Recent Insights into Effective Nanomaterials and Biomacromolecules Conjugation in Advanced Drug Targeting

Page: [526 - 541] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Targeted drug delivery, also known as smart drug delivery or active drug delivery, is a subcategory of nanomedicine. Using this strategy, the medication is delivered into the infected organs in the patient’s body or to the targeted sites inside the cells. In order to improve therapeutic efficiency and pharmacokinetic characteristics of the active pharmaceutical agents, conjugation of biomacromolecules such as proteins, nucleic acids, monoclonal antibodies, aptamers, and nanoparticulate drug carriers, has been mostly recommended by scientists in the last decades. Several covalent conjugation pathways are used for biomacromolecules coupling with nanomaterials in nanomedicine including carbodiimides and “click” mediated reactions, thiol-mediated conjugation, and biotin-avidin interactions. However, choosing one or a combination of these methods with suitable coupling for application to advanced drug delivery is essential. This review focuses on new and high impacted published articles in the field of nanoparticles and biomacromolecules coupling studies, as well as their advantages and applications.

Keywords: Nanobiotechnology, biomacromolecule, targeted drug delivery, nanomedicine, chemical coupling, “click” mediated reactions, carbodiimides, thiol-mediated conjugation, biotin-avidin.

Graphical Abstract

[1]
Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res., 2010, 62, 90-99.
[2]
Son, D.; Lee, J.; Qiao, S.; Ghaffari, R.; Kim, J.; Lee, J.E.; Song, C.; Kim, S.J.; Lee, D.J.; Jun, S.W. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol., 2014, 9, 397-404.
[3]
Cha, C.; Shin, S.R.; Annabi, N.; Dokmeci, M.R.; Khademhosseini, A. Carbon-based nanomaterials: Multifunctional materials for biomedical engineering. ACS Nano, 2013, 7, 2891-2897.
[4]
Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res., 2010, 62, 90-99.
[5]
Spain, E.; Gilgunn, S.; Sharma, S.; Adamson, K.; Carthy, E.; O’Kennedy, R.; Forster, R.J. Detection of prostate specific antigen based on electrocatalytic platinum nanoparticles conjugated to a recombinant scFv antibody. Biosens. Bioelectron., 2016, 77, 759-766.
[6]
Pathak, Y.; Thassu, D. Drug delivery nanoparticles formulation and characterization; 1st Ed.; CRC Press: Taylor & Francis Group. , 2016.
[7]
Cheng, D.; Yong, X.; Zhu, T.; Qiu, Y.; Wang, J.; Zhu, H.; Ma, B.; Xie, J. Synthesis of protein nanoparticles for drug delivery. Eur. J. Med. Res., 2016, 2, 8-11.
[8]
Rostami, E.; Kashanian, S.; Azandaryani, A.H.; Faramarzi, H.; Dolatabadi, J.E.N.; Omidfar, K. Drug targeting using solid lipid nanoparticles. Chem. Phys. Lipids, 2014, 181, 56-61.
[9]
Allen, T.M.; Cullis, P.R. Drug delivery systems: Entering the mainstream. Science, 2004, 303, 1818-1822.
[10]
Ruskowitz, E.R.; DeForest, C.A. Photoresponsive biomaterials for targeted drug delivery and 4D cell culture. Nat. Rev. Mater., 2018, 3, 17087.
[11]
Amreddy, N.; Babu, A.; Muralidharan, R.; Panneerselvam, J.; Srivastava, A.; Ahmed, R.; Mehta, M.; Munshi, A.; Ramesh, R. Chapter five - recent advances in nanoparticle-based cancer drug and gene delivery. Adv. Cancer Res., 2018, 137, 115-170.
[12]
Chen, M-C.; Mi, F-L.; Liao, Z-X.; Hsiao, C-W.; Sonaje, K.; Chung, M-F.; Hsu, L-W.; Sung, H-W. Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv. Drug Deliv. Rev., 2013, 65, 865-879.
[13]
Caruthers, S.D.; Wickline, S.A.; Lanza, G.M. Nanotechnological applications in medicine. Curr. Opin. Biotechnol., 2007, 18, 26-30.
[14]
Xu, L.; Feng, L.; Dong, S.; Hao, J.; Yu, Q. Carbon nanotubes modified by a paramagnetic cationic surfactant for migration of DNA and proteins. Colloid. Surface. A., 2018, 559, 201-208.
[15]
Derakhshandeh, K.; Azandaryani, A.H. Active-targeted Nanotherapy as Smart Cancer Treatment. Smart Drug Delivery System., Ali Demir Sezer, Ed.; InTech Open: London. 2016, pp. 91- 116.
[16]
Li, H.; Wei, R.; Yan, G-H.; Sun, J.; Li, C.; Wang, H.; Shi, L.; Capobianco, J.A.; Sun, L. Smart self-assembled nanosystem based on water-soluble pillararene and rare-earth-doped upconversion nanoparticles for pH-responsive drug delivery. ACS Appl. Mater. Interfaces, 2018, 10, 4910-4920.
[17]
Pan, L.; He, Q.; Liu, J.; Chen, Y.; Ma, M.; Zhang, L.; Shi, J. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc., 2012, 134, 5722-5725.
[18]
Han, H.S.; Thambi, T.; Choi, K.Y.; Son, S.; Ko, H.; Lee, M.C.; Jo, D-G.; Chae, Y.S.; Kang, Y.M.; Lee, J.Y. Bioreducible shell-cross-linked hyaluronic acid nanoparticles for tumor-targeted drug delivery. Biomacromolecules, 2015, 16, 447-456.
