A Comparison of Biomarkers in the Assessment of Glycemic Control in Diabetes: Reviewing the Evidence

Page: [471 - 479] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Diabetes Mellitus (DM) is a chronic life-long progressive multisystem heterogeneous metabolic disorder with complex pathogenesis.

Introduction: Hyperglycemia is not only one of the classical signs of DM, but it also serves as the pivotal prerequisite for the diagnosis of the disease. However, with the advancement in the field of analytical biochemistry, a number of alternative and specific biomarkers have been discovered which can be used for better diagnosis of the DM. In this review, we have discussed various aspects of DM and different biomarkers used in assessing glycemia.

Methodology: A thorough literature survey was conducted to identify various studies that reported the use of conventional and non-conventional markers for the assessment of glycemia in DM patients.

Conclusion: The accurate detection and hence diagnosis of DM has become easy and more specific with the use of various biomarkers.

Keywords: Diabetes mellitus (DM), glycemia, biomarkers, HbA1C, fructosamine, glycated albumin.

[1]
Association AD. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014; 37(Suppl. 1): S81-90.
[2]
Association AD. Introduction: standards of medical care in diabetes-2018. Diabetes Care 2018; 41(Suppl. 1): S1-2.
[3]
Association AD. Microvascular complications and foot care: standards of medical care in diabetes-2018. Diabetes Care 2018; 41(Suppl. 1): S105-18.
[4]
Association AD. Cardiovascular disease and risk management: standards of medical care in diabetes-2018. Diabetes Care 2018; 41(Suppl. 1): S86-S104.
[5]
Htay T, Soe K, Lopez-Perez A, et al. Mortality and Cardiovascular Disease in Type 1 and Type 2 Diabetes. Curr Cardiol Rep 2019; 21: 45.
[6]
Cho NH, Shaw J, Karuranga S, Huang Y. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 2018; 138: 271-81.
[7]
Association AD. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018; 41(Suppl. 1): S13-27.
[8]
Knip M, Siljander H. Autoimmune mechanisms in type 1 diabetes. Autoimmun Rev 2008; 7(7): 550-7.
[9]
Kahaly GJ, Hansen MP. Type 1 diabetes associated autoimmunity. Autoimmun Rev 2016; 15(7): 644-8.
[10]
Consortium WTCC. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447(7145): 661-78.
[11]
Todd JA, Walker NM, Cooper JD, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 2007; 39(7): 857-64.
[12]
Undlien DE, Lie BA, Thorsby E. HLA complex genes in type 1 diabetes and other autoimmune diseases. Which genes are involved? Trends Genet 2001; 17(2): 93-100.
[13]
Imagawa A, Hanafusa T, Miyagawa J, Matsuzawa Y. A novel subtype of type 1 diabetes mellitus characterized by a rapid onset and an absence of diabetes-related antibodies. Osaka IDDM Study Group. N Engl J Med 2000; 342(5): 301-7.
[14]
Leahy JL. Pathogenesis of type 2 diabetes mellitus. Arch Med Res 2005; 36(3): 197-209.
[15]
DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. Med Clin North Am 2004; 88(4): 787-835.
[16]
Muoio DM, Newgard CB. Mechanisms of disease: Molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol 2008; 9(3): 193-205.
[17]
Lawrence JM, Contreras R, Chen W, Sacks DA. Trends in the prevalence of preexisting diabetes and gestational diabetes mellitus among a racially/ethnically diverse population of pregnant women, 1999-2005. Diabetes Care 2008; 31(5): 899-904.
[18]
Noctor E, Crowe C, Carmody LA, et al. Abnormal glucose tolerance post-gestational diabetes mellitus as defined by the International Association of Diabetes and Pregnancy Study Groups criteria. Eur J Endocrinol 2016; 175(4): 287-97.
[19]
Kim C, Newton KM, Knopp RH. Gestational diabetes and the incidence of type 2 diabetes: a systematic review. Diabetes Care 2002; 25(10): 1862-8.
[20]
Aroda VR, Christophi CA, Edelstein SL, et al. The effect of lifestyle intervention and metformin on preventing or delaying diabetes among women with and without gestational diabetes: The Diabetes Prevention Program outcomes study 10-year follow-up. J Clin Endocrinol Metab 2015; 100(4): 1646-53.
[21]
Gardner DS, Tai ES. Clinical features and treatment of maturity onset diabetes of the young (MODY). Diabetes Metab Syndr Obes 2012; 5: 101-8.
[22]
Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, Ellard S. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia 2010; 53(12): 2504-8.
