Visfatin and Rheumatoid Arthritis: Pathogenetic Implications and Clinical Utility

Page: [224 - 239] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Objective: Analysis and generalization of data related to visfatin involvement in the pathogenesis of inflammation at various stages of rheumatoid arthritis.

Data Synthesis: Visfatin is an adipocytokine which has also been identified in non-adipose tissues. It influences directly on the maturation of B cells, which are involved in autoantibody production and T cell activation. Visfatin can promote inflammation via regulation of pro-inflammatory cytokines including TNF, IL-1β and IL-6. The concentration of circulating visfatin in rheumatoid arthritis patients is higher compared to healthy individuals. Several studies suggest that visfatin level is associated with rheumatoid arthritis activity, and its elevation may precede clinical signs of the relapse. In murine collagen-induced arthritis, visfatin levels were also found to be elevated both in inflamed synovial cells and in joint vasculature. Visfatin blockers have been shown to confer fast and long-term attenuation of pathological processes; however, most of their effects are transient. Other factors responsible for hyperactivation of the immune system can participate in this process at a later stage. Treatment of rheumatoid arthritis with a combination of these blockers and inhibitors of other mediators of inflammation can potentially improve treatment outcomes compared to current therapeutic strategies. Recent advances in the treatment of experimental arthritis in mice as well as the application of emerging treatment strategies obtained from oncology for rheumatoid arthritis management could be a source of novel adipokine-mediated anti-rheumatic drugs.

Conclusion: The ongoing surge of interest in anticytokine therapy makes further study of visfatin highly relevant as it may serve as a base for innovational RA treatment.

Keywords: Rheumatoid arthritis, visfatin, NAMPT, adipokines, adipose tissue, pathogenesis.

Graphical Abstract

[1]
Bellucci E, Terenzi R, La Paglia GM, et al. One year in review 2016: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol 2016; 34(5): 793-801.
[PMID: 27716458]
[2]
McInnes IB, Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet 2017; 389(10086): 2328-37.
[http://dx.doi.org/10.1016/S0140-6736(17)31472-1] [PMID: 28612747]
[3]
Burmester GR, Pope JE. Novel treatment strategies in rheumatoid arthritis. Lancet 2017; 389(10086): 2338-48.
[http://dx.doi.org/10.1016/S0140-6736(17)31491-5] [PMID: 28612748]
[4]
Kim D, Choi C-B, Lee J, et al. KORONA investigators. Impact of early diagnosis on functional disability in rheumatoid arthritis. Korean J Intern Med (Korean Assoc Intern Med) 2017; 32(4): 738-46.
[http://dx.doi.org/10.3904/kjim.2015.364] [PMID: 27618867]
[5]
Simakova ES, Zavodovsky BV, Polyakova YV, et al. The relevance of assessment of serum visfatin levels in rheumatoid arthritis patients Palliativnaya meditsina i reabili-tatsiya 2013; 1: 50-2.
[6]
Firestein GS, McInnes IB. Immunopathogenesis of rheumatoid arthritis. Immunity 2017; 46(2): 183-96.
[http://dx.doi.org/10.1016/j.immuni.2017.02.006] [PMID: 28228278]
[7]
Eyre S, Bowes J, Diogo D, et al. Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate; Wellcome Trust Case Control Consortium. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat Genet 2012; 44(12): 1336-40.
[http://dx.doi.org/10.1038/ng.2462] [PMID: 23143596]
[8]
Lundberg K, Bengtsson C, Kharlamova N, et al. Genetic and environmental determinants for disease risk in subsets of rheumatoid arthritis defined by the anticitrullinated protein/peptide antibody fine specificity profile. Ann Rheum Dis 2013; 72(5): 652-8.
[http://dx.doi.org/10.1136/annrheumdis-2012-201484] [PMID: 22661643]
[9]
El Miedany Y, Ed. Comorbidity in rheumatic diseases. Cham: Springer International Publishing 2017.
[http://dx.doi.org/10.1007/978-3-319-59963-2]
[10]
Deane KD, Demoruelle MK, Kelmenson LB, Kuhn KA, Norris JM, Holers VM. Genetic and environmental risk factors for rheumatoid arthritis. Best Pract Res Clin Rheumatol 2017; 31(1): 3-18.
[http://dx.doi.org/10.1016/j.berh.2017.08.003] [PMID: 29221595]
[11]
Raheel S, Matteson EL, Crowson CS, Myasoedova E. Improved flare and remission pattern in rheumatoid arthritis over recent decades: a population-based study. Rheumatology (Oxford) 2017; 56(12): 2154-61.
[http://dx.doi.org/10.1093/rheumatology/kex352] [PMID: 28968703]
[12]
Alam J, Jantan I, Bukhari SNA. Rheumatoid arthritis: Recent advances on its etiology, role of cytokines and pharmacotherapy. Biomed Pharmacother 2017; 92: 615-33.
[http://dx.doi.org/10.1016/j.biopha.2017.05.055] [PMID: 28582758]
[13]
Arleevskaya MI, Kravtsova OA, Lemerle J, Renaudineau Y, Tsibulkin AP. How rheumatoid arthritis can result from provocation of the immune system by microorganisms and viruses. Front Microbiol 2016; 7: 1296.www.frontiersin.org/articles/10.3389/fmicb.2016.01296/fullcited: 20th Dec 2017.
[http://dx.doi.org/10.3389/fmicb.2016.01296] [PMID: 27582741]
[14]
Sakkas LI, Daoussis D, Liossis SN, Bogdanos DP. The infectious basis of ACPA-positive rheumatoid arthritis. Front Microbiol 2017; 81853.www.frontiersin.org/articles/10.3389/fmicb.2017.01853/full[cited: 20th Dec 2017.
[http://dx.doi.org/10.3389/fmicb.2017.01853] [PMID: 29033912]
[15]
Kim HR, Kim EY, Cerny J, Moudgil KD. Antibody responses to mycobacterial and self heat shock protein 65 in autoimmune arthritis: epitope specificity and implication in pathogenesis. J Immunol 2006; 177(10): 6634-41.
[http://dx.doi.org/10.4049/jimmunol.177.10.6634] [PMID: 17082575]
[16]
Sofat N, Wait R, Robertson SD, Baines DL, Baker EH. Interaction between extracellular matrix molecules and microbial pathogens: evidence for the missing link in autoimmunity with rheumatoid arthritis as a disease model. Front Microbiol 2015; 5783.www.frontiersin.org/articles/10.3389/fmicb.2014.00783/full[cited: 20th Dec 2017.
[http://dx.doi.org/10.3389/fmicb.2014.00783] [PMID: 25642219]
[17]
Holmdahl R, Malmström V, Burkhardt H. Autoimmune priming, tissue attack and chronic inflammation - the three stages of rheumatoid arthritis. Eur J Immunol 2014; 44(6): 1593-9.
[http://dx.doi.org/10.1002/eji.201444486] [PMID: 24737176]
[18]
Gerlach K, Tomuschat C, Finke R, et al. Experimental arthritis in the rat induced by the superantigen staphylococcal enterotoxin A. Scand J Immunol 2017; 85(3): 191-6.
[http://dx.doi.org/10.1111/sji.12530] [PMID: 28128856]
[19]
Olson SA, Guilak F, Eds. Post-traumatic arthritis: pathogenesis, diagnosis, and management. New York: Springer 2015.
[http://dx.doi.org/10.1007/978-1-4899-7606-2]
[20]
Bhattaram P, Chandrasekharan U. The joint synovium: A critical determinant of articular cartilage fate in inflammatory joint diseases. Semin Cell Dev Biol 2017; 62: 86-93.
[http://dx.doi.org/10.1016/j.semcdb.2016.05.009] [PMID: 27212252]
[21]
Klareskog L, Amara K, Malmström V. Adaptive immunity in rheumatoid arthritis: anticitrulline and other antibodies in the pathogenesis of rheumatoid arthritis. Curr Opin Rheumatol 2014; 26(1): 72-9.
[http://dx.doi.org/10.1097/BOR.0000000000000016] [PMID: 24257366]
[22]
Haag S, Schneider N, Mason DE, et al. Identification of new citrulline-specific autoantibodies, which bind to human arthritic cartilage, by mass spectrometric analysis of citrullinated type II collagen. Arthritis Rheumatol 2014; 66(6): 1440-9.
[http://dx.doi.org/10.1002/art.38383] [PMID: 24470447]
[23]
Roberts CA, Dickinson AK, Taams LS. The interplay between monocytes/macrophages and CD4+ T cell subsets in rheumatoid arthritis. Front Immunol 2015; 6: 571.www.frontiersin.org/articles/10.3389/fimmu.2015.00571/fullcited: 20th Dec 2017.
[http://dx.doi.org/10.3389/fimmu.2015.00571] [PMID: 26635790]
[24]
Raza K, Falciani F, Curnow SJ, et al. Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin. Arthritis Res Ther 2005; 7(4): R784-95.
[http://dx.doi.org/10.1186/ar1733] [PMID: 15987480]
[25]
Endo Y, Yokote K, Nakayama T. The obesity-related pathology and Th17 cells. Cell Mol Life Sci 2017; 74(7): 1231-45.
[http://dx.doi.org/10.1007/s00018-016-2399-3] [PMID: 27757507]
[26]
Garbers C, Rose-John S. The balance between Treg and TH17 cells: CD11b and interleukin-6. Eur J Immunol 2017; 47(4): 629-32.