[19]
Zhang, T.; Zhou, S.; Hu, L.; Peng, B.; Liu, Y.; Luo, X.; Liu, X.; Song, Y.; Deng, Y. Polysialic acid-polyethylene glycol conjugate-modified liposomes as a targeted drug delivery system for epirubicin to enhance anticancer efficiency. Drug Deliv. Transl. Res., 2018, 8, 602-616.
[20]
Rejeeth, C.; Pang, X.; Zhang, R.; Xu, W.; Sun, X.; Liu, B.; Lou, J.; Wan, J.; Gu, H.; Yan, W. Extraction, detection, and profiling of serum biomarkers using designed Fe 3 O4@ SiO2@ HA core-shell particles. Nano Res., 2018, 11, 68-79.
[21]
Mittal, R.; Patel, A.P.; Jhaveri, V.M.; Kay, S-I.S.; Debs, L.H.; Parrish, J.M.; Pan, D.R.; Nguyen, D.; Mittal, J.; Jayant, R.D. Recent advancements in nanoparticle based drug delivery for gastrointestinal disorders. Expert Opin. Drug Deliv., 2018, 15, 301-318.
[22]
Lavrador, P.; Gaspar, V.M.; Mano, J.F. Stimuli-responsive nanocarriers for delivery of bone therapeutics - Barriers and progresses. J. Control. Release, 2018, 273, 51-67.
[23]
Raghav, R.; Srivastava, S. Immobilization strategy for enhancing sensitivity of immunosensors: L-Asparagine-AuNPs as a promising alternative of EDC-NHS activated citrate-AuNPs for antibody immobilization. Biosens. Bioelectron., 2016, 78, 396-403.
[24]
Conde, J.; Dias, J.T.; Grazú, V.; Moros, M.; Baptista, P.V.; de la Fuente, J.M. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem., 2014, 2, 48.
[25]
Cheng, R.; Meng, F.; Deng, C.; Klok, H-A.; Zhong, Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials, 2013, 34, 3647-3657.
[26]
Chen, F.; Hong, H.; Zhang, Y.; Valdovinos, H.F.; Shi, S.; Kwon, G.S.; Theuer, C.P.; Barnhart, T.E.; Cai, W. In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano, 2013, 7, 9027-9039.
[27]
Gao, Z.; Zhang, L.; Sun, Y. Nanotechnology applied to overcome tumor drug resistance. J. Control. Release, 2012, 162, 45-55.
[28]
Nikandish, N.; Hosseinzadeh, L.; Azandaryani, A.H.; Derakhshandeh, K. The role of nanoparticle in brain permeability: An in-vitro BBB model. Iran. J. Pharm. Res., 2016, 15, 403-413.
[29]
Piazza, R.D.; Brandt, J.V.; Gobo, G.G.; Tedesco, A.C.; Primo, F.L.; Marques, R.F.C.; Junior, M.J. mPEG-co-PCL nanoparticles: The influence of hydrophobic segment on methotrexate drug delivery. Colloid. Surf. A, 2018, 555, 142-149.
[30]
Soppimath, K.S.; Aminabhavi, T.M.; Kulkarni, A.R.; Rudzinski, W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release, 2001, 70, 1-20.
[31]
Cho, K.; Wang, X.; Nie, S.; Shin, D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res., 2008, 14, 1310-1316.
[32]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloid. Surf. B., 2010, 75, 1-18.
[33]
Sharma, A.; Sharma, U.S. Liposomes in drug delivery: Progress and limitations. Int. J. Pharm., 1997, 154, 123-140.
[34]
Joshi, M.; Patravale, V. Nanostructured lipid carrier (NLC) based gel of celecoxib. Int. J. Pharm., 2008, 346, 124-132.
[35]
Rostami, E.; Kashanian, S.; Azandaryani, A. Preparation of solid lipid nanoparticles as drug carriers for levothyroxine sodium with in vitro drug delivery kinetic characterization. Mol. Biol. Rep., 2014, 41, 3521-3527.
[36]
Kashanian, S. hemati Azandaryani, A.; Derakhshandeh, K. New surface-modified solid lipid nanoparticles using N-glutaryl phosphatidylethanolamine as the outer shell. Int. J. Pharm., 2011, 6, 2393-2401.
[37]
Sperling, R.A.; Parak, W. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. Royal Soc. A., 2010, 368, 1333-1383.
[38]
Feliu, N.; Docter, D.; Heine, M.; del Pino, P.; Ashraf, S.; Kolosnjaj-Tabi, J.; Macchiarini, P.; Nielsen, P.; Alloyeau, D.; Gazeau, F. In vivo degeneration and the fate of inorganic nanoparticles. Chem. Soc. Rev., 2016, 45, 2440-2457.
[39]
Hałupka-Bryl, M.; Bednarowicz, M.; Dobosz, B.; Krzyminiewski, R.; Zalewski, T.; Wereszczyńska, B.; Nowaczyk, G.; Jarek, M.; Nagasaki, Y. Doxorubicin loaded PEG-b-poly (4-vinylbenzylphosphonate) coated magnetic iron oxide nanoparticles for targeted drug delivery. J. Magn. Magn. Mater., 2015, 384, 320-327.
[40]
Wang, L.; Neoh, K.G.; Kang, E-T.; Shuter, B. Multifunctional polyglycerol-grafted Fe3O4@ SiO2 nanoparticles for targeting ovarian cancer cells. Biomaterials, 2011, 32, 2166-2173.
[41]
Gao, L.; Yu, J.; Liu, Y.; Zhou, J.; Sun, L.; Wang, J.; Zhu, J.; Peng, H.; Lu, W.; Yu, L. Tumor-penetrating peptide conjugated and doxorubicin loaded T1-T2 dual mode MRI contrast agents nanoparticles for tumor theranostics. Theranostics, 2018, 8, 92-108.