[23]
Polak M, Cave H. Neonatal diabetes mellitus: a disease linked to multiple mechanisms. Orphanet J Rare Dis 2007; 2: 12.
[24]
Kahn CR, Flier JS, Bar RS. The syndromes of insulin resistance and acanthosis nigricans. Insulin-receptor disorders in man. N Engl J Med 1976; 294(14): 739-45.
[25]
Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev 2012; 33(6): 981-1030.
[26]
Krook A, Kumar S, Laing I, Boulton AJM. Molecular scanning of the insulin receptor gene in syndromes of insulin resistance. Diabetes 1994; 43(3): 357-68.
[27]
Resmini E, Minuto F, Colao A, Ferone D. Secondary diabetes associated with principal endocrinopathies: the impact of new treatment modalities. Acta Diabetol 2009; 46(2): 85-95.
[28]
Biering H, Knappe G, Gerl H, Lochs H. Prevalence of diabetes in acromegaly and Cushing syndrome. Acta Med Austriaca 2000; 27(1): 27-31.
[29]
Krejs GJ, Orci L, Conlon JM, et al. Somatostatinoma syndrome. Biochemical, morphologic and clinical features. N Engl J Med 1979; 301(6): 285-92.
[30]
Nestler JE, McClanahan MA. McClanahan, Diabetes and adrenal disease. Baillieres Clin Endocrinol Metab 1992; 6(4): 829-47.
[31]
Price S, Cole D, Alcolado JC. Diabetes due to exocrine pancreatic disease—a review of patients attending a hospital-based diabetes clinic. QJM 2010; 103(10): 759-63.
[32]
Bartosch-Härlid A, Andersson R. Diabetes mellitus in pancreatic cancer and the need for diagnosis of asymptomatic disease. Pancreatology 2010; 10(4): 423-8.
[33]
Frohnert BI, Ode KL, Moran A, et al. Impaired fasting glucose in cystic fibrosis. Diabetes Care 2010; 33(12): 2660-4.
[34]
Williams JA, Goldfine ID. The insulin-pancreatic acinar axis. Diabetes 1985; 34(10): 980-6.
[35]
Karjalainen J, Knip M, Hyöty H. Relationship between serum insulin autoantibodies, islet cell antibodies and Coxsackie-B4 and mumps virus-specific antibodies at the clinical manifestation of type 1 (insulin-dependent) diabetes. Diabetologia 1988; 31(3): 146-52.
[36]
Pak CY, Eun HM, McArthur RG, Yoon JW. Association of cytomegalovirus infection with autoimmune type 1 diabetes. Lancet 1988; 2(8601): 1-4.
[37]
Hui JM, Sud A, Farrell GC, et al. Insulin resistance is associated with chronic hepatitis C virus infection and fibrosis progression. [corrected]. Gastroenterology 2003; 125(6): 1695-704.
[38]
Mehta SH, Brancati FL, Sulkowski MS, Strathdee SA, Szklo M, Thomas DL. Prevalence of type 2 diabetes mellitus among persons with hepatitis C virus infection in the United States. Ann Intern Med 2000; 133(8): 592-9.
[39]
Luna B, Feinglos MN. Drug-induced hyperglycemia. JAMA 2001; 286(16): 1945-8.
[40]
Zillich AJ, Garg J, Basu S, Bakris GL, Carter BL. Thiazide diuretics, potassium, and the development of diabetes: a quantitative review. Hypertension 2006; 48(2): 219-24.
[41]
WHO Report of a WHO Consultation Definition, diagnosis and classification of diabetes mellitus and its complications1 Diagnosis and classification of diabetes mellitus. WHO 1999.
[42]
Rakocevic G, Floeter MK. Autoimmune stiff person syndrome and related myelopathies: understanding of electrophysiological and immunological processes. Muscle Nerve 2012; 45(5): 623-34.
[43]
Balasubramanyam A. Accuracy and predictive value of classification schemes for ketosis-prone diabetes. Diabetes Care 2006; 29(12): 2575-9.
[44]
Sobngwi E, Mauvais-Jarvis F, Vexiau P, Mbanya JC, Gautier JF. Diabetes in Africans. Part 2: Ketosis-prone atypical diabetes mellitus. Diabetes Metab 2002; 28(1): 5-2.
[45]
Khan KA, Akram J. South Asian version of Flatbush diabetes mellitus—a case report and review article. International Journal of Medicine and Medical Sciences 2009; 1(9): 347-52.