[http://dx.doi.org/10.1002/eji.201746988] [PMID: 28387942]
[27]
Na HS, Kwon JE, Lee SH, et al. Th17 and IL-17 cause acceleration of inflammation and fat loss by inducing α2-glycoprotein 1 (AZGP1) in rheumatoid arthritis with high-fat diet. Am J Pathol 2017; 187(5): 1049-58.
[http://dx.doi.org/10.1016/j.ajpath.2016.12.023] [PMID: 28284716]
[28]
Yue M, Xia Y, Shi C, et al. Berberine ameliorates collagen-induced arthritis in rats by suppressing Th17 cell responses via inducing cortistatin in the gut. FEBS J 2017; 284(17): 2786-801.
[http://dx.doi.org/10.1111/febs.14147] [PMID: 28636167]
[29]
van den Berg WB, Miossec P. IL-17 as a future therapeutic target for rheumatoid arthritis. Nat Rev Rheumatol 2009; 5(10): 549-53.
[http://dx.doi.org/10.1038/nrrheum.2009.179] [PMID: 19798029]
[30]
Picchianti Diamanti A, Rosado MM, Scarsella M, et al. Abatacept (cytotoxic T lymphocyte antigen 4-immunoglobulin) improves B cell function and regulatory T cell inhibitory capacity in rheumatoid arthritis patients non-responding to anti-tumour necrosis factor-α agents. Clin Exp Immunol 2014; 177(3): 630-40.
[http://dx.doi.org/10.1111/cei.12367] [PMID: 24773026]
[31]
Manzo A, Paoletti S, Carulli M, et al. Systematic microanatomical analysis of CXCL13 and CCL21 in situ production and progressive lymphoid organization in rheumatoid synovitis. Eur J Immunol 2005; 35(5): 1347-59.
[http://dx.doi.org/10.1002/eji.200425830] [PMID: 15832291]
[32]
Humby F, Bombardieri M, Manzo A, et al. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med 2009; 6(1): e1.journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0060001[cited: 20th Dec 2017.
[http://dx.doi.org/10.1371/journal.pmed.0060001] [PMID: 19143467]
[33]
England BR, Thiele GM, Mikuls TR. Anticitrullinated protein antibodies: origin and role in the pathogenesis of rheumatoid arthritis. Curr Opin Rheumatol 2017; 29(1): 57-64.
[http://dx.doi.org/10.1097/BOR.0000000000000356] [PMID: 27755123]
[34]
Orr C, Najm A, Biniecka M, et al. Synovial immunophenotype and anti-citrullinated peptide antibodies in rheumatoid arthritis patients: Relationship to treatment response and radiologic prognosis. Arthritis Rheumatol 2017; 69(11): 2114-23.
[http://dx.doi.org/10.1002/art.40218] [PMID: 28732135]
[35]
Di Sante G, Tolusso B, Fedele AL, et al. Collagen specific T-cell repertoire and HLA-DR alleles: Biomarkers of active refractory rheumatoid arthritis. EBioMedicine 2015; 2(12): 2037-45.
[http://dx.doi.org/10.1016/j.ebiom.2015.11.019] [PMID: 26844284]
[36]
Wei ST, Sun YH, Zong SH, Xiang YB. Serum levels of IL-6 and TNF-α may correlate with activity and severity of rheumatoid arthritis. Med Sci Monit 2015; 21: 4030-8.
[http://dx.doi.org/10.12659/MSM.895116] [PMID: 26704133]
[37]
Brzustewicz E, Bryl E. The role of cytokines in the pathogenesis of rheumatoid arthritis--Practical and potential application of cytokines as biomarkers and targets of personalized therapy. Cytokine 2015; 76(2): 527-36.
[http://dx.doi.org/10.1016/j.cyto.2015.08.260] [PMID: 26321413]
[38]
Akdis M, Aab A, Altunbulakli C, et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases. J Allergy Clin Immunol 2016; 138(4): 984-1010.
[http://dx.doi.org/10.1016/j.jaci.2016.06.033] [PMID: 27577879]
[39]
McInnes IB, Buckley CD, Isaacs JD. Cytokines in rheumatoid arthritis - shaping the immunological landscape. Nat Rev Rheumatol 2016; 12(1): 63-8.
[http://dx.doi.org/10.1038/nrrheum.2015.171] [PMID: 26656659]
[40]
Présumey J, Courties G, Louis-Plence P, et al. Nicotinamide phosphoribosyltransferase/visfatin expression by inflammatory monocytes mediates arthritis pathogenesis. Ann Rheum Dis 2013; 72(10): 1717-24.
[http://dx.doi.org/10.1136/annrheumdis-2012-202403] [PMID: 23313810]
[41]
Astrakhantseva IV, Efimov GA, Drutskaya MS, Kruglov AA, Nedospasov SA. Modern anti-cytokine therapy of autoimmune diseases. Biochemistry (Mosc) 2014; 79(12): 1308-21.
[http://dx.doi.org/10.1134/S0006297914120049] [PMID: 25716724]
[42]
Asif Amin M, Fox DA, Ruth JH. Synovial cellular and molecular markers in rheumatoid arthritis. Semin Immunopathol 2017; 39(4): 385-93.
[http://dx.doi.org/10.1007/s00281-017-0631-3] [PMID: 28497350]
[43]
Dayer J-M, Williamson S, Croft AP, et al. Matrix metalloproteinases (MMPs) and cytokines in rheumatologyMatrix metalloproteinases in health and disease. Singapore: World Scientific 2017; pp. 123-52.
[http://dx.doi.org/10.1142/9789813207554_0006]
[44]
Tekeoğlu İ, Harman H, Sağ S, Altındiş M, Kamanlı A, Nas K. Levels of serum pentraxin 3, IL-6, fetuin A and insulin in patients with rheumatoid arthritis. Cytokine 2016; 83: 171-5.
[http://dx.doi.org/10.1016/j.cyto.2016.04.009] [PMID: 27152709]
[45]
Chimenti MS, Triggianese P, Conigliaro P, Candi E, Melino G, Perricone R. The interplay between inflammation and metabolism in rheumatoid arthritis. Cell Death Dis 2015; 6e1887www.nature.com/articles/cddis2015246[cited: 20th Dec 2017.
[http://dx.doi.org/10.1038/cddis.2015.246] [PMID: 26379192]
[46]
Corrado A, Maruotti N, Cantatore FP. Osteoblast Role in Rheumatic Diseases. Int J Mol Sci 2017; 18(6): 1272.
[http://dx.doi.org/10.3390/ijms18061272] [PMID: 28617323]
[47]
Grote K, Schuett H, Salguero G, et al. Toll-like receptor 2/6 stimulation promotes angiogenesis via GM-CSF as a potential strategy for immune defense and tissue regeneration. Blood 2010; 115(12): 2543-52.
[http://dx.doi.org/10.1182/blood-2009-05-224402] [PMID: 20056792]
[48]
Siebert S, Tsoukas A, Robertson J, McInnes I. Cytokines as therapeutic targets in rheumatoid arthritis and other inflammatory diseases. Pharmacol Rev 2015; 67(2): 280-309.
[http://dx.doi.org/10.1124/pr.114.009639] [PMID: 25697599]
[49]
Gabay C, McInnes IB. The biological and clinical importance of the ‘new generation’ cytokines in rheumatic diseases. Arthritis Res Ther 2009; 11(3): 230.arthritis-research.biomedcentral.com/articles/10.1186/ar2680[cited: 20th Dec 2017.
[http://dx.doi.org/10.1186/ar2680] [PMID: 19519923]
[50]
Rivellese F, Suurmond J, Habets K, et al. Ability of interleukin-33- and immune complex-triggered activation of human mast cells to down-regulate monocyte-mediated immune responses. Arthritis Rheumatol 2015; 67(9): 2343-53.
[http://dx.doi.org/10.1002/art.39192] [PMID: 25989191]
[51]
Kolobov VV. Interleukin 33 is a key mediator of immune response propa-gation Tsitokiny i vospaleniye 2011; 10(3): 5-9.
[52]
Macedo RB, Kakehasi AM, Melo de Andrade MV. IL33 in rheumatoid arthritis: potential contribution to pathogenesis. Rev Bras Reumatol Engl Ed 2016; 56(5): 451-7.
[http://dx.doi.org/10.1016/j.rbre.2016.03.009] [PMID: 27692395]
[53]
Xu WD, Zhang M, Zhang YJ, Ye DQ. IL-33 in rheumatoid arthritis: potential role in pathogenesis and therapy. Hum Immunol 2013; 74(9): 1057-60.
[http://dx.doi.org/10.1016/j.humimm.2013.06.029] [PMID: 23800433]
[54]
Segawa K, Fukuhara A, Hosogai N, et al. Visfatin in adipocytes is upregulated by hypoxia through HIF1α-dependent mechanism. Biochem Biophys Res Commun 2006; 349(3): 875-82.
[http://dx.doi.org/10.1016/j.bbrc.2006.07.083] [PMID: 16970912]
[55]
Yang S, Ryu JH, Oh H, et al. NAMPT (visfatin), a direct target of hypoxia-inducible factor-2α, is an essential catabolic regulator of osteoarthritis. Ann Rheum Dis 2015; 74(3): 595-602.
[http://dx.doi.org/10.1136/annrheumdis-2013-204355] [PMID: 24347567]
[56]
Rodríguez-Carrio J, Alperi-López M, López P, et al. High triglycerides and low high-density lipoprotein cholesterol lipid profile in rheumatoid arthritis: A potential link among inflammation, oxidative status, and dysfunctional high-density lipoprotein. J Clin Lipidol 2017; 11(4): 1043-1054.e2.