[42]
Li, Z.; Xu, W.; Wang, Y.; Shah, B.R.; Zhang, C.; Chen, Y.; Li, Y.; Li, B. Quantum dots loaded nanogels for low cytotoxicity, pH-sensitive fluorescence, cell imaging and drug delivery. Carbohydr. Polym., 2015, 121, 477-485.
[43]
Zhu, J.; Zheng, L.; Wen, S.; Tang, Y.; Shen, M.; Zhang, G.; Shi, X. Targeted cancer theranostics using alpha-tocopheryl succinate-conjugated multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials, 2014, 35, 7635-7646.
[44]
Mandracchia, D.; Rosato, A.; Trapani, A.; Chlapanidas, T.; Montagner, I.M.; Perteghella, S.; Di Franco, C.; Torre, M.L.; Trapani, G.; Tripodo, G. Design, synthesis and evaluation of biotin decorated inulin-based polymeric micelles as long-circulating nanocarriers for targeted drug delivery. Nanomed Nanotech. Biol. Med., 2017, 13, 1245-1254.
[45]
Yan, C.; Chen, C.; Hou, L.; Zhang, H.; Che, Y.; Qi, Y.; Zhang, X.; Cheng, J.; Zhang, Z. Single-walled carbon nanotube-loaded doxorubicin and Gd-DTPA for targeted drug delivery and magnetic resonance imaging. J. Drug Target., 2017, 25, 163-171.
[46]
Masoudipour, E.; Kashanian, S.; Maleki, N. A targeted drug delivery system based on dopamine functionalized nano graphene oxide. Chem. Phys. Lett., 2017, 668, 56-63.
[47]
Azandaryani, A.H.; Kashanian, S.; Shahlaei, M.; Derakhshandeh, K.; Motiei, M.; Moradi, S. A comprehensive physicochemical, in vitro and molecular characterization of letrozole incorporated chitosan-lipid nanocomplex. Pharm. Res., 2019, 36, 62.
[48]
Zhao, Q.; Wang, S.; Yang, Y.; Li, X.; Di, D.; Zhang, C.; Jiang, T.; Wang, S. Hyaluronic acid and carbon dots-gated hollow mesoporous silica for redox and enzyme-triggered targeted drug delivery and bioimaging. Mater. Sci. Eng. C, 2017, 78, 475-484.
[49]
Tsai, C.S. Biomacromolecules: Introduction to structure, function and informatics; John Wiley & Sons Inc.: Hoboken, New Jersey, 2007.
[50]
Arkan, E.; Azandaryani, A.; Moradipour, P.; Behbood, L. Biomacromolecular based fibers in nanomedicine: A combination of drug delivery and tissue engineering. Curr. Pharm. Biotechnol., 2017, 18, 909-924.
[51]
Sharma, P.; Mittal, H.; Jindal, R.; Jindal, D.; Alhassan, S.M. Sustained delivery of atenolol drug using gum dammar crosslinked polyacrylamide and zirconium based biodegradable hydrogel composites. Colloid. Surf. A, 2019, 562, 136-145.
[52]
Wang, Z.; Qian, L.; Wang, X.; Zhu, H.; Yang, F.; Yang, X. Hollow DNA/PLL microcapsules with tunable degradation property as efficient dual drug delivery vehicles by α-chymotrypsin degradation. Colloid. Surf. A, 2009, 332, 164-171.
[53]
Scofield, M. Nucleic Acids: xPharm: The Comprehensive Pharmacology Reference. Enna, S.J; Bylund, D.B., Ed.; Elsevier Inc.: Amsterdam, 2007, pp. 1-15.
[54]
Zhou, J.; Liu, J.; Cheng, C.J.; Patel, T.R.; Weller, C.E.; Piepmeier, J.M.; Jiang, Z.; Saltzman, W.M. Biodegradable poly (amine-co-ester) terpolymers for targeted gene delivery. Nat. Mater., 2012, 11, 82-90.
[55]
Hardee, C.L.; Arévalo-Soliz, L.M.; Hornstein, B.D.; Zechiedrich, L. Advances in non-viral DNA vectors for gene therapy. Genes., 2017, 8, 1-22.
[56]
Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. The shape and structure of proteins, 4th ed; Garland Science: New York, 2002.
[57]
Bäumer, N.; Appel, N.; Terheyden, L.; Buchholz, F.; Rossig, C.; Müller-Tidow, C.; Berdel, W.E.; Bäumer, S. Antibody-coupled siRNA as an efficient method for in vivo mRNA knockdown. Nat. Protoc., 2016, 11, 22-36.
[58]
Yun, Y.; Cho, Y.W.; Park, K. Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv. Drug Deliv. Rev., 2013, 65, 822-832.
[59]
Medintz, I.L.; Delehanty, J.B.; Breger, J.; Muttenthaler, M.; Dawson, P.E. Use of single dendritic wedge cell penetrating peptides to facilitate cellular delivery of nanoparticles and nanoparticles carrying cargos. U.S. Patent 10,183,080, January 22. 2019.
[60]
Ulbrich, K.; Hekmatara, T.; Herbert, E.; Kreuter, J. Transferrin-and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the Blood-Brain Barrier (BBB). Eur. J. Pharm. Biopharm., 2009, 71, 251-256.
[61]
Couvreur, P. Nanoparticles in drug delivery: Past, present and future. Adv. Drug Deliv. Rev., 2013, 65, 21-23.
[62]
Montenegro, J-M.; Grazu, V.; Sukhanova, A.; Agarwal, S.; Jesus, M.; Nabiev, I.; Greiner, A.; Parak, W.J. Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery. Adv. Drug Deliv. Rev., 2013, 65, 677-688.
[63]
She, W.; Luo, K.; Zhang, C.; Wang, G.; Geng, Y.; Li, L.; He, B.; Gu, Z. The potential of self-assembled, pH-responsive nanoparticles of mPEGylated peptide dendron-doxorubicin conjugates for cancer therapy. Biomaterials, 2013, 34, 1613-1623.
