The Immobilized Copper on Nickel Ferrite: A Magnetically Superior Nanocatalyst for Chemoselective and Knoevenagel Synthesis of Bisdimedones and 1,8-Dioxo-octahydroxanthenes under Solvent-Free Conditions

Page: [939 - 947] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Aim and Objective: Nowadays, bisdimedones and 1,8-dioxo-octahydroxanthenes are considered as biologically active materials. Due to this, the synthesis of the mentioned materials is the subject of more interest. Although most of the reported methods have their own merits, however, they generally require the use of expensive reagents, hazardous organic solvents, a tedious workup procedure and reduced recyclability of the applied catalyst system. Overcoming of the above mentioned drawbacks, therefore, encouraged us to investigate the capability of nanostructured NiFe2O4@Cu towards the synthesis of bisdimedones and 1,8- dioxo-octahydroxanthenes under green reaction conditions.

Materials and Methods: Nanoparticles of NiFe2O4@Cu were prepared via a two-step procedure including the preparation of NiFe2O4 by solid-state grinding of Ni(OAc)2·4H2O and Fe(NO3)3·9H2O in the presence of NaOH followed by the immobilization of Cu(0) on the surface of NiFe2O4 nucleus via hydrazine hydrate reduction of Cu(NO3)2·3H2O.

Results: After the synthesis of NiFe2O4@Cu, the catalytic activity of the Cu-nanocatalyst towards Knoevenagel reaction of aromatic aldehydes with dimedone under different reaction conditions was investigated. The examinations showed that using the molar equivalents of aromatic aldehydes (1 mmol) and dimedone (2 mmol) in the presence of 0.15 g NiFe2O4@Cu under solvent-free conditions chemoselectively afforded structurally different bisdimedone products at 60°C and 1,8-dioxo-octahydroxanthenes at 120°C.

Conclusion: In this study, magnetically, nanoparticles of NiFe2O4@Cu were prepared and then characterized using different analyses. The catalytic activity of the prepared Cu-nanocatalyst was also studied towards solvent-free Knoevenagel condensation of aromatic aldehydes with dimedone. All the reactions were carried out within 15-240 min to afford bisdimedone and 1,8-dioxo-octahydroxanthene products in high yields.

Keywords: Bisdimedone, 1, 8-dioxo-octahydroxanthene, Knoevenagel, NiFe2O4@Cu, solvent-free, aromatic aldehydes.