[http://dx.doi.org/10.1016/j.jacl.2017.05.009] [PMID: 28662934]
[57]
Innala L, Sjöberg C, Möller B, et al. Co-morbidity in patients with early rheumatoid arthritis - inflammation matters. Arthritis Res Ther 2016; 18: 33.arthritis-research.biomedcentral.com/articles/10.1186/s13075-016-0928-y[cited: 20th Dec 2017.
[http://dx.doi.org/10.1186/s13075-016-0928-y] [PMID: 26818851]
[58]
Moi JH, Hodgson LA, Wicks IP, Wong TY, Van Doornum S. Suppression of inflammatory disease activity in rheumatoid arthritis is associated with improvements in retinal microvascular health. Rheumatology (Oxford) 2016; 55(2): 246-51.
[http://dx.doi.org/10.1093/rheumatology/kev304] [PMID: 26338663]
[59]
Bain GI, Clifton T, Costi JJ, Krishnan J. Biomechanics of the rheumatoid wrist deformityClinical management of the rheumatoid hand, wrist, and elbow. Cham: Springer International Publishing 2016; pp. 75-86.
[http://dx.doi.org/10.1007/978-3-319-26660-2_8]
[60]
Charbonneau M, Lavoie RR, Lauzier A, Harper K, McDonald PP, Dubois CM. Platelet-derived growth factor receptor activation promotes the prodestructive invadosome-forming phenotype of synoviocytes from patients with rheumatoid arthritis. J Immunol 2016; 196(8): 3264-75.
[http://dx.doi.org/10.4049/jimmunol.1500502] [PMID: 26976956]
[61]
Iqbal J, Zaidi M. TNF regulates cellular NAD+ metabolism in primary macrophages. Biochem Biophys Res Commun 2006; 342(4): 1312-8.
[http://dx.doi.org/10.1016/j.bbrc.2006.02.109] [PMID: 16516847]
[62]
Friebe D, Neef M, Kratzsch J, et al. Leucocytes are a major source of circulating nicotinamide phosphoribosyltransferase (NAMPT)/pre-B cell colony (PBEF)/visfatin linking obesity and inflammation in humans. Diabetologia 2011; 54(5): 1200-11.
[http://dx.doi.org/10.1007/s00125-010-2042-z] [PMID: 21298414]
[63]
Jung SM, Kim KW, Yang CW, Park SH, Ju JH. Cytokine-mediated bone destruction in rheumatoid arthritis. J Immunol Res 2014.2014263625www.hindawi.com/journals/jir/2014/263625[cited: 20th Dec 2017].
[http://dx.doi.org/10.1155/2014/263625] [PMID: 25295284]
[64]
Park SY, Lee SW, Kim HY, Lee WS, Hong KW, Kim CD. HMGB1 induces angiogenesis in rheumatoid arthritis via HIF-1α activation. Eur J Immunol 2015; 45(4): 1216-27.
[http://dx.doi.org/10.1002/eji.201444908] [PMID: 25545169]
[65]
Fearon U, Canavan M, Biniecka M, Veale DJ. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat Rev Rheumatol 2016; 12(7): 385-97.
[http://dx.doi.org/10.1038/nrrheum.2016.69] [PMID: 27225300]
[66]
Judex MO, Mueller BM. Plasminogen activation/plasmin in rheumatoid arthritis: matrix degradation and more. Am J Pathol 2005; 166(3): 645-7.
[http://dx.doi.org/10.1016/S0002-9440(10)62285-7] [PMID: 15743776]
[67]
Firestein GS. Etiology and Pathogenesis of Rheumatoid Arthritis. Kelley and Firestein's Textbook of Rheumatology (Tenth Edi-tion) 2017; 2: pp. 1115-.
[http://dx.doi.org/10.1016/B978-0-323-31696-5.00069-3]
[68]
Malemud CJ. Matrix metalloproteinases and synovial joint pathology. Prog Mol Biol Transl Sci 2017; 148: 305-25.
[http://dx.doi.org/10.1016/bs.pmbts.2017.03.003] [PMID: 28662824]
[69]
Choy E. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford) 2012; 51(Suppl. 5): v3-v11.
[http://dx.doi.org/10.1093/rheumatology/kes113] [PMID: 22718924]
[70]
Ekwall AK, Eisler T, Anderberg C, et al. The tumour-associated glycoprotein podoplanin is expressed in fibroblast-like synoviocytes of the hyperplastic synovial lining layer in rheumatoid arthritis. Arthritis Res Ther 2011; 13(2): R40.arthritis-research.biomedcentral.com/articles/10.1186/ar3274cited: 29th Dec 2017.
[http://dx.doi.org/10.1186/ar3274] [PMID: 21385358]
[71]
You S, Koh JH, Leng L, Kim WU, Bucala R. The Tumor-like phenotype of rheumatoid synovium: molecular profiling and prospects for precision medicine. Arthritis Rheumatol 2017.cited: 29th Dec 2017.
[http://dx.doi.org/10.1002/art.40406] [PMID: 29287304]
[72]
Petrow PK, Wernicke D, Schulze Westhoff C, et al. Characterisation of the cell type-specificity of collagenase 3 mRNA expression in comparison with membrane type 1 matrix metalloproteinase and gelatinase A in the synovial membrane in rheumatoid arthritis. Ann Rheum Dis 2002; 61(5): 391-7.
[http://dx.doi.org/10.1136/ard.61.5.391] [PMID: 11959761]
[73]
Kwon YJ, Lee SW, Park YB, Lee SK, Park MC. Secreted frizzled-related protein 5 suppresses inflammatory response in rheumatoid arthritis fibroblast-like synoviocytes through down-regulation of c-Jun N-terminal kinase. Rheumatology (Oxford) 2014; 53(9): 1704-11.
[http://dx.doi.org/10.1093/rheumatology/keu167] [PMID: 24764263]
[74]
Bergström B, Carlsten H, Hultgård Ekwall A-K. Methotrexate inhibits effects of platelet-derived growth factor and interleukin-1β on rheumatoid arthritis fibroblast-like sy-noviocytes. Arthritis Res Ther 2018; 49.
[http://dx.doi.org/10.1186/s13075-018-1554-7]
[75]
Lefèvre S, Schwarz M, Meier FMP, et al. Disease-specific effects of matrix and growth factors on adhesion and migration of rheumatoid synovial fibroblasts. J Immunol 2017; 198(12): 4588-95.
[http://dx.doi.org/10.4049/jimmunol.1600989] [PMID: 28500074]
[76]
Reich N, Beyer C, Gelse K, et al. Microparticles stimulate angiogenesis by inducing ELR(+) CXC-chemokines in synovial fibroblasts. J Cell Mol Med 2011; 15(4): 756-62.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01051.x] [PMID: 20219013]
[77]
Sattar N, McInnes IB. Vascular comorbidity in rheumatoid arthritis: potential mechanisms and solutions. Curr Opin Rheumatol 2005; 17(3): 286-92.
[http://dx.doi.org/10.1097/01.bor.0000158150.57154.f9] [PMID: 15838238]
[78]
Quiñonez-Flores CM, González-Chávez SA, Pacheco-Tena C. Hypoxia and its implications in rheumatoid arthritis. J Biomed Sci 2016; 23(1)62.jbiomedsci.biomedcentral.com/articles/10.1186/s12929-016-0281-0cited: 29th Dec 2017.
[http://dx.doi.org/10.1186/s12929-016-0281-0] [PMID: 27549205]
[79]
Curat CA, Miranville A, Sengenès C, et al. From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes. Diabetes 2004; 53(5): 1285-92.
[http://dx.doi.org/10.2337/diabetes.53.5.1285] [PMID: 15111498]
[80]
Carobbio S, Pellegrinelli V, Vidal-Puig A. Vidal-Puig. Adipose tissue function and expandability as determinants of lipotoxicity and the metabolic syndrome. Adv Exp Med Biol 2017; 960: 161-96.
[http://dx.doi.org/10.1007/978-3-319-48382-5_7] [PMID: 28585199]
[81]
Han SJ, Glatman Zaretsky A, Andrade-Oliveira V, et al. White adipose tissue is a reservoir for memory t cells and promotes protective memory responses to infection. Immunity 2017; 47(6): 1154-1168.e6.
[http://dx.doi.org/10.1016/j.immuni.2017.11.009] [PMID: 29221731]
[82]
Vieira-Potter VJ. Inflammation and macrophage modulation in adipose tissues. Cell Microbiol 2014; 16(10): 1484-92.
[http://dx.doi.org/10.1111/cmi.12336] [PMID: 25073615]
[83]
Lee YH, Mottillo EP, Granneman JG. Adipose tissue plasticity from WAT to BAT and in between. Biochim Biophys Acta 2014; 1842(3): 358-69.
[http://dx.doi.org/10.1016/j.bbadis.2013.05.011] [PMID: 23688783]
[84]
Pellegrinelli V, Carobbio S, Vidal-Puig A. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia 2016; 59(6): 1075-88.
[http://dx.doi.org/10.1007/s00125-016-3933-4] [PMID: 27039901]
[85]
Engin A. The pathogenesis of obesity-associated adipose tissue inflammationObesity and lipotoxicity. Cham: Springer International Publishing 2017; pp. 221-45.
[http://dx.doi.org/10.1007/978-3-319-48382-5_9]
[86]
Gruzdeva OV, Akbasheva OE, Dyleva YA, et al. Adipokine and cytokine profiles of epicardial and subcutaneous adipose tissue in patients with coronary heart disease. Bull Exp Biol Med 2017; 163(5): 608-11.