[64]
Kularatne, R.N.; Washington, K.E.; Bulumulla, C.; Calubaquib, E.L.; Biewer, M.C.; Oupicky, D.; Stefan, M.C. Histone deacetylase inhibitor (HDACi) conjugated polycaprolactone for combination cancer therapy. Biomacromolecules, 2018, 19, 1082-1089.
[65]
Lee, S.; Lee, Y.; Kim, H.; Lee, D.Y.; Jon, S. Bilirubin nanoparticle-assisted delivery of a small molecule-drug conjugate for targeted cancer therapy. Biomacromolecules, 2018, 19, 2270-2277.
[66]
Bartczak, D.; Kanaras, A.G. Preparation of peptide-functionalized gold nanoparticles using one pot EDC/sulfo-NHS coupling. Langmuir, 2011, 27, 10119-10123.
[67]
Joshy, K.; Susan, M.A.; Snigdha, S.; Nandakumar, K.; Laly, A.P.; Sabu, T. Encapsulation of zidovudine in PF-68 coated alginate conjugate nanoparticles for anti-HIV drug delivery. Int. J. Biol. Macromol., 2018, 107, 929-937.
[68]
Kamra, T.; Chaudhary, S.; Xu, C.; Montelius, L.; Schnadt, J.; Ye, L. Covalent immobilization of molecularly imprinted polymer nanoparticles on a gold surface using carbodiimide coupling for chemical sensing. J. Colloid Interface Sci., 2016, 461, 1-8.
[69]
Pham, Y.; Nguyen, A.T.; Phan, T.N.; Chu, L.L.; Nguyen, D.Q.; Nguyen, H.M.; Nam, N.H.; Luong, N.H. Specificity and processing rate enhancement of Mycobacterium tuberculosis diagnostic procedure using antibody-coupled magnetic nanoparticles. Int. J. Nanotechnol., 2015, 12, 335-346.
[70]
Motiei, M.; Kashanian, S.; Taherpour, A. Hydrophobic amino acids grafted onto chitosan: A novel amphiphilic chitosan nanocarrier for hydrophobic drugs. Drug Dev. Ind. Pharm., 2017, 43, 1-11.
[71]
Manoochehri, S.; Darvishi, B.; Kamalinia, G.; Amini, M.; Fallah, M.; Ostad, S.N.; Atyabi, F.; Dinarvand, R. Surface modification of PLGA nanoparticles via human serum albumin conjugation for controlled delivery of docetaxel. DARU J. Pharm. Sci, 2013, 21, 1.
[72]
Hanafy, N.A.; Quarta, A.; Di Corato, R.; Dini, L.; Nobile, C.; Tasco, V.; Carallo, S.; Cascione, M.; Malfettone, A.; Soukupova, J. Hybrid polymeric-protein nano-carriers (HPPNC) for targeted delivery of TGFβ inhibitors to hepatocellular carcinoma cells. J. Mater. Sci. Mater. Med., 2017, 28, 1-11.
[73]
Mallick, A.; More, P.; Ghosh, S.; Chippalkatti, R.; Chopade, B.A.; Lahiri, M.; Basu, S. Dual drug conjugated nanoparticle for simultaneous targeting of mitochondria and nucleus in cancer cells. ACS Appl. Mater. Interfaces, 2015, 7, 7584-7598.
[74]
Hettiarac, S.; Graham, R.; Mintz, K.J.; Zhou, Y.; Vanni, S.; Peng, Z.; Leblanc, R. Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale, 2019, 28, 6192-6205.
[75]
Iijima, S. Helical microtubules of graphitic carbon. Nature, 1991, 354, 56-58.
[76]
Mehra, N.K.; Palakurthi, S. Interactions between carbon nanotubes and bioactives: A drug delivery perspective. Drug Discov. Today, 2016, 21, 585-597.
[77]
Gao, Y.; Kyratzis, I. Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide-a critical assessment. Bioconjug. Chem., 2008, 19, 1945-1950.
[78]
Kam, N.W.S.; O’Connell, M.; Wisdom, J.A.; Dai, H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA, 2005, 102, 11600-11605.
[79]
Mosleh, A.; Heintz, A.; Lim, K.T.; Kim, J.W.; Beitle, R. Permeability enhancement of Escherichia coli by single‐walled carbon nanotube treatment. Biotechnol. Prog., 2017, 33, 654-657.
[80]
Ou, Z.; Wu, B.; Xing, D.; Zhou, F.; Wang, H.; Tang, Y. Functional single-walled carbon nanotubes based on an integrin αvβ3 monoclonal antibody for highly efficient cancer cell targeting. Nanotechnology, 2009, 20, 105102.
[81]
Firer, M.A.; Gellerman, G. Targeted drug delivery for cancer therapy: The other side of antibodies. J. Hematol. Oncol., 2012, 5, 1-16.
[82]
Axup, J.Y.; Bajjuri, K.M.; Ritland, M.; Hutchins, B.M.; Kim, C.H.; Kazane, S.A.; Halder, R.; Forsyth, J.S.; Santidrian, A.F.; Stafin, K. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. P. Nat. Acad. Sci., 2012, 109, 16101-16106.
[83]
Bengtsson, K.L.; Song, H.; Stertman, L.; Liu, Y.; Flyer, D.C.; Massare, M.J.; Xu, R-H.; Zhou, B.; Lu, H.; Kwilas, S.A.; Hahn, T.J.; Kpamegan, E.; Hooper, J.; Carrion, Jr, R.; Glenn, G.; Smith, G. Matrix-M adjuvant enhances antibody, cellular and protective immune responses of a Zaire Ebola/Makona virus glycoprotein (GP) nanoparticle vaccine in mice. Vaccine, 2016, 34, 1927-1935.
