Cycloelimination-assisted Combinatorial Synthesis of Diverse Heterocyclic Scaffolds of Chemotherapeutic Values

Page: [768 - 808] Pages: 41

  • * (Excluding Mailing and Handling)

Abstract

Recent advances in high-throughput, automated techniques combined with the identification of new therapeutic targets in genome sequencing and molecular biology have generated a need for a large collection of diverse heterocyclic scaffolds. This inspires toward the development of novel reaction sequences and linking strategies to generate libraries of diverse simple to complex heterocyclic systems. In this regard, combinatorial chemistry has emerged as an excellent technology platform for the rapid assembly of building blocks to synthesize complex molecular structures with great ease in a few synthetic steps. By means of the implementation of high-throughput screening for the biological evaluation of hits and leads, combinatorial libraries have become important assets in drug discovery and development. In the last two decades, the cyclorelease strategy that minimizes the chemical and tethering implications by releasing the intact desired target molecule in the final step of reaction has attracted much attention. Recently, a particular interest is developing in linking strategies, where loading and cleavage steps contribute to the complexity of the target structure rather than only extraneous manipulations. This review summarises the practical and high-yielding approaches of solid phase combinatorial synthesis for diverse high-purity heterocyclic skeletons of pharmacological importance involving the cycloelimination strategy.

Keywords: Combinatorial chemistry, cyclorelease strategy, cycloelimination, heterocycle, metathesis, solid phase synthesis.