[http://dx.doi.org/10.1007/s10517-017-3860-5] [PMID: 28948552]
[87]
Guglielmi V, Sbraccia P. Obesity phenotypes: depot-differences in adipose tissue and their clinical implications. Eat Weight Disord 2017.link.springer.com/article/10.1007/s40519-017-0467-9
[88]
Choi CHJ, Cohen P. Adipose crosstalk with other cell types in health and disease. Exp Cell Res 2017; 360(1): 6-11.
[http://dx.doi.org/10.1016/j.yexcr.2017.04.022] [PMID: 28433698]
[89]
Yammani RR, Loeser RF. Extracellular nicotinamide phosphoribosyltransferase (NAMPT/visfatin) inhibits insulin-like growth factor-1 signaling and proteoglycan synthesis in human articular chondrocytes. Arthritis Res Ther 2012; 14(1)R23.arthritis-research.biomedcentral.com/articles/10.1186/ar3705cited: 29th Dec 2017.
[http://dx.doi.org/10.1186/ar3705] [PMID: 22289259]
[90]
Zhu Y, Crewe C, Scherer PE. Hyaluronan in adipose tissue: Beyond dermal filler and therapeutic carrier. Sci Transl Med 2016; 8(323)323ps4stm.sciencemag.org/content/8/323/323ps4.short[cited: 29th Dec 2017.
[http://dx.doi.org/10.1126/scitranslmed.aad6793] [PMID: 26819194]
[91]
Graßmann S, Wirsching J, Eichelmann F, Aleksandrova K. Association between peripheral adipokines and inflammation markers: a systematic review and meta-analysis. Obesity (Silver Spring) 2017; 25(10): 1776-85.
[http://dx.doi.org/10.1002/oby.21945] [PMID: 28834421]
[92]
Patel VB, Shah S, Verma S, Oudit GY. Epicardial adipose tissue as a metabolic transducer: role in heart failure and coronary artery disease. Heart Fail Rev 2017; 22(6): 889-902.
[http://dx.doi.org/10.1007/s10741-017-9644-1] [PMID: 28762019]
[93]
Sato H, Muraoka S, Kusunoki N, et al. Resistin upregulates chemokine production by fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Res Ther 2017; 19(1)263.arthritis-research.biomedcentral.com/articles/10.1186/s13075-017-1472-0cited: 29th Dec 2017.
[http://dx.doi.org/10.1186/s13075-017-1472-0] [PMID: 29191223]
[94]
Abella V, Scotece M, Conde J, et al. Adipokines, metabolic syndrome and rheumatic diseases. J Immunol Res 2014; 2014: 343746.www.hindawi.com/journals/jir/2014/343746 [cited: 20th Dec 2017].
[http://dx.doi.org/10.1155/2014/343746] [PMID: 24741591]
[95]
Chedraui P, Pérez-López FR, Escobar GS, et al. Research Group for the Omega Women’s Health Project. Circulating leptin, resistin, adiponectin, visfatin, adipsin and ghrelin levels and insulin resistance in postmenopausal women with and without the metabolic syndrome. Maturitas 2014; 79(1): 86-90.
[http://dx.doi.org/10.1016/j.maturitas.2014.06.008] [PMID: 25015014]
[96]
Sawicka K, Krasowska D. Adipokines in connective tissue diseases. Clin Exp Rheumatol 2016; 34(6): 1101-12.
[PMID: 27463538]
[97]
LeCaire TJ, Palta M. Longitudinal analysis of adiponectin through 20-year type 1 diabetes duration. J Diabetes Res 2015.2015730407www.hindawi.com/journals/jdr/2015/730407 [cited: 20th Dec 2017].
[http://dx.doi.org/10.1155/2015/730407] [PMID: 25950008]
[98]
Guelfi KJ, Ong MJ, Li S, et al. Maternal circulating adipokine profile and insulin resistance in women at high risk of developing gestational diabetes mellitus. Metabolism 2017; 75: 54-60.
[http://dx.doi.org/10.1016/j.metabol.2017.08.003] [PMID: 28935125]
[99]
Chen Z, Zhao GH, Zhang YK, Shen GS, Xu YJ, Xu NW. Research on the correlation of diabetes mellitus complicated with osteoporosis with lipid metabolism, adipokines and inflammatory factors and its regression analysis. Eur Rev Med Pharmacol Sci 2017; 21(17): 3900-5.
[PMID: 28975973]
[100]
Sawicka M, Janowska J, Chudek J. Potential beneficial effect of some adipokines positively correlated with the adipose tissue content on the cardiovascular system. Int J Cardiol 2016; 222: 581-9.
[http://dx.doi.org/10.1016/j.ijcard.2016.07.054] [PMID: 27513655]
[101]
Ding X, Kou X, Zhang Y, Zhang X, Cheng G, Jia T. Leptin siRNA promotes ovarian granulosa cell apoptosis and affects steroidogenesis by increasing NPY2 receptor expression. Gene 2017; 633: 28-34.
[http://dx.doi.org/10.1016/j.gene.2017.08.028] [PMID: 28864114]
[102]
Hu J, Cui W, Ding W, Gu Y, Wang Z, Fan W. Globular adiponectin attenuated H2O2-induced apoptosis in rat chondrocytes by inducing autophagy through the AMPK/mTOR pathway. Cell Physiol Biochem 2017; 43(1): 367-82.
[http://dx.doi.org/10.1159/000480416] [PMID: 28957801]
[103]
Sarmento-Cabral A. L-López F, Luque RM. L-Lopez F, Luque RM. Adipokines and their receptors are widely expressed and distinctly regulated by the metabolic environment in the prostate of male mice: direct role under normal and tumoral conditions. Endocrinology 2017; 158(10): 3540-52.
[http://dx.doi.org/10.1210/en.2017-00370] [PMID: 28938461]
[104]
Mathew H, Castracane VD, Mantzoros C. Adipose tissue and reproductive health Metabolism 2017.www.metabolismjournal.com/article/S0026-0495(17)30309-8/fulltext
[105]
Agarwal S, Loder S, Li J, et al. Diminished chondrogenesis and enhanced osteoclastogenesis in leptin-deficient diabetic mice (ob/ob) impair pathologic, trauma-induced heterotopic ossification. Stem Cells Dev 2015; 24(24): 2864-72.
[http://dx.doi.org/10.1089/scd.2015.0135] [PMID: 26413838]
[106]
van Spil WE, Agricola R, Drossaers-Bakker KW, Weinans H, Lafeber FP. Associations of markers of matrix metabolism, inflammation markers, and adipokines with superior cam deformity of the hip and their relation with future hip osteoarthritis. Osteoarthritis Cartilage 2015; 23(11): 1897-905.
[http://dx.doi.org/10.1016/j.joca.2015.03.026] [PMID: 26521735]
[107]
de Boer TN, van Spil WE, Huisman AM, et al. Serum adipokines in osteoarthritis; comparison with controls and relationship with local parameters of synovial inflammation and cartilage damage. Osteoarthritis Cartilage 2012; 20(8): 846-53.
[http://dx.doi.org/10.1016/j.joca.2012.05.002] [PMID: 22595228]
[108]
Hui W, Litherland GJ, Elias MS, et al. Leptin produced by joint white adipose tissue induces cartilage degradation via upregulation and activation of matrix metalloproteinases. Ann Rheum Dis 2012; 71(3): 455-62.
[http://dx.doi.org/10.1136/annrheumdis-2011-200372] [PMID: 22072016]
[109]
Issa RI, Griffin TM. Pathobiology of obesity and osteoarthritis: integrating biomechanics and inflammation. Pathobiol Aging Age Relat Dis 2012; 2(2012): 17470.www.tandfonline.com/doi/full/10.3402/pba.v2i0.17470[cited: 20th Dec 2017].
[http://dx.doi.org/10.3402/pba.v2i0.17470] [PMID: 22662293]
[110]
Zhuo Q, Yang W, Chen J, Wang Y. Metabolic syndrome meets osteoarthritis. Nat Rev Rheumatol 2012; 8(12): 729-37.
[http://dx.doi.org/10.1038/nrrheum.2012.135] [PMID: 22907293]
[111]
Yusuf E, Ioan-Facsinay A, Bijsterbosch J, et al. Association between leptin, adiponectin and resistin and long-term progression of hand osteoarthritis. Ann Rheum Dis 2011; 70(7): 1282-4.
[http://dx.doi.org/10.1136/ard.2010.146282] [PMID: 21470970]
[112]
Liao L, Chen Y, Wang W. The current progress in understanding the molecular functions and mechanisms of visfatin in osteoarthritis. J Bone Miner Metab 2016; 34(5): 485-90.
[http://dx.doi.org/10.1007/s00774-016-0743-1] [PMID: 26969394]
[113]
Olszanecka A, Dragan A, Kawecka-Jaszcz K, Fedak D, Czarnecka D. Relationships of insulin-like growth factor-1, its binding proteins, and cardiometabolic risk in hypertensive perimenopausal women. Metabolism 2017; 69: 96-106.
[http://dx.doi.org/10.1016/j.metabol.2017.01.005] [PMID: 28285656]
[114]
Zhang N, Zhang N, Song L, et al. Adipokines and free fatty acids regulate insulin sensitivity by increasing microRNA-21 expression in human mature adipocytes. Mol Med Rep 2017; 16(2): 2254-8.
[http://dx.doi.org/10.3892/mmr.2017.6769] [PMID: 28627656]
[115]
Samal B, Sun Y, Stearns G, Xie C, Suggs S, McNiece I. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol Cell Biol 1994; 14(2): 1431-7.