[84]
Pende, D.; Cantoni, C.; Rivera, P.; Vitale, M.; Castriconi, R.; Marcenaro, S.; Nanni, M.; Biassoni, R.; Bottino, C.; Moretta, A. Role of NKG2D in tumor cell lysis mediated by human NK cells: cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepithelial origin. Eur. J. Immunol., 2001, 31, 1076-1086.
[85]
Kucinskaite-Kodze, I.; Pleckaityte, M.; Bremer, C.M.; Seiz, P.L.; Zilnyte, M.; Bulavaite, A.; Mickiene, G.; Zvirblis, G.; Sasnauskas, K.; Glebe, D. New broadly reactive neutralizing antibodies against hepatitis B virus surface antigen. Virus Res., 2016, 211, 209-221.
[86]
Feng, Y.; Forsell, M.N.; Flynn, B.; Adams, W.; Loré, K.; Seder, R.; Wyatt, R.T.; Hedestam, G.B.K. Chemical cross-linking of HIV-1 Env for direct TLR7/8 ligand conjugation compromises recognition of conserved antigenic determinants. Virology, 2013, 446, 56-65.
[87]
Loureiro, J.A.; Gomes, B.; Fricker, G.; Coelho, M.A.N.; Rocha, S.; Pereira, M.C. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer’s disease treatment. Colloid. Surf. B., 2016, 145, 8-13.
[88]
De Cesare, M.; Sfondrini, L.; Pennati, M.; De Marco, C.; Motta, V.; Tagliabue, E.; Deraco, M.; Balsari, A.; Zaffaroni, N. CpG-oligodeoxynucleotides exert remarkable antitumor activity against diffuse malignant peritoneal mesothelioma orthotopic xenografts. J. Transl. Med., 2016, 14, 1.
[89]
Milley, B.; Kiwan, R.; Ott, G.S.; Calacsan, C.; Kachura, M.; Campbell, J.D.; Kanzler, H.; Coffman, R.L. Optimization, production, and characterization of a CpG-Oligonucleotide-Ficoll conjugate nanoparticle adjuvant for enhanced immunogenicity of anthrax protective antigen. Bioconjug. Chem., 2016, 27, 1293-1304.
[90]
Sunoqrot, S.; Bae, J.W.; Pearson, R.M.; Shyu, K.; Liu, Y.; Kim, D-H.; Hong, S. Temporal control over cellular targeting through hybridization of folate-targeted dendrimers and PEG-PLA nanoparticles. Biomacromolecules, 2012, 13, 1223-1230.
[91]
Sunoqrot, S.; Bugno, J.; Lantvit, D.; Burdette, J.E.; Hong, S. Prolonged blood circulation and enhanced tumor accumulation of folate-targeted dendrimer-polymer hybrid nanoparticles. J. Control. Release, 2014, 191, 115-122.
[92]
Hua, X.; Zhou, Z.; Yuan, L.; Liu, S. Selective collection and detection of MCF-7 breast cancer cells using aptamer-functionalized magnetic beads and quantum dots based nano-bio-probes. Anal. Chim. Acta, 2013, 788, 135-140.
[93]
Chen, M.; Ouyang, H.; Zhou, S.; Li, J.; Ye, Y. PLGA-nanoparticle mediated delivery of anti-OX40 monoclonal antibody enhances anti-tumor cytotoxic T cell responses. Cell. Immunol., 2014, 287, 91-99.
[94]
Kaluzova, M.; Bouras, A.; Machaidze, R.; Hadjipanayis, C.G. Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles. Oncotarget, 2015, 6, 8788.
[95]
Helm, F.; Fricker, G. Liposomal conjugates for drug delivery to the central nervous system. Pharmaceutics, 2015, 7, 27-42.
[96]
Alibolandi, M.; Mohammadi, M.; Taghdisi, S.M.; Ramezani, M.; Abnous, K. Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery. Carbohydr. Polym., 2017, 155, 218-229.
[97]
Alibolandi, M.; Taghdisi, S.M.; Ramezani, P.; Hosseini Shamili, F.; Farzad, S.A.; Abnous, K.; Ramezani, M. Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. Int. J. Pharm., 2017, 519, 352-364.
[98]
Azandaryani, A.H.; Kashanian, S.; Derakhshandeh, K. Folate conjugated hybrid nanocarrier for targeted letrozole delivery in breast cancer treatment. Pharm. Res., 2017, 34, 2798-2808.
[99]
Martínez-Carmona, M.; Lozano, D.; Colilla, M.; Vallet-Regí, M. Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomater., 2018, 65, 393-404.
[100]
Hu, F.; Chen, K.; Xu, H.; Hongchen, G. Design and Preparation of Bi-functionalized Short-chain Modified Zwitterionic Nanoparticles. Acta Biomater., 2018, 72, 239-247.
[101]
Xu, S.; Cui, F.; Huang, D.; Zhang, D.; Zhu, A.; Sun, X.; Cao, Y.; Ding, S.; Wang, Y.; Gao, E. PD-l1 monoclonal antibody-conjugated nanoparticles enhance drug delivery level and chemotherapy efficacy in gastric cancer cells. Int. J. Nanomedicine, 2019, 14, 17.
[102]
Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N.; Smith, C.D. Azide monoliths as convenient flow reactors for efficient Curtiusrearrangement reactions. Org. Biomol. Chem., 2008, 6, 1587-159.
[103]
Glebe, U.; Santos de Miranda, B.; van Rijn, P.; Boker, A. Chapter 1 - Synthetic Modifications of Proteins. Bio-Synthetic Hybrid Materials and Bionanoparticles: A Biological Chemical Approach Towards Material Science., Alexander, B.; Patrick van, R.;Editors.; The Royal Society of Chemistry: Cambridge, UK. 2015, pp. 1-29.