[46]
Tan KC, Mackay IR, Zimmet PZ, Hawkins BR, Lam KS. Metabolic and immunologic features of Chinese patients with atypical diabetes mellitus. Diabetes Care 2000; 23(3): 335-8.
[47]
Goldstein DE, Little RR, Lorenz RA, et al. Tests of glycemia in diabetes. Diabetes Care 2004; 27(7): 1761-73.
[48]
Dorcely B, Katz K, Jagannathan R, et al. Novel biomarkers for prediabetes, diabetes, and associated complications. Diabetes Metab Syndr Obes 2017; 10: 345-61.
[49]
Lee JE. Alternative biomarkers for assessing glycemic control in diabetes: fructosamine, glycated albumin, and 1,5-anhydroglucitol. Ann Pediatr Endocrinol Metab 2015; 20(2): 74-8.
[50]
Ribeiro RT, Macedo MP, Raposo JF. HbA1c, Fructosamine, and glycated albumin in the detection of dysglycaemic conditions. Curr Diabetes Rev 2016; 12(1): 14-9.
[51]
Committee IE. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 2009; 32: 1327-34.
[52]
Organization WH. Use of glycated hemoglobin (HbA1c) in the diagnosis of diabetes mellitus: abbreviated report of a WHO Consultation. Geneva: World Health Organization 2011.
[53]
Association AD. Standards of medical care in diabetes-2018 abridged for primary care providers. Clin Diabetes 2018; 36(1): 14-37.
[54]
Alssema M, Boers HM, Ceriello A, et al. Diet and glycaemia: the markers and their meaning. A report of the Unilever Nutrition Workshop. Br J Nutr 2015; 113(2): 239-48.
[55]
Franz MJ, MacLeod J, Evert A, et al. Academy of nutrition and dietetics nutrition practice guideline for type 1 and type 2 diabetes in adults: systematic review of evidence for medical nutrition therapy effectiveness and recommendations for integration into the nutrition care process. J Acad Nutr Diet 2017; 117(10): 1659-79.
[56]
Jaworski M, Panczyk M, Cedro M, Kucharska A. Adherence to dietary recommendations in diabetes mellitus: disease acceptance as a potential mediator. Patient Prefer Adherence 2018; 12: 163-74.
[57]
MacLeod J, Franz MJ, Handu D, et al. Academy of nutrition and dietetics nutrition practice guideline for type 1 and type 2 diabetes in adults: nutrition intervention evidence reviews and recommendations. J Acad Nutr Diet 2017; 117(10): 1637-58.
[58]
Kam-On Chung J, Xue H, Pang EWH, Tam DCC. Accuracy of fasting plasma glucose and hemoglobin A1c testing for the early detection of diabetes: A pilot study. Frontiers in Laboratory Medicine 2017; 1(2): 76-81.
[59]
Waugh NR, Shyangdan D, Taylor-Phillips S, Suri G, Hall B. Screening for type 2 diabetes: a short report for the National Screening Committee. Health Technol Assess 2013; 17(35): 1-90.
[60]
Echouffo-Tcheugui JB, Ali MK, Griffin SJ, Narayan KM. Screening for type 2 diabetes and dysglycemia. Epidemiol Rev 2011; 33: 63-87.
[61]
Aekplakorn W, Tantayotai V, Numsangkul S. Detecting prediabetes and diabetes: agreement between fasting plasma glucose and oral glucose tolerance test in Thai adults. J Diabetes Res 2015; 2015396505
[62]
Lindahl B, Weinehall L, Asplund K, Hallmans G. Screening for impaired glucose tolerance. Results from a population-based study in 21,057 individuals. Diabetes Care 1999; 22(12): 1988-92.
[63]
Bonora E, Tuomilehto J. The pros and cons of diagnosing diabetes with A1C. Diabetes Care 2011; 34(Suppl. 2): S184-90.
[64]
Lenters-Westra E, Schindhelm RK, Bilo HJ, Slingerland RJ. Haemoglobin A1c: Historical overview and current concepts. Diabetes Res Clin Pract 2013; 99(2): 75-84.
[65]
Bunn HF, Haney DN, Kamin S, Gabbay KH, Gallop PM. The biosynthesis of human hemoglobin A1c. Slow glycosylation of hemoglobin in vivo. J Clin Invest 1976; 57(6): 1652-9.
[66]
Rahbar S, Blumenfeld O, Ranney HM. Studies of an unusual hemoglobin in patients with diabetes mellitus. Biochem Biophys Res Commun 1969; 36(5): 838-43.