[http://dx.doi.org/10.1128/MCB.14.2.1431] [PMID: 8289818]
[116]
Revollo JR, Körner A, Mills KF, et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab 2007; 6(5): 363-75.
[http://dx.doi.org/10.1016/j.cmet.2007.09.003] [PMID: 17983582]
[117]
Garten A, Petzold S, Körner A, Imai S, Kiess W. Nampt: linking NAD biology, metabolism and cancer. Trends Endocrinol Metab 2009; 20(3): 130-8.
[http://dx.doi.org/10.1016/j.tem.2008.10.004] [PMID: 19109034]
[118]
Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem 2004; 279(49): 50754-63.
[http://dx.doi.org/10.1074/jbc.M408388200] [PMID: 15381699]
[119]
McGlothlin JR, Gao L, Lavoie T, et al. Molecular cloning and characterization of canine pre-B-cell colony-enhancing factor. Biochem Genet 2005; 43(3-4): 127-41.
[http://dx.doi.org/10.1007/s10528-005-1505-2] [PMID: 15934174]
[120]
Wang T, Zhang X, Bheda P, Revollo JR, Imai S, Wolberger C. Structure of Nampt/PBEF/visfatin, a mammalian NAD+ biosynthetic enzyme. Nat Struct Mol Biol 2006; 13(7): 661-2.
[http://dx.doi.org/10.1038/nsmb1114] [PMID: 16783373]
[121]
Li Z, Wang Y, Tian X, et al. Characterization of the visfatin gene and its expression pattern and effect on 3T3-L1 adipocyte differentiation in chickens. Gene 2017; 632: 16-24.
[http://dx.doi.org/10.1016/j.gene.2017.08.025] [PMID: 28851613]
[122]
Pillai VB, Sundaresan NR, Kim G, et al. Nampt secreted from cardiomyocytes promotes development of cardiac hypertrophy and adverse ventricular remodeling. Am J Physiol Heart Circ Physiol 2013; 304(3): H415-26.www.physiology.org/doi/full/10.1152/ajpheart.00468.2012cited: 20th Dec 2017.
[http://dx.doi.org/10.1152/ajpheart.00468.2012] [PMID: 23203961]
[123]
Song HK, Lee MH, Kim BK, et al. Visfatin: a new player in mesangial cell physiology and diabetic nephropathy. Am J Physiol Renal Physiol 2008; 295(5): F1485-94.www.physiology.org/doi/full/10.1152/ajprenal.90231.2008cited: 20th Dec 2017.
[http://dx.doi.org/10.1152/ajprenal.90231.2008] [PMID: 18768589]
[124]
Moschen AR, Kaser A, Enrich B, et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J Immunol 2007; 178(3): 1748-58.
[http://dx.doi.org/10.4049/jimmunol.178.3.1748] [PMID: 17237424]
[125]
Astern JM, Collier AC, Kendal-Wright CE. Pre-B cell colony enhancing factor (PBEF/NAMPT/Visfatin) and vascular endothelial growth factor (VEGF) cooperate to increase the permeability of the human placental amnion. Placenta 2013; 34(1): 42-9.
[http://dx.doi.org/10.1016/j.placenta.2012.10.008] [PMID: 23151382]
[126]
Managò A, Audrito V, Mazzola F, et al. Extracellular nicotinate phosphoribosyltransferase binds Toll like receptor 4 and mediates inflammation. Nat Commun 2019; 10(1): 4116.
[http://dx.doi.org/10.1038/s41467-019-12055-2] [PMID: 31511522]
[127]
Auguet T, Terra X, Porras JA, et al. Plasma visfatin levels and gene expression in morbidly obese women with associated fatty liver disease. Clin Biochem 2013; 46(3): 202-8.
[http://dx.doi.org/10.1016/j.clinbiochem.2012.11.006] [PMID: 23174488]
[128]
Iwasa T, Matsuzaki T, Matsui S, et al. The sensitivity of adipose tissue visfatin mRNA expression to lipopolysaccharide-induced endotoxemia is increased by ovariectomy in female rats. Int Immunopharmacol 2016; 35: 243-7.
[http://dx.doi.org/10.1016/j.intimp.2016.04.002] [PMID: 27083000]
[129]
Dahl TB, Holm S, Aukrust P, Halvorsen B. Visfatin/NAMPT: a multifaceted molecule with diverse roles in physiology and pathophysiology. Annu Rev Nutr 2012; 32: 229-43.
[http://dx.doi.org/10.1146/annurev-nutr-071811-150746] [PMID: 22462624]
[130]
Sitticharoon C, Nway NC, Chatree S, Churintaraphan M, Boonpuan P, Maikaew P. Interactions between adiponectin, visfatin, and omentin in subcutaneous and visceral adipose tissues and serum, and correlations with clinical and peripheral metabolic factors. Peptides 2014; 62: 164-75.
[http://dx.doi.org/10.1016/j.peptides.2014.10.006] [PMID: 25453978]
[131]
Nourbakhsh M, Nourbakhsh M, Gholinejad Z, Razzaghy-Azar M. Visfatin in obese children and adolescents and its association with insulin resistance and metabolic syndrome. Scand J Clin Lab Invest 2015; 75(2): 183-8.
[http://dx.doi.org/10.3109/00365513.2014.1003594] [PMID: 25723377]
[132]
El Samahi MH, Ismail NA, Matter RM, Selim A, Ibrahim AA, Nabih W. Study of visfatin level in type 1 diabetic children and adolescents. Open Access Maced J Med Sci 2017; 5(3): 299-304.
[http://dx.doi.org/10.3889/oamjms.2017.065] [PMID: 28698746]
[133]
Kieswich J, Sayers SR, Silvestre MF, Harwood SM, Yaqoob MM, Caton PW. Monomeric eNAMPT in the development of experimental diabetes in mice: a potential target for type 2 diabetes treatment. Diabetologia 2016; 59(11): 2477-86.
[http://dx.doi.org/10.1007/s00125-016-4076-3] [PMID: 27541013]
[134]
Xie H, Tang SY, Luo XH, et al. Insulin-like effects of visfatin on human osteoblasts. Calcif Tissue Int 2007; 80(3): 201-10.
[http://dx.doi.org/10.1007/s00223-006-0155-7] [PMID: 17340225]
[135]
Wanecq E, Prévot D, Carpéné C. Lack of direct insulin-like action of visfatin/Nampt/PBEF1 in human adipocytes. J Physiol Biochem 2009; 65(4): 351-9.
[http://dx.doi.org/10.1007/BF03185930] [PMID: 20358348]
[136]
Blüher M. Adipokines - removing road blocks to obesity and diabetes therapy. Mol Metab 2014; 3(3): 230-40.
[http://dx.doi.org/10.1016/j.molmet.2014.01.005] [PMID: 24749053]
[137]
Kover K, Tong PY, Watkins D, et al. Expression and regulation of nampt in human islets. PLoS One 2013; 8(3)e58767journals.plos.org/plosone/article?id=10.1371/journal.pone.0058767cited: 20th Dec 2017.
[http://dx.doi.org/10.1371/journal.pone.0058767] [PMID: 23536823]
[138]
Zulet MA, Moreno-Aliaga MJ, Martinez JA. Dietary determinants of fat mass and body compositionAdipose tissue biology. 2nd ed. New York: Springer 2017; pp. 319-82.
[http://dx.doi.org/10.1007/978-3-319-52031-5_10]
[139]
Lorente-Cebrián S, Bustos M, Marti A, Martinez JA, Moreno-Aliaga MJ. Eicosapentaenoic acid stimulates AMP-activated protein kinase and increases visfatin secretion in cultured murine adipocytes. Clin Sci (Lond) 2009; 117(6): 243-9.
[http://dx.doi.org/10.1042/CS20090020] [PMID: 19296827]
[140]
Pérez-Echarri N, Pérez-Matute P, Marcos-Gómez B, Martínez JA, Moreno-Aliaga MJ. Effects of eicosapentaenoic acid ethyl ester on visfatin and apelin in lean and overweight (cafeteria diet-fed) rats. Br J Nutr 2009; 101(7): 1059-67.
[http://dx.doi.org/10.1017/S0007114508048307] [PMID: 18755047]
[141]
Wen Y, Wang HW, Wu J, Lu HL, Hu XF, Cianflone K. Effects of fatty acid regulation on visfatin gene expression in adipocytes. Chin Med J (Engl) 2006; 119(20): 1701-8.
[http://dx.doi.org/10.1097/00029330-200610020-00006] [PMID: 17097017]
[142]
Bowlby SC, Thomas MJ, D’Agostino RB Jr, Kridel SJ. Nicotinamide phosphoribosyl transferase (Nampt) is required for de novo lipogenesis in tumor cells. PLoS One 2012; 7(6)e40195dx.plos.org/10.1371/journal.pone.0040195cited: 20th Dec 2017.
[http://dx.doi.org/10.1371/journal.pone.0040195] [PMID: 22768255]
[143]
Kang YS, Lee MH, Song HK, et al. Chronic administration of visfatin ameliorated diabetic nephropathy in type 2 diabetic mice. Kidney Blood Press Res 2016; 41(3): 311-24.
[http://dx.doi.org/10.1159/000443433] [PMID: 27221663]
[144]
Kim SR, Bae SK, Choi KS, et al. Visfatin promotes angiogenesis by activation of extracellular signal-regulated kinase 1/2. Biochem Biophys Res Commun 2007; 357(1): 150-6.