[104]
Somani, R.R.; Sabnis, A.A.; Vaidya, A.V. Click chemical reactions: An emerging approach and its pharmaceutical applications. Int. J. Pharm. Phytopharm. Res, 2017, 1, 322-331.
[105]
Spicer, C.D.; Davis, B.G. Selective chemical protein modification. Nat. Commun., 2014, 5, 4750.
[106]
Hein, C.D.; Liu, X-M.; Wang, D. Click chemistry, a powerful tool for pharmaceutical sciences. Pharm. Res., 2008, 25, 2216-2230.
[107]
Chen, Y.; Xianyu, Y.; Wu, J.; Yin, B.; Jiang, X. Click chemistry-mediated nanosensors for biochemical assays. Theranostics, 2016, 6, 969.
[108]
Sánchez-Tirado, E.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Carbon nanotubes functionalized by click chemistry as scaffolds for the preparation of electrochemical immunosensors. Application to the determination of TGF-beta 1 cytokine. Analyst., 2016, 141, 5730-5737.
[109]
Lallana, E.; Sousa-Herves, A.; Fernandez-Trillo, F.; Riguera, R.; Fernandez-Megia, E. Click chemistry for drug delivery nanosystems. Pharm. Res., 2012, 29, 1-34.
[110]
Liu, T.; Li, X.; Qian, Y.; Hu, X.; Liu, S. Multifunctional pH-disintegrable micellar nanoparticles of asymmetrically functionalized β-cyclodextrin-based star copolymer covalently conjugated with doxorubicin and DOTA-Gd moieties. Biomaterials, 2012, 33, 2521-2531.
[111]
Saxon, E.; Bertozzi, C.R. Cell surface engineering by a modified Staudinger reaction. Science, 2000, 287, 2007-2010.
[112]
O’Reilly, R.K.; Joralemon, M.J.; Wooley, K.L.; Hawker, C.J. Functionalization of micelles and shell cross-linked nanoparticles using click chemistry. Chem. Mater., 2005, 17, 5976-5988.
[113]
Neves, A.A.; Stöckmann, H.; Wainman, Y.A.; Kuo, J.C.; Fawcett, S.; Leeper, F.J.; Brindle, K.M. Imaging cell surface glycosylation in vivo using “double click” chemistry. Bioconjug. Chem., 2013, 24, 934-941.
[114]
Kotagiri, N.; Li, Z.; Xu, X.; Mondal, S.; Nehorai, A.; Achilefu, S. Antibody quantum dot conjugates developed via copper-free click chemistry for rapid analysis of biological samples using a microfluidic microsphere array system. Bioconjug. Chem., 2014, 25, 1272-1281.
[115]
Lu, L.; Yuan, L.; Yan, J.; Tang, C.; Wang, Q. Development of core-shell nanostructures by in situ assembly of pyridine-grafted diblock copolymer and transferrin for drug delivery applications. Biomacromolecules, 2016, 11, 2321-2328.
[116]
Hong, Z-Y.; Lv, C.; Liu, A-A.; Liu, S-L.; Sun, E-Z.; Zhang, Z-L.; Lei, A-W.; Pang, D-W. Clicking hydrazine and aldehyde: The Way to Labeling of Viruses with Quantum dots. ACS Nano, 2015, 9, 11750-11760.
[117]
Schieber, C.; Bestetti, A.; Lim, J.P.; Ryan, A.D.; Nguyen, T.L.; Eldridge, R.; White, A.R.; Gleeson, P.A.; Donnelly, P.S.; Williams, S.J. Conjugation of transferrin to azide‐modified Cdse/ZnS core-shell quantum dots using cyclooctyne click chemistry. Angew. Chem. Int. Ed. Engl., 2012, 51, 10523-10527.
[118]
Hayat, A.; Sassolas, A.; Marty, J-L.; Radi, A-E. Highly sensitive ochratoxin A impedimetric aptasensor based on the immobilization of azido-aptamer onto electrografted binary film via click chemistry. Talanta, 2013, 103, 14-19.
[119]
Yao, G.; Pei, H.; Li, J.; Zhao, Y.; Zhu, D.; Zhang, Y.; Lin, Y.; Huang, Q.; Fan, C. Clicking DNA to gold nanoparticles: poly-adenine-mediated formation of monovalent DNA-gold nanoparticle conjugates with nearly quantitative yield. NPG Asia Mater., 2015, 7, e159.
[120]
Heuer-Jungemann, A.; Kirkwood, R.; El-Sagheer, A.H.; Brown, T.; Kanaras, A.G. Copper-free click chemistry as an emerging tool for the programmed ligation of DNA-functionalised gold nanoparticles. Nanoscale, 2013, 5, 7209-7212.
[121]
Brennan, J.L.; Hatzakis, N.S.; Tshikhudo, T.R.; Dirvianskyte, N.; Razumas, V.; Patkar, S.; Vind, J.; Svendsen, A.; Nolte, R.J.; Rowan, A.E. Bionanoconjugation via click chemistry: The creation of functional hybrids of lipases and gold nanoparticles. Bioconjug. Chem., 2006, 17, 1373-1375.
[122]
Zong, H.; Goonewardena, S.N.; Chang, H-N.; Otis, J.B.; Baker, Jr, J.R. Sequential and parallel dual labeling of nanoparticles using click chemistry. Bioorg. Med. Chem., 2014, 22, 6288-6296.
[123]
Qin, M.; Zong, H.; Kopelman, R. Click conjugation of peptide to hydrogel nanoparticles for tumor-targeted drug delivery. Biomacromolecules, 2014, 15, 3728-3734.