[67]
Trivelli LA, Ranney HM, Lai HT. Hemoglobin components in patients with diabetes mellitus. N Engl J Med 1971; 284(7): 353-7.
[68]
Koenig RJ, Peterson CM, Kilo C, Cerami A, Williamson JR. Hemoglobin AIc as an indicator of the degree of glucose intolerance in diabetes. Diabetes 1976; 25(3): 230-2.
[69]
Koenig RJ, Peterson CM, Jones RL, Saudek C, Lehrman M, Cerami A. Correlation of glucose regulation and hemoglobin AIc in diabetes mellitus. N Engl J Med 1976; 295(8): 417-20.
[70]
Nathan DM, Kuenen J, Borg R, et al. Translating the A1C assay into estimated average glucose values. Diabetes Care 2008; 31(8): 1473-8.
[71]
Nathan DM, Turgeon H, Regan S. Relationship between glycated haemoglobin levels and mean glucose levels over time. Diabetologia 2007; 50(11): 2239-44.
[72]
Speeckaert M, Van Biesen W, Delanghe J, et al. Are there better alternatives than haemoglobin A1c to estimate glycaemic control in the chronic kidney disease population? Nephrol Dial Transplant 2014; 29(12): 2167-77.
[73]
Henrichs HR. HbA1c—Glycated Hemoglobin and Diabetes Mellitus.UNI-MED Verlag AG. Bremen–London–Boston 2009. 1st edition.
[74]
Sacks DB, Arnold M, Bakris GL. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem 2011; 57(6): e1-e47.
[75]
Cichocka E, Gumprecht J. Is HbA1c the only choice? Alternative biomarkers for glycaemic control assessment. Clinical Diabetol 2017; 6(4): 136-41.
[76]
Christensen DL, Witte DR, Kaduka L, Jørgensen ME. Moving to an A1C-based diagnosis of diabetes has a different impact on prevalence in different ethnic groups. Diabetes Care 2010; 33(3): 580-2.
[77]
Li J, Ma H, Na L. Increased hemoglobin A1c threshold for prediabetes remarkably improving the agreement between A1c and oral glucose tolerance test criteria in obese population. J Clin Endocrinol Metab 2015; 100(5): 1997-2005.
[78]
Herman WH, Ma Y, Uwaifo G, Haffner S, et al. Differences in A1C by race and ethnicity among patients with impaired glucose tolerance in the Diabetes Prevention Program. Diabetes Care 2007; 30(10): 2453-7.
[79]
Yan ST, et al. The cutoffs and performance of glycated hemoglobin for diagnosing diabetes and prediabetes in a young and middle-aged population and in an elderly population. Diabetes Res Clin Pract 2015; 109(2): 238-45.
[80]
Wright LA-C, Hirsch IB. The challenge of the use of glycemic biomarkers in diabetes: reflecting on hemoglobin a1c, 1,5-anhydroglucitol, and the glycated proteins fructosamine and glycated albumin. Diabetes Spectr 2012; 25(3): 141.
[81]
Radin MS. Pitfalls in hemoglobin A1c measurement: when results may be misleading. J Gen Intern Med 2014; 29(2): 388-94.
[82]
Gallagher EJ, Le Roith D, Bloomgarden Z. Review of hemoglobin A(1c) in the management of diabetes. J Diabetes 2009; 1(1): 9-17.
[83]
Suzuki S, Koga M, Niizeki N, et al. Evaluation of glycated hemoglobin and fetal hemoglobin-adjusted HbA1c measurements in infants. Pediatr Diabetes 2013; 14(4): 267-72.
[84]
Rohlfing CL, Connolly SM, England JD, et al. The effect of elevated fetal hemoglobin on hemoglobin A1c results: five common hemoglobin A1c methods compared with the IFCC reference method. Am J Clin Pathol 2008; 129(5): 811-4.
[85]
Suzuki S, Koga M. Glycemic control indicators in patients with neonatal diabetes mellitus. World J Diabetes 2014; 5(2): 198-208.
[86]
Mosca A, Carenini A, Zoppi F, et al. Plasma protein glycation as measured by fructosamine assay. Clin Chem 1987; 33(7): 1141-6.
[87]
Narbonne H, Renacco E, Pradel V, Portugal H, Vialettes B. Can fructosamine be a surrogate for HbA(1c) in evaluating the achievement of therapeutic goals in diabetes? Diabetes Metab 2001; 27(5 Pt 1): 598-603.