[http://dx.doi.org/10.1016/j.bbrc.2007.03.105] [PMID: 17408594]
[145]
Biniecka M, Canavan M, McGarry T, et al. Dysregulated bioenergetics: a key regulator of joint inflammation. Ann Rheum Dis 2016; 75(12): 2192-200.
[http://dx.doi.org/10.1136/annrheumdis-2015-208476] [PMID: 27013493]
[146]
Saboori S, Hosseinzadeh-Attar MJ, Yousefi Rad E, Hosseini M, Mirzaei K, Ahmadivand Z. The comparison of serum vaspin and visfatin concentrations in obese and normal weight women. Diabetes Metab Syndr 2015; 9(4): 320-3.
[http://dx.doi.org/10.1016/j.dsx.2013.10.009] [PMID: 25470626]
[147]
Salama HM, Galal A, Motawie AA, et al. Adipokines vaspin and visfatin in obese children. Open Access Maced J Med Sci 2015; 3(4): 563-6.
[http://dx.doi.org/10.3889/oamjms.2015.123] [PMID: 27275288]
[148]
Eichelmann F, Rudovich N, Pfeiffer AF, et al. Novel adipokines: methodological utility in human obesity research. Int J Obes 2017; 41(6): 976-81.
[http://dx.doi.org/10.1038/ijo.2017.68] [PMID: 28293019]
[149]
Catalán V, Gómez-Ambrosi J, Rodríguez A, et al. Association of increased visfatin/PBEF/NAMPT circulating concentrations and gene expression levels in peripheral blood cells with lipid metabolism and fatty liver in human morbid obesity. Nutr Metab Cardiovasc Dis 2011; 21(4): 245-53.
[PMID: 20106640]
[150]
Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev 2013; 93(1): 1-21.
[http://dx.doi.org/10.1152/physrev.00017.2012] [PMID: 23303904]
[151]
Guzik TJ, Skiba DS, Touyz RM, Harrison DG. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovasc Res 2017; 113(9): 1009-23.
[http://dx.doi.org/10.1093/cvr/cvx108] [PMID: 28838042]
[152]
Dahl TB, Yndestad A, Skjelland M, et al. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis: possible role in inflammation and plaque destabilization. Circulation 2007; 115(8): 972-80.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.665893] [PMID: 17283255]
[153]
Halvorsen B, Espeland MZ, Andersen GO, et al. Increased expression of NAMPT in PBMC from patients with acute coronary syndrome and in inflammatory M1 macrophages. Atherosclerosis 2015; 243(1): 204-10.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.09.010] [PMID: 26402139]
[154]
Ozgen M, Koca SS, Aksoy K, Dagli N, Ustundag B, Isik A. Visfatin levels and intima-media thicknesses in rheumatic diseases. Clin Rheumatol 2011; 30(6): 757-63.
[http://dx.doi.org/10.1007/s10067-010-1649-2] [PMID: 21165753]
[155]
Owczarek AJ, Olszanecka-Glinianowicz M, Kocełak P, et al. The relationship between circulating visfatin/nicotinamide phosphoribosyltransferase, obesity, inflammation and lipids profile in elderly population, determined by structural equation modeling. Scand J Clin Lab Invest 2016; 76(8): 632-40.
[http://dx.doi.org/10.1080/00365513.2016.1230884] [PMID: 27712122]
[156]
Saddi-Rosa P, Oliveira CS, Giuffrida FM, Reis AF. Visfatin, glucose metabolism and vascular disease: a review of evidence. Diabetol Metab Syndr 2010; 2: 21.dmsjournal.biomedcentral.com/articles/10.1186/1758-5996-2-21[cited: 20th Dec 2017].
[http://dx.doi.org/10.1186/1758-5996-2-21] [PMID: 20346149]
[157]
Versini M, Jeandel PY, Rosenthal E, Shoenfeld Y. Obesity in autoimmune diseases: not a passive bystander. Autoimmun Rev 2014; 13(9): 981-1000.
[http://dx.doi.org/10.1016/j.autrev.2014.07.001] [PMID: 25092612]
[158]
Auguet T, Aragonès G, Guiu-Jurado E, et al. Adipo/cytokines in atherosclerotic secretomes: increased visfatin levels in unstable carotid plaque. BMC Cardiovasc Disord 2016; 16(1): 149.bmccardiovascdisord.biomedcentral.com/articles/10.1186/s12872-016-0320-5[cited: 20th Dec 2017].
[http://dx.doi.org/10.1186/s12872-016-0320-5] [PMID: 27391230]
[159]
Shi KL, Qian JY, Qi L, et al. Atorvastatin antagonizes the visfatininduced expression of inflammatory mediators via the upregulation of NF-κB activation in HCAECs. Oncol Lett 2016; 12(2): 1438-44.
[http://dx.doi.org/10.3892/ol.2016.4796] [PMID: 27446449]
[160]
Terzoudis S, Malliaraki N, Damilakis J, Dimitriadou DA, Zavos C, Koutroubakis IE. Chemerin, visfatin, and vaspin serum levels in relation to bone mineral density in patients with inflammatory bowel disease. Eur J Gastroenterol Hepatol 2016; 28(7): 814-9.
[http://dx.doi.org/10.1097/MEG.0000000000000617] [PMID: 26934527]
[161]
Kontny E, Zielińska A, Skalska U, Księżopolska-Orłowska K, Głuszko P, Maśliński W. Distinct secretory activity and clinical impact of subcutaneous abdominal adipose tissue in women with rheumatoid arthritis and osteoarthritis. Inflammation 2017; 40(1): 106-16.
[http://dx.doi.org/10.1007/s10753-016-0459-3] [PMID: 27796618]
[162]
Hutcheson J. Adipokines influence the inflammatory balance in autoimmunity. Cytokine 2015; 75(2): 272-9.
[http://dx.doi.org/10.1016/j.cyto.2015.04.004] [PMID: 26044595]
[163]
Evans L, Williams AS, Hayes AJ, Jones SA, Nowell M. Suppression of leukocyte infiltration and cartilage degradation by selective inhibition of pre-B cell colony-enhancing factor/visfatin/nicotinamide phosphoribosyltransferase: Apo866-mediated therapy in human fibroblasts and murine collagen-induced arthritis. Arthritis Rheum 2011; 63(7): 1866-77.
[http://dx.doi.org/10.1002/art.30338] [PMID: 21400478]
[164]
Meier FM, Frommer KW, Peters MA, et al. Visfatin/pre-B-cell colony-enhancing factor (PBEF), a proinflammatory and cell motility-changing factor in rheumatoid arthritis. J Biol Chem 2012; 287(34): 28378-85.
[http://dx.doi.org/10.1074/jbc.M111.312884] [PMID: 22767598]
[165]
Lee YH, Bae SC. Circulating adiponectin and visfatin levels in rheumatoid ar-thritis and their correlation with disease activity: A meta-analysis Int J Rheum Dis 2017.onlinelibrary.wiley.com/doi/10.1111/1756-185X.13038/pdf
[166]
Tanaka M, Nozaki M, Fukuhara A, et al. Visfatin is released from 3T3-L1 adipocytes via a non-classical pathway. Biochem Biophys Res Commun 2007; 359(2): 194-201.
[http://dx.doi.org/10.1016/j.bbrc.2007.05.096] [PMID: 17543285]
[167]
Laiguillon MC, Houard X, Bougault C, et al. Expression and function of visfatin (Nampt), an adipokine-enzyme involved in inflammatory pathways of osteoarthritis. Arthritis Res Ther 2014; 16(1)R38.arthritis-research.biomedcentral.com/articles/10.1186/ar4467cited: 20th Dec 2017.
[http://dx.doi.org/10.1186/ar4467] [PMID: 24479481]
[168]
Sglunda O, Mann H, Hulejová H, et al. Decreased circulating visfatin is associated with improved disease activity in early rheumatoid arthritis: data from the PERAC cohort. PLoS One 2014; 9(7)e103495journals.plos.org/plosone/article?id=10.1371/journal.pone.0103495cited: 20th Dec 2017.
[http://dx.doi.org/10.1371/journal.pone.0103495] [PMID: 25068448]
[169]
Ucak A, Temizkan V, Sen H, et al. The effect of serum, intestinal and peritoneal visfatin levels on early diagnosis of acute mesenteric ischemia. Int Angiol 2016; 35(2): 198-204.
[PMID: 25743031]
[170]
Gesing J, Scheuermann K, Wagner IV, et al. NAMPT serum levels are selectively elevated in acute infectious disease and in acute relapse of chronic inflammatory diseases in children. PLoS One 2017; 12(8) e0183027 http://journals.plos.org/plosone/article?id=10.1371/j ournal.pone.0183027 [cited: 20th Dec 2017].
[http://dx.doi.org/10.1371/journal.pone.0183027] [PMID: 28837586]
[171]
Singh JA, Arayssi T, Duray P, Schumacher HR. Immunohistochemistry of normal human knee synovium: a quantitative study. Ann Rheum Dis 2004; 63(7): 785-90.
[http://dx.doi.org/10.1136/ard.2003.013383] [PMID: 15194572]
[172]
Wechalekar MD, Smith MD. Utility of arthroscopic guided synovial biopsy in understanding synovial tissue pathology in health and disease states. World J Orthop 2014; 5(5): 566-73.
[http://dx.doi.org/10.5312/wjo.v5.i5.566] [PMID: 25405084]
[173]
Matsuo Y, Saito T, Yamamoto A, Kohsaka H. Origins of fibroblasts in rheumatoid synovial tissues: Implications from organ fibrotic models. Mod Rheumatol 2017; 1-4.www.tandfonline.com/doi/full/10.1080/14397595.2017.1386837cited: 20th Dec 2017.