[124]
Zhou, Z.; Badkas, A.; Stevenson, M.; Lee, J-Y.; Leung, Y-K. Herceptin conjugated PLGA-PHis-PEG pH sensitive nanoparticles for targeted and controlled drug delivery. Int. J. Pharm., 2015, 487, 81-90.
[125]
Finetti, C.; Sola, L.; Pezzullo, M.; Prosperi, D.; Colombo, M.; Riva, B.; Avvakumova, S.; Morasso, C.; Picciolini, S.; Chiari, M. Click chemistry immobilization of antibodies on polymer coated gold nanoparticles. Langmuir, 2016, 32, 7435-7441.
[126]
Parsamanesh, M.; Dadkhah Tehrani, A. Synthesize of new fluorescent polymeric nanoparticle using modified cellulose nanowhisker through click reaction. Carbohydr. Polym., 2016, 136, 1323-1331.
[127]
van Lith, S.A.; van Duijnhoven, S.M.; Navis, A.C.; Leenders, W.P.; Dolk, E.; Wennink, J.W.; van Nostrum, C.F.; van Hest, J.C. Legomedicine a versatile chemo-enzymatic approach for the preparation of targeted dual-labeled llama antibody-nanoparticle conjugates. Bioconjug. Chem., 2017, 28, 539-548.
[128]
Kyriazi, M-E.; Giust, D.; El-Sagheer, A.H.; Lackie, P.M.; Muskens, O.L.; Brown, T.; Kanaras, A.G. Multiplexed mRNA sensing and combinatorial-targeted drug delivery using DNA-gold nanoparticle dimers. ACS Nano, 2018, 12, 3333-3340.
[129]
Hou, G.; Qian, J.; Xu, W.; Sun, T.; Wang, Y.; Wang, J.; Ji, L.; Suo, A. A novel pH-sensitive targeting polysaccharide-gold nanorod conjugate for combined photothermal-chemotherapy of breast cancer. Carbohydr. Polym., 2019, 212, 334-344.
[130]
Ding, Y.; Zhou, Y-Y.; Chen, H.; Geng, D-D.; Wu, D-Y.; Hong, J.; Shen, W-B.; Hang, T-J.; Zhang, C. The performance of thiol-terminated PEG-paclitaxel-conjugated gold nanoparticles. Biomaterials, 2013, 34, 10217-10227.
[131]
Ghosh, P.; Han, G.; De, M.; Kim, C.K.; Rotello, V.M. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev., 2008, 60, 1307-1315.
[132]
Li, J-L.; Wang, L.; Liu, X-Y.; Zhang, Z-P.; Guo, H-C.; Liu, W-M.; Tang, S-H. In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett., 2009, 274, 319-326.
[133]
Ahirwal, G.K.; Mitra, C.K. Direct electrochemistry of horseradish peroxidase-gold nanoparticles conjugate. Sensors., 2009, 9, 881-894.
[134]
Vigderman, L.; Zubarev, E.R. Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv. Drug Deliv. Rev., 2013, 65, 663-676.
[135]
Sun, Y.; Liu, H.; Cheng, L.; Zhu, S.; Cai, C.; Yang, T.; Yang, L.; Ding, P. Thiol Michael addition reaction: a facile tool for introducing peptides into polymer‐based gene delivery systems. Polym. Int., 2018, 67, 25-31.
[136]
Kotamraju, V.R.; Sharma, S.; Kolhar, P.; Agemy, L.; Pavlovich, J.; Ruoslahti, E. Increasing tumor accessibility with conjugatable disulfide-bridged tumor-penetrating peptides for cancer diagnosis and treatment. Breast Cancer, 2015, 9, 79.
[137]
Ye, Y.; Zhu, L.; Ma, Y.; Niu, G.; Chen, X. Synthesis and evaluation of new iRGD peptide analogs for tumor optical imaging. Bioorg. Med. Chem. Lett., 2011, 21, 1146-1150.
[138]
Lee, J-S.; Lytton-Jean, A.K.; Hurst, S.J.; Mirkin, C.A. Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett., 2007, 7, 2112-2115.
[139]
Walter, J.G.; Petersen, S.; Stahl, F.; Scheper, T.; Barcikowski, S. Laser ablation-based one-step generation and bio-functionalization of gold nanoparticles conjugated with aptamers. J. Nanobiotechnology, 2010, 8, 1-11.
[140]
Chen, M.; Bi, S.; Jia, X.; He, P. Aptamer-conjugated bio-bar-code Au-Fe3O4 nanoparticles as amplification station for electroche-miluminescence detection of tumor cells. Anal. Chim. Acta, 2014, 837, 44-51.
[141]
Kalmodia, S.; Vandhana, S.; Rama, B.T.; Jayashree, B.; Seethalakshmi, T.S.; Umashankar, V.; Yang, W.; Barrow, C.J.; Krishnakumar, S.; Elchuri, S.V. Bio-conjugation of antioxidant peptide on surface-modified gold nanoparticles: A novel approach to enhance the radical scavenging property in cancer cell. Cancer Nanotechnol., 2016, 7, 1-19.
[142]
Dasari, B.C.; Cashman, S.M.; Kumar-Singh, R. Reducible PEG-POD/DNA nanoparticles for gene transfer in vitro and in vivo; application in a mouse model of age related macular degeneration. Mol. Ther. Nucleic Acids, 2017, 8, 77-89.
[143]
Yan, J.; He, W.; Yan, S.; Niu, F.; Liu, T.; Ma, B.; Shao, Y.; Yan, Y.; Yang, G.; Lu, W. Self-assembled peptide–lanthanide nanoclusters for safe tumor therapy: Overcoming and utilizing biological barriers to peptide drug delivery. ACS Nano, 2018, 12, 2017-2026.
