.R.; Hung, T.V. Ethylenediamine diacetate (EDDA)-catalyzed one-pot synthesis of tetrahydroquinolines by domino Knoevenagel/hetero Diels-Alder reactions from 1,3-dicarbonyls. Tetrahedron, 2008, 64(30-31), 7338-7346.
[98]
Baruah, B.; Bhuyan, P.J. Synthesis of some complex pyrano [2,3-b]- and pyrido [2,3-b]quinolines from simple acetanilides via intramolecular domino hetero Diels-Alder reactions of 1-oxa-1,3-butadienes in aqueous medium. Tetrahedron, 2009, 65(34), 7099-7104.
[99]
Gupta, R.; Jain, A.; Madan, Y. Indium trichloride catalyzed Diels-Alder reaction: synthesis of novel 5-butyl-11a-aryl-4a,5,11, 11a-tetrahydro-11bH-indolo [3,2-c]quinoline-1,4-dione. J. Heterocycl. Chem., 2013, 50(6), 1342-1345.