[PMID: 29067846]
[174]
Ospelt C. Synovial fibroblasts in 2017. RMD Open 2017; 3(2)e000471rmdopen.bmj.com/content/3/2/e000471cited: 20th Dec 2017.
[http://dx.doi.org/10.1136/rmdopen-2017-000471] [PMID: 29081987]
[175]
Caetano-Lopes J, Canhão H, Fonseca JE. Osteoimmunology--the hidden immune regulation of bone. Autoimmun Rev 2009; 8(3): 250-5.
[http://dx.doi.org/10.1016/j.autrev.2008.07.038] [PMID: 18722561]
[176]
Veale DJ, Orr C, Fearon U. Cellular and molecular perspectives in rheumatoid arthritis. Semin Immunopathol 2017; 39(4): 343-54.
[http://dx.doi.org/10.1007/s00281-017-0633-1] [PMID: 28508153]
[177]
Neumann E, Lefèvre S, Zimmermann B, Gay S, Müller-Ladner U. Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol Med 2010; 16(10): 458-68.
[http://dx.doi.org/10.1016/j.molmed.2010.07.004] [PMID: 20739221]
[178]
Korb-Pap A, Stratis A, Mühlenberg K, et al. Early structural changes in cartilage and bone are required for the attachment and invasion of inflamed synovial tissue during destructive inflammatory arthritis. Ann Rheum Dis 2012; 71(6): 1004-11.
[http://dx.doi.org/10.1136/annrheumdis-2011-200386] [PMID: 22258493]
[179]
Brentano F, Schorr O, Ospelt C, et al. Pre-B cell colony-enhancing factor/visfatin, a new marker of inflammation in rheumatoid arthritis with proinflammatory and matrix-degrading activities. Arthritis Rheum 2007; 56(9): 2829-39.
[http://dx.doi.org/10.1002/art.22833] [PMID: 17763446]
[180]
Baeten D, Demetter P, Cuvelier C, et al. Comparative study of the synovial histology in rheumatoid arthritis, spondyloarthropathy, and osteoarthritis: influence of disease duration and activity. Ann Rheum Dis 2000; 59(12): 945-53.
[http://dx.doi.org/10.1136/ard.59.12.945] [PMID: 11087697]
[181]
Perlman H, Pope RM. The synovial lining micromass system: toward rheumatoid arthritis in a dish? Arthritis Rheum 2010; 62(3): 643-6.
[http://dx.doi.org/10.1002/art.27297] [PMID: 20187157]
[182]
Choi IY, Karpus ON, Turner JD, et al. Stromal cell markers are differentially expressed in the synovial tissue of patients with early arthritis. PLoS One 2017; 12(8): e0182751.journals.plos.org/plosone/article?id=10.1371/journal.pone.0182751cited: 20th Dec 2017.
[http://dx.doi.org/10.1371/journal.pone.0182751] [PMID: 28793332]
[183]
Galligan CL, Fish EN. Circulating fibrocytes contribute to the pathogenesis of collagen antibody-induced arthritis. Arthritis Rheum 2012; 64(11): 3583-93.
[http://dx.doi.org/10.1002/art.34589] [PMID: 22729466]
[184]
Rho YH, Solus J, Sokka T, et al. Adipocytokines are associated with radiographic joint damage in rheumatoid arthritis. Arthritis Rheum 2009; 60(7): 1906-14.
[http://dx.doi.org/10.1002/art.24626] [PMID: 19565493]
[185]
Klein-Wieringa IR, Kloppenburg M, Bastiaansen-Jenniskens YM, et al. The infrapatellar fat pad of patients with osteoarthritis has an inflammatory phenotype. Ann Rheum Dis 2011; 70(5): 851-7.
[http://dx.doi.org/10.1136/ard.2010.140046] [PMID: 21242232]
[186]
Duan Y, Hao D, Li M, et al. Increased synovial fluid visfatin is positively linked to cartilage degradation biomarkers in osteoarthritis. Rheumatol Int 2012; 32(4): 985-90.
[http://dx.doi.org/10.1007/s00296-010-1731-8] [PMID: 21246369]
[187]
Hong EH, Yun HS, Kim J, et al. Nicotinamide phosphoribosyltransferase is essential for interleukin-1beta-mediated dedifferentiation of articular chondrocytes via SIRT1 and extracellular signal-regulated kinase (ERK) complex signaling. J Biol Chem 2011; 286(32): 28619-31.
[http://dx.doi.org/10.1074/jbc.M111.219832] [PMID: 21697093]
[188]
Gosset M, Berenbaum F, Salvat C, et al. Crucial role of visfatin/pre-B cell colony-enhancing factor in matrix degradation and prostaglandin E2 synthesis in chondrocytes: possible influence on osteoarthritis. Arthritis Rheum 2008; 58(5): 1399-409.
[http://dx.doi.org/10.1002/art.23431] [PMID: 18438860]
[189]
Neumann E, Junker S, Schett G, Frommer K, Müller-Ladner U. Adipokines in bone disease. Nat Rev Rheumatol 2016; 12(5): 296-302.
[http://dx.doi.org/10.1038/nrrheum.2016.49] [PMID: 27080691]
[190]
Šenolt L. Adipokines: role in local and systemic inflammation of rheumatic diseases. Expert Rev Clin Immunol 2017; 13(1): 1-3.
[http://dx.doi.org/10.1080/1744666X.2017.1249850] [PMID: 27749104]
[191]
Huang L, Shi H, Zhou X. Mechanistic insights into osteoporosis in patients with lipodystrophy and review of the literature. Endocr Pract 2017; 23(7): 857-62.
[http://dx.doi.org/10.4158/EP161686.RA] [PMID: 28448764]
[192]
Nowell MA, Richards PJ, Fielding CA, et al. Regulation of pre-B cell colony-enhancing factor by STAT-3-dependent interleukin-6 trans-signaling: implications in the pathogenesis of rheumatoid arthritis. Arthritis Rheum 2006; 54(7): 2084-95.
[http://dx.doi.org/10.1002/art.21942] [PMID: 16802343]
[193]
Baek JM, Ahn SJ, Cheon YH, Lee MS, Oh J, Kim JY. Nicotinamide phosphoribosyltransferase inhibits receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation in vitro. Mol Med Rep 2017; 15(2): 784-92.
[http://dx.doi.org/10.3892/mmr.2016.6069] [PMID: 28035412]
[194]
Kim SR, Bae YH, Bae SK, et al. Visfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-kappaB activation in endothelial cells. Biochim Biophys Acta 2008; 1783(5): 886-95.
[http://dx.doi.org/10.1016/j.bbamcr.2008.01.004] [PMID: 18241674]
[195]
Liu SW, Qiao SB, Yuan JS, Liu DQ. Visfatin stimulates production of monocyte chemotactic protein-1 and interleukin-6 in human vein umbilical endothelial cells. Horm Metab Res 2009; 41(4): 281-6.
[http://dx.doi.org/10.1055/s-0028-1102914] [PMID: 19009499]
[196]
Buldak RJ, Polaniak R, Buldak L, et al. Exogenous administration of visfatin affects cytokine secretion and increases oxidative stress in human malignant melanoma Me45 cells. J Physiol Pharmacol 2013; 64(3): 377-85.
[PMID: 23959735]
[197]
Moschen AR, Geiger S, Gerner R, Tilg H. Pre-B cell colony enhancing factor/NAMPT/visfatin and its role in inflammation-related bone disease. Mutat Res 2010; 690(1-2): 95-101.
[http://dx.doi.org/10.1016/j.mrfmmm.2009.06.012] [PMID: 19583971]
[198]
Olazagasti JM, Hein M, Crowson CS, et al. Adipokine gene expression in peripheral blood of adult and juvenile dermatomyositis patients and their relation to clinical parameters and disease activity measures. J Inflamm (Lond) 2015; 12: 29.journal-inflammation.biomedcentral.com/articles/10.1186/s12950-015-0075-2cited: 20th Dec 2017.
[http://dx.doi.org/10.1186/s12950-015-0075-2] [PMID: 25918482]
[199]
Carbone F, Liberale L, Bonaventura A, et al. Regulation and function of extracellular nicotinamide phosphoribosyltransferase/visfatin. Compr Physiol 2017; 7(2): 603-21.
[http://dx.doi.org/10.1002/cphy.c160029] [PMID: 28333382]
[200]
Akhverdyan YR, Zavodovsky BV, Polyakova YV, Sivordova LE, Zborovskaya IA. [The nicotinamide-phosphoribosiltransferase as a marker of systemic inflammation under osteoarthrosis] Klin Lab Diagn 2017; 62(10): 606-10. [in Russian
[PMID: 30821941]
[201]
Azamar-Llamas D, Hernández-Molina G, Ramos-Ávalos B, Furuzawa-Carballeda J. Adipokine contribution to the pathogenesis of osteoarthritis. Mediators Inflamm 2017; 20175468023www.hindawi.com/journals/mi/2017/5468023/abscited: 20th Dec 2017.
[http://dx.doi.org/10.1155/2017/5468023] [PMID: 28490838]
[202]
Otero M, Lago R, Gomez R, et al. Changes in plasma levels of fat-derived hormones adiponectin, leptin, resistin and visfatin in patients with rheumatoid arthritis. Ann Rheum Dis 2006; 65(9): 1198-201.