[144]
Zhang, B.; Shen, S.; Liao, Z.; Shi, W.; Wang, Y.; Zhao, J.; Hu, Y.; Yang, J.; Chen, J.; Mei, H. Targeting fibronectins of glioma extracellular matrix by CLT1 peptide-conjugated nanoparticles. Biomaterials, 2014, 35, 4088-4098.
[145]
Rai, A.; Pinto, S.; Velho, T.R.; Ferreira, A.F.; Moita, C.; Trivedi, U.; Evangelista, M.; Comune, M.; Rumbaugh, K.P.; Simões, P.N.; Moita, L.; Ferreira, L. One-step synthesis of high-density peptide-conjugated gold nanoparticles with antimicrobial efficacy in a systemic infection model. Biomaterials, 2016, 85, 99-110.
[146]
Lee, D.; Heo, D.N.; Kim, H-J.; Ko, W-K.; Lee, S.J.; Heo, M.; Bang, J.B.; Lee, J.B.; Hwang, D-S.; Do, S.H. Inhibition of Osteoclast Differentiation and Bone Resorption by Bisphosphonate-conjugated Gold Nanoparticles. Sci. Rep. UK, 2016, 6, 27336.
[147]
Oroujeni, M.; Kaboudin, B.; Xia, W.; Jönsson, P.; Ossipov, D.A. Conjugation of cyclodextrin to magnetic Fe3O4 nanoparticles via polydopamine coating for drug delivery. Prog. Org. Coat., 2018, 114, 154-161.
[148]
Sun, H.; Li, S.; Qi, W.; Xing, R.; Zou, Q.; Yan, X. Stimuli-responsive nanoparticles based on co-assembly of naturally-occurring biomacromolecules for in vitro photodynamic therapy. Colloid. Surf. A., 2018, 538, 795-801.
[149]
Jain, A.; Cheng, K. The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. J. Control. Release, 2017, 245, 27-40.
[150]
Chivers, C.E.; Koner, A.L.; Lowe, E.D.; Howarth, M. How the biotin-streptavidin interaction was made even stronger: Investigation via crystallography and a chimaeric tetramer. Biochem. J., 2011, 435, 55-63.
[151]
Zamolo, V.A.; Modugno, G.; Lubian, E.; Cazzolaro, A.; Mancin, F.; Giotta, L.; Mastrogiacomo, D.; Valli, L.; Saccani, A.; Krol, S. Selective targeting of proteins by hybrid polyoxometalates: Interaction between a bis-biotinylated hybrid conjugate and avidin. Front Chem., 2018, 6, Article 278.
[152]
Ren, W.X.; Han, J.; Uhm, S.; Jang, Y.J.; Kang, C.; Kim, J-H.; Kim, J.S. Recent development of biotin conjugation in biological imaging, sensing, and target delivery. Chem. Commun., 2015, 51, 10403-10418.
[153]
Wilchek, M.; Bayer, E.A.; Livnah, O. Essentials of biorecognition: the (strept) avidin-biotin system as a model for protein-protein and protein-ligand interaction. Immunol. Lett., 2006, 103, 27-32.
[154]
Bajpayee, A.G.; Quadir, M.A.; Hammond, P.T.; Grodzinsky, A.J. Charge based intra-cartilage delivery of single dose dexamethasone using Avidin nano-carriers suppresses cytokine-induced catabolism long term. Osteoarthritis Cartilage, 2016, 24, 71-81.
[155]
Lakshmipriya, T.; Gopinath, S.C.; Hashim, U.; Tang, T-H. Signal enhancement in ELISA: Biotin-streptavidin technology against gold nanoparticles. J. Taibah Univ. Med. Sci, 2016, 11, 432-438.
[156]
Lakshmipriya, T.; Gopinath, S.C.; Tang, T-H. Biotin-Streptavidin Competition Mediates Sensitive Detection of Biomolecules in Enzyme Linked Immunosorbent Assay. PLoS One, 2016, 11, 1-14.
[157]
Greenwood, C.; Ruff, D.; Kirvell, S.; Johnson, G.; Dhillon, H.S.; Bustin, S.A. Proximity assays for sensitive quantification of proteins. Biomol Detect. Quantif., 2015, 4, 10-16.
[158]
George, A.; Zhou, M.; Ye, R.; Patrick, M-A.; Anthony, T.; Frederick, S. Connecting DNA origami structures using the biotin-streptavidin specific binding. Afr. J. Biotechnol., 2015, 14, 2258-2264.
[159]
Leach, J.C.; Wang, A.; Ye, K.; Jin, S. A RNA-DNA hybrid aptamer for nanoparticle-based prostate tumor targeted drug delivery. Int. J. Mol. Sci., 2016, 17, 380.
[160]
Palanca-Wessels, M.C.; Booth, G.C.; Convertine, A.J.; Lundy, B.B.; Berguig, G.Y.; Press, M.F.; Stayton, P.S.; Press, O.W. Antibody targeting facilitates effective intratumoral siRNA nanoparticle delivery to HER2-overexpressing cancer cells. Oncotarget, 2016, 7, 9561-9575.
[161]
van der Meer, S.B.; Knuschke, T.; Frede, A.; Schulze, N.; Westendorf, A.M.; Epple, M. Avidin-conjugated calcium phosphate nanoparticles as a modular targeting system for the attachment of biotinylated molecules in vitro and in vivo. Acta Biomater., 2017, 57, 414-425.
[162]
García-Astrain, C.; Avérous, L. Synthesis and evaluation of functional alginate hydrogels based on click chemistry for drug delivery applications. Carbohydr. Polym., 2018, 190, 271-280.
[163]
Jin, K.; Leitsch, E.K.; Chen, X.; Heath, W.H.; Torkelson, J.M. Segmented thermoplastic polymers synthesized by thiol-ene click chemistry: Examples of thiol-norbornene and thiol-maleimide click reactions. Macromolecules, 2018, 51, 3620-3631.