Graphical Abstract

[1]
Chaudhuri, R.G.; Paria, S. Core/Shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev., 2012, 112, 2373-2433.
[2]
Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J.M. Magnetically recoverable nanocatalysts. Chem. Rev., 2011, 111, 3036-3075.
[3]
Karami, S.; Zeynizadeh, B.; Shokri, Z. Cellulose supported bimetallic Fe–Cu nanoparticles: A magnetically recoverable nanocatalyst for quick reduction of nitroarenes to amines in water. Cellulose, 2018, 25, 3295-3305.
[4]
Shokri, Z.; Zeynizadeh, B.; Hosseini, S.A.; Azizi, B. Magnetically nano core-shell Fe3O4@Cu(OH)x: A highly efficient and reusable catalyst for rapid and green reduction of nitro compounds. J. Iran. Chem. Soc., 2017, 14, 101-109.
[5]
Zeynizadeh, B.; Mohammadzadeh, I.; Shokri, Z.; Hosseini, S.A. Synthesis and characterization of NiFe2O4@Cu nanoparticles as a magnetically recoverable catalyst for reduction of nitroarenes to arylamines with NaBH4. J. Colloid Interface Sci., 2017, 500, 285-293.
[6]
Zeynizadeh, B.; Sepehraddin, F. Synthesis and characterization of magnetically nanoparticles of Fe3O4@APTMS@ZrCp2 as a novel and reusable catalyst for convenient reduction of nitro compounds with glycerol. J. Iran. Chem. Soc., 2017, 14, 2649-2657.
[7]
Shokri, Z.; Zeynizadeh, B.; Hosseini, S.A. One-pot reductive-acetylation of nitroarenes with NaBH4 catalyzed by separable core-shell Fe3O4@Cu(OH)x nanoparticles. J. Colloid Interface Sci., 2017, 485, 99-105.
[8]
Zhang, R.; Liu, J.; Wang, S.; Niu, J.; Xia, C.; Sun, W. Magnetic CuFe2O4 nanoparticles as an efficient catalyst for C‒O cross-coupling of phenols with aryl halides. ChemCatChem, 2011, 3, 146-149.
[9]
Shi, F.; Tse, M.K.; Zhou, S.; Pohl, M.M.; Radnik, J.R.; Hübner, S.; Jähnisch, K.; Brückner, A.; Beller, M. Green and efficient synthesis of sulfonamides catalyzed by nano-Ru/Fe3O4. J. Am. Chem. Soc., 2009, 131, 1775-1779.
[10]
Dam, B.; Nandi, S.; Pal, A.K. An efficient on-water synthesis of 1,4-dihydropyridines using Fe3O4@SiO2 nanoparticles as a reusable catalyst. Tetrahedron Lett., 2014, 55, 5236-5240.
[11]
Taher, A.; Kim, J.B.; Jung, J.Y.; Ahn, W.S.; Jin, M.J. Highly active and magnetically recoverable Pd-NHC catalyst immobilized on Fe3O4 nanoparticle-ionic liquid matrix for Suzuki reaction in water. Synlett, 2009, 2477-2482.
[12]
Zeynizadeh, B.; Sepehraddin, F. Deposited zirconocene chloride on silica-layered CuFe2O4 as a highly efficient and reusable magnetically nanocatalyst for one-pot Suzuki-Miyaura coupling reaction. J. Organomet. Chem., 2018, 856, 70-77.
[13]
Mpungose, P.P.; Vundla, Z.P.; Maguire, G.E.M.; Friedrich, H.B. The current status of heterogeneous palladium catalyzed Heck and Suzuki cross-coupling reactions. Molecules, 2018, 23, 1676.
[14]
Firouzabadi, H.; Iranpoor, N.; Gholinejad, M.; Hoseini, J. Magnetite (Fe3O4) nanoparticles‐catalyzed Sonogashira-Hagihara reactions in ethylene glycol under ligand‐free conditions. Adv. Synth. Catal., 2011, 353, 125-132.
[15]
Karimi, B.; Mansouri, F.; Mirzaei, H.M. Recent applications of magnetically recoverable nanocatalysts in C-C and C-X coupling reactions. ChemCatChem, 2015, 7, 1736-1789.
[16]
Banerjee, A.G.; Kothapalli, L.P.; Sharma, P.A.; Thomas, A.B.; Nanda, R.K.; Shrivastava, S.K.; Khatanglekar, V.V. A facile microwave assisted one pot synthesis of novel xanthene derivatives as potential anti-inflammatory and analgesic agents. Arab. J. Chem., 2016, 9, S480-S489.
[17]
Hilderbrand, S.A.; Weissleder, R. One-pot synthesis of new symmetric and asymmetric xanthene dyes. Tetrahedron Lett., 2007, 48, 4383-4385.
[18]
Pohlers, G.; Scaiano, J.; Sinta, R. A novel photometric method for the determination of photoacid generation efficiencies using benzothiazole and xanthene dyes as acid sensors. Chem. Mater., 1997, 9, 3222-3230.
[19]
Knight, C.G.; Stephens, T. Xanthene-dye-labelled phosphatidyl-ethanolamines as probes of interfacial pH. Studies in phospholipid vesicles. Biochem. J., 1989, 258, 683-687.
[20]
Hatakeyama, S.; Ochi, N.; Numata, H.; Takano, S. A new route to substituted 3-methoxycarbonyldihydropyrans; Enantioselective synthesis of (–)-methyl elenolate. J. Chem. Soc. Chem. Commun., 1988, 1202-1204.
[21]
Khosropour, A.R.; Khodaei, M.M.; Moghannian, H. A facile, simple and convenient method for the synthesis of 14-alkyl or aryl-14-H-dibenzo[a, j]xanthenes catalyzed by p-TSA in solution and solvent-free conditions. Synlett, 2005, 955-958.
[22]
Jin, T.S.; Zhang, J.S.; Xiao, J.C.; Wang, A.Q.; Li, T.S. Clean synthesis of 1,8-dioxo-octahydroxanthene derivatives catalyzed by p-dodecylbene-zenesulfonic acid in aqueous media. Synlett, 2004, 866-870.
[23]
Fan, X.; Hu, X.; Zhang, X. Wang, InCl3·4H2O-promoted green preparation of xanthenedione derivatives in ionic liquids. Can. J. Chem., 2005, 83, 16-20.