[http://dx.doi.org/10.1136/ard.2005.046540] [PMID: 16414972]
[203]
Del Prete A, Salvi V, Sozzani S. Adipokines as potential biomarkers in rheumatoid arthritis. Mediators Inflamm 2014.2014425068www.hindawi.com/journals/mi/2014/425068[cited: 20th Dec 2017].
[http://dx.doi.org/10.1155/2014/425068] [PMID: 24799765]
[204]
Gonzalez-Gay MA, Vazquez-Rodriguez TR, Garcia-Unzueta MT, et al. Visfatin is not associated with inflammation or metabolic syndrome in patients with severe rheumatoid arthritis undergoing anti-TNF-alpha therapy. Clin Exp Rheumatol 2010; 28(1): 56-62.
[PMID: 20346239]
[205]
Šenolt L, Kryštůfková O, Hulejová H, et al. The level of serum visfatin (PBEF) is associated with total number of B cells in patients with rheumatoid arthritis and decreases following B cell depletion therapy. Cytokine 2011; 55(1): 116-21.
[http://dx.doi.org/10.1016/j.cyto.2011.04.004] [PMID: 21524918]
[206]
Busso N, Karababa M, Nobile M, et al. Pharmacological inhibition of nicotinamide phosphoribosyltransferase/visfatin enzymatic activity identifies a new inflammatory pathway linked to NAD. PLoS One 2008; 3(5)e2267journals.plos.org/plosone/article?id=10.1371/journal.pone.0002267cited: 20th Dec 2017.
[http://dx.doi.org/10.1371/journal.pone.0002267] [PMID: 18493620]
[207]
Poljsak B. NAD+ in cancer prevention and treatment: pros and cons. J Clin Exp Oncol 2016; 5: 4.cited: 20th Dec 2017.
[http://dx.doi.org/10.4172/2324-9110.1000165]
[208]
Muruganandham M, Alfieri AA, Matei C, et al. Metabolic signatures associated with a NAD synthesis inhibitor-induced tumor apoptosis identified by 1H-decoupled-31P magnetic resonance spectroscopy. Clin Cancer Res 2005; 11(9): 3503-13.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1399] [PMID: 15867253]
[209]
van der Veer E, Ho C, O’Neil C, et al. Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J Biol Chem 2007; 282(15): 10841-5.
[http://dx.doi.org/10.1074/jbc.C700018200] [PMID: 17307730]
[210]
Song J, Ke SF, Zhou CC, et al. Nicotinamide phosphoribosyltransferase is required for the calorie restriction-mediated improvements in oxidative stress, mitochondrial biogenesis, and metabolic adaptation. J Gerontol A Biol Sci Med Sci 2014; 69(1): 44-57.
[http://dx.doi.org/10.1093/gerona/glt122] [PMID: 23946338]
[211]
Olesen UH, Thougaard AV, Jensen PB, Sehested M. A preclinical study on the rescue of normal tissue by nicotinic acid in high-dose treatment with APO866, a specific nicotinamide phosphoribosyltransferase inhibitor. Mol Cancer Ther 2010; 9(6): 1609-17.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-1130] [PMID: 20515945]
[212]
Buch MH, Emery P. New therapies in the management of rheumatoid arthritis. Curr Opin Rheumatol 2011; 23(3): 245-51.
[http://dx.doi.org/10.1097/BOR.0b013e3283454124] [PMID: 21427579]
[213]
Esposito E, Impellizzeri D, Mazzon E, et al. The NAMPT inhibitor FK866 reverts the damage in spinal cord injury. J Neuroinflammation 2012; 9(1): 66-7.
[http://dx.doi.org/10.1186/1742-2094-9-66] [PMID: 22490786]
[214]
Schilling E, Wehrhahn J, Klein C, Raulien N, Ceglarek U, Hauschildt S. Inhibition of nicotinamide phosphoribosyltransferase modifies LPS-induced inflammatory responses of human monocytes. Innate Immun 2012; 18(3): 518-30.
[http://dx.doi.org/10.1177/1753425911423853] [PMID: 21975728]
[215]
Nahimana A, Attinger A, Aubry D, et al. The NAD biosynthesis inhibitor APO866 has potent antitumor activity against hematologic malignancies. Blood 2009; 113(14): 3276-86.
[http://dx.doi.org/10.1182/blood-2008-08-173369] [PMID: 19196867]
[216]
Burgler S. Role of CD38 expression in diagnosis and pathogenesis of chronic lymphocytic leukemia and its potential as therapeutic target. Crit Rev Immunol 2015; 35(5): 417-32.
[http://dx.doi.org/10.1615/CritRevImmunol.v35.i5.50] [PMID: 26853852]
[217]
Zerp SF, Vens C, Floot B, Verheij M, van Triest B. NAD+ depletion by APO866 in combination with radiation in a prostate cancer model, results from an in vitro and in vivo study. Radiother Oncol 2014; 110(2): 348-54.
[http://dx.doi.org/10.1016/j.radonc.2013.10.039] [PMID: 24412016]
[218]
Jieyu H, Chao T, Mengjun L, et al. Nampt/Visfatin/PBEF: a functionally multi-faceted protein with a pivotal role in malignant tumors. Curr Pharm Des 2012; 18(37): 6123-32.
[http://dx.doi.org/10.2174/138161212803582531] [PMID: 22934941]
[219]
Wu D, Cheranova D, Heruth DP, et al. Nicotinamide phosphoribosyltransferase inhibitors.Chemical Biology Ekinci D, Ed Rileka: Intech. 2012; pp. 41-62.
[http://dx.doi.org/10.5772/34981]
[220]
Goldinger SM, Gobbi Bischof S, Fink-Puches R, et al. Efficacy and safety of APO866 in patients with refractory or relapsed cutaneous T-Cell lymphoma: A Phase 2 Clinical Trial. JAMA Dermatol 2016; 152(7): 837-9.
[http://dx.doi.org/10.1001/jamadermatol.2016.0401] [PMID: 27007550]
[221]
Cagnetta A, Caffa I, Acharya C, et al. APO866 increases antitumor activity of cyclosporin-A by inducing mitochondrial and endoplasmic reticulum stress in leukemia cells. Clin Cancer Res 2015; 21(17): 3934-45.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3023] [PMID: 25964294]
[222]
Ginet V, Puyal J, Rummel C, et al. A critical role of autophagy in antileukemia/lymphoma effects of APO866, an inhibitor of NAD biosynthesis. Autophagy 2014; 10(4): 603-17.
[http://dx.doi.org/10.4161/auto.27722] [PMID: 24487122]
[223]
Matheny CJ, Wei MC, Bassik MC, et al. Next-generation NAMPT inhibitors identified by sequential high-throughput phenotypic chemical and functional genomic screens. Chem Biol 2013; 20(11): 1352-63.
[http://dx.doi.org/10.1016/j.chembiol.2013.09.014] [PMID: 24183972]
[224]
Espindola-Netto JM, Chini CCS, Tarragó M, et al. Preclinical efficacy of the novel competitive NAMPT inhibitor STF-118804 in pancreatic cancer. Oncotarget 2017; 8(49): 85054-67.
[http://dx.doi.org/10.18632/oncotarget.18841] [PMID: 29156703]
[225]
Watson M, Roulston A, Bélec L, et al. The small molecule GMX1778 is a potent inhibitor of NAD+ biosynthesis: strategy for enhanced therapy in nicotinic acid phosphoribosyltransferase 1-deficient tumors. Mol Cell Biol 2009; 29(21): 5872-88.
[http://dx.doi.org/10.1128/MCB.00112-09] [PMID: 19703994]
[226]
Olesen UH, Petersen JG, Garten A, et al. Target enzyme mutations are the molecular basis for resistance towards pharmacological inhibition of nicotinamide phosphoribosyltransferase. BMC Cancer 2010; 10: 677.bmccancer.biomedcentral.com/articles/10.1186/1471-2407-10-677cited: 20th Dec 2017.
[http://dx.doi.org/10.1186/1471-2407-10-677] [PMID: 21144000]
[227]
Bi TQ, Che XM. Nampt/PBEF/visfatin and cancer. Cancer Biol Ther 2010; 10(2): 119-25.
[http://dx.doi.org/10.4161/cbt.10.2.12581] [PMID: 20647743]
[228]
Takeuchi M, Niimi T, Masumoto M, Orita M, Yokota H, Yamamoto T. Discovery of a novel nicotinamide phosphoribosyl transferase (NAMPT) inhibitor via in silico screening. Biol Pharm Bull 2014; 37(1): 31-6.
[http://dx.doi.org/10.1248/bpb.b13-00495] [PMID: 24389478]
[229]
Grolla AA, Travelli C, Genazzani AA, Sethi JK. Extracellular nicotinamide phosphoribosyltransferase, a new cancer metabokine. Br J Pharmacol 2016; 173(14): 2182-94.
[http://dx.doi.org/10.1111/bph.13505] [PMID: 27128025]
[230]
Gautam P, Karhinen L, Szwajda A, et al. Identification of selective cytotoxic and synthetic lethal drug responses in triple negative breast cancer cells. Mol Cancer 2016; 15(1)34.molecular-cancer.biomedcentral.com/articles/10.1186/s12943-016-0517-3[cited: 20th Dec 2017.
[http://dx.doi.org/10.1186/s12943-016-0517-3] [PMID: 27165605]
[231]
Dalamaga M, Christodoulatos GS. Visfatin, obesity, and cancerAdipocytokines, energy balance, and cancer. Cham: Springer Switzerland 2017; pp. 109-6.
[http://dx.doi.org/10.1007/978-3-319-41677-9_6]