Graphical Abstract

[1]
Katritzky, A.R.; Ramsden, C.A.; Joule, J.A.; Zhdankin, V.V. Handbook of Heterocyclic Chemistry; 3rd ed.; Kindle Edition, Elsevier publications,. , 2010.
[2]
Katritzky, A.R.; Lagowski, J.M. The Principles of Heterocyclic Chemistry; New York: Academic Press, 1968.
[3]
Pozharskiĭ, A.F.; Katritzky, A.R.; Soldatenkov, A.T. Heterocycles in life and society: An introduction to heterocyclic chemistry, biochemistry and applications, Wiley publication. 2011.
[4]
Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14, 6611-6637.
[5]
(a)Dua, R.; Shrivastava, S.; Sonwane, S.K.; Srivastava, S.K. Pharmacological significance of synthetic heterocycles scaffold. Adv. Biol. Res., 2011, 5, 120-144.
(b)Tiwari, V.K.; Mishra, B.B.; Mishra, K.B.; Mishra, N.; Singh, A.S.; Chen, X. Cu(I)-catalyzed click reaction in carbohydrate chemistry. Chem. Rev., 2016, 116, 3086-3240.
[6]
Pothiraj, C.; Velan, A.S.; Joseph, J.; Raman, N. Simple method of preparation and characterization of new antifungal active biginelli type heterocyclic compounds. Mycobiology, 2008, 36, 66-69.
[7]
Koci, J.; Klimesova, V.; Waisser, K.; Kaustova, J.; Dahse, H.M.; Mollmann, U. Heterocyclic benzazole derivatives with antimycobacterial in vitro activity. Bioorg. Med. Chem. Lett., 2002, 12, 3275-3278.
[8]
Karnik, A.V.; Malviya, N.J.; Kulkarni, A.M.; Jadhav, B.L. Synthesis and in vitro antibacterial activity of novel heterocyclic derivatives of 18-nor-equilenin. Eur. J. Med. Chem., 2006, 41, 891-895.
[9]
Bedoya, M.; Olmo, E.D.; Sancho, R.; Barboza, B.; Beltran, M.; Garcia-Cadenas, A.E.; Sanchez-Palomino, S.; Lopez-Perez, J.L.; Munoz, E.; Feliciano, A.S.; Alcami, J. Anti-HIV activity of stilbene-related heterocyclic compounds. Bioorg. Med. Chem. Lett., 2006, 16, 4075-4079.
[10]
Sunduru, N.; Agarwal, A.; Katiyar, S.B.N.; Goyal, N.; Gupta, S.; Chauhan, P.M.S. Synthesis of 2,4,6-trisubstituted pyrimidine and triazine heterocycles as antileishmanial agents. Bioorg. Med. Chem., 2006, 14, 7706-7715.
[11]
Durling, L.J.; Abramsson-Zetterberg, L. A comparison of genotoxicity between three common heterocyclic amines and acrylamide. Mutat. Res., 2005, 580, 103-110.
[12]
Stewart, M.L.; Bueno, G.J.; Baliani, A.; Klenke, B.; Brun, R.; Brock, J.M.; Gilbert, I.H.; Barrett, M.P. Trypanocidal activity of melamine-based nitroheterocycles. Antimicrob. Agents Chemother., 2004, 48, 1733-1738.
[13]
Dominguez, J.N.; Leon, C.; Rodrigues, J.; Dominguez, N.G.; Gut, J.; Rosenthal, P.J. Synthesis and antimalarial activity of sulfonamide chalcone derivatives. Farmaco, 2005, 60, 307-311.
[14]
Ke, S.Y.; Xue, S.J. Synthesis and herbicidal activity of N-(o-fluorophenoxyacetyl) thioureas derivatives and related fused heterocyclic compounds. ARKIVOC, 2006, X, 63-68.
[15]
Malhotra, S.; Shakya, G.; Kumar, A.; Vanhoecke, B.W.; Cholli, A.L.; Raj, H.G.; Saso, L.; Ghosh, B.; Bracke, M.E.; Prasad, A.K.; Biswal, S.; Parmar, V.S. Antioxidant, anti-inflammatory and antiinvasive activities of biopolyphenolics. ARKIVOC, 2008, VI, 119-139.
[16]
Gavaghan, A.D.; Nunn, A.J. Some heterocyclic quaternary salts of potential anthelmintic activity. Pharm. Acta Helv., 1971, 46, 413-419.
[17]
Paruszewski, R.; Strupinska, M.; Rostafinska-Suchar, G.; Stables, J.P. Anticonvulsant activity of benzylamides of some amino acids and heterocyclic acids. Protein Pept. Lett., 2003, 10, 475-482.