[88]
Rodríguez-Segade S, Rodríguez J, Camiña F. Corrected Fructosamine improves both correlation with HbA1C and diagnostic performance. Clin Biochem 2017; 50(3): 110-5.
[89]
Selvin E, Francis LM, Ballantyne CM, et al. Nontraditional markers of glycemia: associations with microvascular conditions. Diabetes Care 2011; 34(4): 960-7.
[90]
Chen HS, Wu TE, Lin HD, et al. Hemoglobin A(1c) and fructosamine for assessing glycemic control in diabetic patients with CKD stages 3 and 4. Am J Kidney Dis 2010; 55(5): 867-74.
[91]
Van Dieijen-Visser MP, Seynaeve C, Brombacher PJ. Brombacher, Influence of variations in albumin or total-protein concentration on serum fructosamine concentration. Clin Chem 1986; 32(8): 1610.
[92]
Howey JE, Browning MC, Fraser CG. Assay of serum fructosamine that minimizes standardization and matrix problems: use to assess components of biological variation. Clin Chem 1987; 33(2 Pt 1): 269-72.
[93]
Rondeau P, Bourdon E. The glycation of albumin: structural and functional impacts. Biochimie 2011; 93(4): 645-58.
[94]
Koga M, Kasayama S. Clinical impact of glycated albumin as another glycemic control marker. Endocr J 2010; 57(9): 751-62.
[95]
Cohen MP. Rate of formation of glycatedalbumin revisited and clinical implications. J Diabetes Metab 2010; 1: 1-4.
[96]
Furusyo N, Hayashi J. Glycated albumin and diabetes mellitus. Biochim Biophys Acta 2013; 1830(12): 5509-14.
[97]
Koga M, Murai J, Morita S, Saito H, Kasayama S. Comparison of annual variability in HbA1c and glycated albumin in patients with type 1 vs. type 2 diabetes mellitus. J Diabetes Complications 2013; 27(3): 211-3.
[98]
Selvin E, Rawlings AM, Grams M, et al. Fructosamine and glycated albumin for risk stratification and prediction of incident diabetes and microvascular complications: a prospective cohort analysis of the Atherosclerosis Risk in Communities (ARIC) study. Lancet Diabetes Endocrinol 2014; 2(4): 279-88.
[99]
Kim KJ, Lee BW. The roles of glycated albumin as intermediate glycation index and pathogenic protein. Diabetes Metab J 2012; 36(2): 98-107.
[100]
Klaus-Dieter K, Heinke P, Vogt L, et al. Utility of different glycemic control metrics for optimizing management of diabetes. World J Diabetes 2015; 6(1): 17-29.
[101]
Seshiah V, Balaji V, Srinivasan A, Balaji S, Thiyagarajah A. Comparison of glycated albumin (GA) and glycosylatedhemoglobin (A1C) in monitoring glycemic excursionsduring pregnancy. OJOG 2013; 3: 47-50.
[102]
Selvin E, Rawlings AM, Lutsey PL, et al. Fructosamine and glycated albumin and the risk of cardiovascular outcomes and death. Circulation 2015; 132(4): 269-77.
[103]
Shafi T, Sozio SM, Plantinga LC, et al. Serum fructosamine and glycated albumin and risk of mortality and clinical outcomes in hemodialysis patients. Diabetes Care 2013; 36(6): 1522-33.
[104]
Koga M. Glycated albumin; clinical usefulness. Clin Chim Acta 2014; 433: 96-104.
[105]
Dungan KM. 1,5-anhydroglucitol (GlycoMark) as a marker of short-term glycemic control and glycemic excursions. Expert Rev Mol Diagn 2008; 8(1): 9-19.
[106]
Yamanouchi T, Akanuma Y. Serum 1,5-anhydroglucitol (1,5 AG): new clinical marker for glycemic control. Diabetes Res Clin Pract 1994; 24(Suppl.): S261-8.
[107]
Buse JB, Freeman JL, Edelman SV, Jovanovic L, McGill JB. Serum 1,5-anhydroglucitol (GlycoMark): a short-term glycemic marker. Diabetes Technol Ther 2003; 5(3): 355-63.
[108]
Wang Y, Yuan Y, Zhang Y, et al. Serum 1,5-anhydroglucitol level as a screening tool for diabetes mellitus in a community-based population at high risk of diabetes. Acta Diabetol 2017; 54(5): 425-31.
[109]
Kishimoto M, Yamasaki Y, Kubota M, et al. 1,5-Anhydro-D-glucitol evaluates daily glycemic excursions in well-controlled NIDDM. Diabetes Care 1995; 18(8): 1156-9.