[24]
Song, G.; Wang, B.; Luo, H.; Yang, L. Fe3+-montmori-llonite as a cost-effective and recyclable solid acidic catalyst for the synthesis of xanthenediones. Catal. Commun., 2007, 8, 673-676.
[25]
Das, B.; Thirupathi, P.; Reddy, K.R.; Ravikanth, B.; Nagarapu, L. An efficient synthesis of 1,8-dioxo-octahydroxanthenes using heterogeneous catalysts. Catal. Commun., 2007, 8, 535-538.
[26]
Das, B.; Thirupathi, P.; Mahender, I.; Reddy, V.S.; Rao, Y.K. Amberlyst-15: An efficient reusable heterogeneous catalyst for the synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydroacridines. J. Mol. Catal. A: Chem., 2006, 247, 233-239.
[27]
Seyyedhamzeh, M.; Mirzaei, P.; Bazgir, A. Solvent-free synthesis of aryl-14H-dibenzo[a, j]xanthenes and 1,8-dioxo-octahydroxanthenes using silica sulfuric acid as catalyst. Dyes and Pigm., 2008, 76, 836-839.
[28]
Mosaddegh, E.; Islami, M.R.; Hassankhani, A. ZrOCl2·8H2O as an efficient and recyclable catalyst for the clean synthesis of xanthenedione derivatives under solvent-free conditions. Arab. J. Chem., 2012, 5, 77-80.
[29]
Tu, S.J.; Miao, C.B.; Gao, Y.; Feng, Y.J.; Feng, J.C. Microwave‐prompted reaction of cinnamonitrile derivatives with 5,5‐dimethyl‐1,3-cyclohexane-dione. Chin. J. Chem., 2002, 20, 703-706.
[30]
Li, Y.L.; Zhang, M.M.; Wang, X.S.; Shi, D.Q.; Tu, S.J.; Wei, X.Y.; Zong, Z.M. One pot three component synthesis of 9-arylpolyhydroacridine derivatives in an ionic liquid medium. J. Chem. Res., 2005, 600-602.
[31]
Tatarchuk, T.; Bououdina, M.; Vijaya, J.J.; Kennedy, L.J. Spinel ferrite nanoparticles: Synthesis, crystal structure, properties, and perspective applications. In: Nanophysics, Nanomaterials, Interface Studies, and Applications; Fesenko, O.; Yatsenko, L., Eds.; Springer, 2017; pp. 305-325.
[32]
de Paiva, J.A.C.; Graça, M.P.F.; Monteiro, J.; Macedo, M.; Valente, M. Spectroscopy studies of NiFe2O4 nanosized powders obtained using coconut water. J. Alloys Compd., 2009, 485, 637-641.
[33]
Alarifi, A.; Deraz, N.M.; Shaban, S. Structural, morphological and magnetic properties of NiFe2O4 nanoparticles. J. Alloys Compd., 2009, 486, 501-506.
[34]
Huo, J.; Wei, M. Characterization and magnetic properties of nanocrystalline nickel ferrite synthesized by hydrothermal method. Mater. Lett., 2009, 63, 1183-1184.
[35]
Sen, R.; Jain, P.; Patidar, R.; Srivastava, S.; Rana, R.S.; Gupta, N. Synthesis and characterization of nickel ferrite (NiFe2O4) nanoparticles prepared by sol-gel method. Mater. Today Proc., 2015, 2, 3750-3757.
[36]
Kadi, M.W.; Mohamed, R. Synthesis and optimization of cubic NiFe2O4 nanoparticles with enhanced saturation magnetization. Ceram. Int., 2014, 40, 227-232.
[37]
Zhang, Z.; Liu, Y.; Yao, G.; Zu, G.; Hao, Y. Synthesis and characterization of NiFe2O4 nanoparticles via solid‐state reaction. Int. J. Appl. Ceram. Technol., 2013, 10, 142-149.
[38]
Brunauer, S.; Deming, L.S.; Deming, W.E.; Teller, E. On a theory of the van der waals adsorption of gases. J. Am. Chem. Soc., 1940, 62, 1723-1732.
[39]
Lowell, S.; Shields, J.E. Powder Surface Area and Porosity; Springer: Dordrecht, 1984, pp. 14-29.
[40]
Hazeri, N.; Masoumnia, A.; Mghsoodlou, M.T.; Salahi, S.; Kangani, M.; Kianpour, S.; Kiaee, S.; Abonajmi, J. Acetic acid as an efficient catalyst for synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydro-acridines. Res. Chem. Intermed., 2015, 41, 4123-4131.
[41]
Dabiri, M.; Baghbanzadeh, M.; Arzroomchilar, E. 1-Methylimidazolium triflouroacetate ([Hmim] TFA): An efficient reusable acidic ionic liquid for the synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahyd-roacridines. Catal. Commun., 2008, 9, 939-942.
[42]
Shen, W.; Wang, L.M.; Tian, H.; Tang, J.; Yu, J.J. Brønsted acidic imidazolium salts containing perfluoro-alkyl tails catalyzed one-pot synthesis of 1,8-dioxo-decahydroacridines in water. J. Fluor. Chem., 2009, 130, 522-527.
[43]
Amoozadeh, A.; Golian, S.; Rahmani, S. TiO2-coated magnetite nanoparticle-supported sulfonic acid as a new, efficient, magnetically separable and reusable heterogeneous solid acid catalyst for multicomponent reactions. RSC Advances, 2015, 5, 45974-45982.
[44]
Saha, M.; Kumar Pal, A. Solvent free solid support synthesis of arylmethylene bis(3-Hydroxy-2-cyclohex-ene-1-ones) and xanthenediones derivatives by microwave irradiation. Iran. J. Org. Chem., 2010, 3, 423-429.
[45]
Maghsoodlou, M.T.; Habibi-Khorassani, S.M.; Shahkarami, Z.; Maleki, N.; Rostamizadeh, M. An efficient synthesis of 2,2′-arylmethylene bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) and 1,8-dioxo-octa-hydroxanthenes using ZnO and ZnO-acetyl chloride. Chin. Chem. Lett., 2010, 21, 686-689.