[18]
Yousef, T.A.; Badria, F.A.; Ghazy, S.; El-Gammal, O.A.; El-Reash, G.M.A. In vitro and in vivo antitumor activity of some synthesized 4-(2-pyridyl)-3-thiosemicarbazides derivatives. J. Med. Med. Sci., 2011, 3, 37-46.
[19]
Abignente, E.; Sacchi, A.; Laneri, S.; Rossi, F.; Amico, M.D.; Berrino, L.; Calderaro, V.; Parrillo, C. Research on heterocyclic compounds. XXXII. Synthesis and cyclooxygenase-independent anti-inflammatory and analgesic activity of imidazo[1,2-a] pyrimidine derivatives. Eur. J. Med. Chem., 1994, 29, 279-286.
[20]
Elmegeed, G.A.; Baiuomy, A.R.; Abdelhalim, M.M.; Hana, H.Y. Synthesis and antidepressant evaluation of five novel heterocyclic tryptophan-hybrid derivatives. Arch. Pharm., 2010, 343, 261-267.
[21]
Darias, V.; Abdala, S.; Martin-Herrera, D.; Tello, M.L.; Vega, S. CNS effects of a series of 1,2,4-triazolyl heterocarboxylic derivatives. Pharmazie, 1998, 53, 477-481.
[22]
Valverde, M.G.; Torroba, T. Special issue: Sulfur-nitrogen heterocycles molecules. Molecules, 2005, 10, 318-320.
[23]
V.K., Tiwari B.B. Mishra. Opportunity, Challenge and Scope of Natural Products in Medicinal Chemistry. Eds.; Trivandrum, Kerala,; Research Signpost: India, 2011.
[24]
Mishra, B.B.; Tiwari, V.K. Natural products: An evolving role in future drug discovery. Eur. J. Med. Chem., 2011, 46, 4769-4807.
[25]
Mishra, S.; Tripathi, N.; Mishra, S.; Kishore, N.; Singh, R.K.; Tiwari, V.K. Fighting against Tuberculosis: Impact of alkaloids. Eur. J. Med. Chem., 2017, 137, 504-554.
[26]
Liu, K.K-C.; Sakya, S.M.; O’Donnell, C.J.; Li, J. Synthetic approaches to the 2007 New Drugs. Mini Rev. Med. Chem., 2008, 8, 1526-1548.
[27]
Liu, K.K.C.; Sakya, S.M.; O’Donnell, C.J.; Li, J. Synthetic approaches to the 2008 New Drugs. Mini Rev. Med. Chem., 2009, 9, 1655-1675.
[28]
Liu, K.K.C.; Sakya, S.M.; O’Donnell, C.J.; Flick, A.C.; Li, J. Synthetic approaches to the 2009 new drugs. Bioorg. Med. Chem., 2011, 19, 1136-1154.
[29]
Liu, K.K.C.; Sakya, S.M.; O’Donnell, C.J.; Flick, A.C.; Ding, H.X. Synthetic approaches tothe 2010 New Drugs. Bioorg. Med. Chem., 2012, 20, 1155-1174.
[30]
Ding, H.X.; Liu, K.K.; Sakya, S.M.; Flick, A.C.; O’Donnell, C.J. Synthetic approaches to the 2011 new drugs. Bioorg. Med. Chem., 2013, 21, 2795-2825.
[31]
Ding, H.X.; Leverett, C.A.; Kyne, Jr, R.E.; Liu, K.K.; Sakya, S.M.; Flick, A.C.; O’Donnell, C.J. Synthetic approaches to the 2012 new drugs. Bioorg. Med. Chem., 2014, 22, 2005-2032.
[32]
Ding, H.X.; Leverett, C.A.; Kyne, Jr, R.E.; Liu, K.K.; Fink, S.J.; Flick, A.C.; O’Donnell, C.J. Synthetic approaches to the 2013 new drugs. Bioorg. Med. Chem., 2015, 23, 1895-1922.
[33]
Flick, A.C.; Ding, H.X.; Leverett, C.A.; Kyne, Jr, R.E.; Liu, K.K.; Fink, S.J.; O’Donnell, C.J. Synthetic Approaches to the 2014 new drugs. Bioorg. Med. Chem., 2016, 24, 1937-1980.
[34]
Lick, A.C.; Ding, H.X.; Leverett, C.A.; Kyne, R.E.; Liu, K.K.C.; Fink, S.J.; O’Donnell, C.J. Synthetic approaches to the new drugs approved during 2015. J. Med. Chem., 2017, 60, 6480-6515.
[35]
Flick, A.C.; Ding, H.X.; Leverett, C.A.; Fink, S.J.; O’Donnell, C.J. Synthetic approaches to new drugs approved during 2016. J. Med. Chem., 2018, 61, 7004-7031.
[36]
Raju, T.N.K. The Nobel Chronicles. 1988: James Whyte Black, (b 1924), Gertrude Elion (1918−99), George H Hitchings (1905-1998). Lancet, 2000, 355, 1022.
[37]
Park, K.H.; Kurth, M.J. Cyclo-elimination release strategies applied to solid phase organic synthesis in drug discovery. Drugs Future, 2000, 25, 1265-1294.
[38]
Mishra, B.B.; Kumar, D.; Mishra, A.; Mohapatra, P.P.; Tiwari, V.K. Cyclorelease strategy in solid phase combinatorial synthesis of heterocyclic skeletons. Adv. Heterocycl. Chem., 2012, 107, 41-99.
[39]
Kumar, D.; Kushwaha, D.; Mishra, B.B.; Tiwari, V.K. Impact of solid-supported cyclization-elimination strategies towards the natural product inspired molecules in drug research. inBioactive Natural Products; G., Brahmachari, Ed.; Taylor & Francis, 2012, pp. 9-30.
[40]
(a)James, I.W. Linkers for solid phase organic synthesis. Tetrahedron, 1999, 55, 4855-4946.
(b)Timmer, M.S.M.; Verhelst, S.H.L.; Grotenbreg, G.M.; Overhand, M.; Overkleeft, H.S. Carbohydrates as versatile platforms in theconstruction of small compound libraries. Pure Appl. Chem., 2005, 77, 1173-1181.
[41]
Hogo, H.; Nakahara, Y. Recent progress in the solid-phase synthesis of glycopeptides. Curr. Protein Pept. Sci., 2000, 1, 23-48.
[42]
Abreu, P.M.; Branco, P.S. Natural product-like combinatorial libraries. J. Braz. Chem. Soc., 2003, 14, 675-712.
[43]
Gordon, K.; Balasubramanian, S. Solid phase synthesis-designer linkers for combinatorial chemistry: A review. J. Chem. Technol. Biotechnol., 1999, 74, 835-851.
[44]
Cho, C.Y.; Moran, E.J.; Cherry, S.R.; Stephans, J.C.; Fodor, S.P.A.; Adams, C.L.; Sundaram, A.; Jacobs, J.W.; Schultz, P.G. An unnatural biopolymer. Science, 1993, 261, 1303-1305.
[45]
Gennari, C.; Salom, B.; Potenza, D.; Williams, A. Synthesis of sulfonamido pseudopeptides: New chiral unnatural oligomers. Angew. Chem. Int. Ed., 1994, 33, 2067-2069.
[46]
Gennari, C.; Nestler, H.P.; Salom, B.; Still, W.C. Solid phase synthesis of vinylogous sulfonyl peptides. Angew. Chem. Int. Ed., 1995, 34, 1763-1765.
[47]
Simon, R.J.; Kania, R.S.; Zuckermann, R.N.; Huebner, V.D.; Jewell, D.A.; Banville, S.; Ng, S.; Wang, L.; Rosenberg, S.; Marlowe, C.K.; Spellmeyer, D.C.; Tan, R.Y.; Frankel, A.D.; Santi, D.V.; Cohen, F.E.; Bartlett, P.A. Peptoids: A modular approach to drug discovery. Proc. Natl. Acad. Sci. USA, 1992, 89, 9367-9371.
[48]
Bunin, B.A.; Ellman, J.A. A general and expedient method for the solid phase synthesis of 1,4-benzodiazepine derivatives. J. Am. Chem. Soc., 1992, 114, 10997-10998.
[49]
Sammelson, R.E.; Kurth, M.J. Carbon-carbon bond-forming solid phase reactions. Part II. Chem. Rev., 2001, 101, 137-202.
[50]
Mishra, R.C.; Tewari, N.; Arora, K.; Ahmad, R.; Tripathi, R.P.; Tiwari, V.K.; Walter, R.D. srivastava, A.K. DBU-Assisted cyclorelease elimination: combinatorial synthesis and γ- glutamyl cysteine synthetase and glutathione-s-transeferase modulatory effect of c-nucleoside analogs. Comb. Chem. High Throughput Screen., 2003, 6, 37-50.
[51]
Porta, E.L.; Piarulli, U.; Cardullo, F.; Paio, A.; Provera, S.; Seneci, P.; Gennari, C. Cyclative cleavage via solid phase supported stabilized sulfur ylides: Synthesis of macrocyclic lactones. Tetrahedron Lett., 2002, 43, 761-766.
[52]
Mishra, B.B.; Kumar, D.; Singh, A.S.; Tripathi, R.P.; Tiwari, V.K. Ionic liquids-prompted synthesis of biologically relevant five- and six-membered heterocyclic skeletons: An update, in Green Synthetic Approaches for Biologically Relevant Heterocycles, Elsevier Publication, ed.; G. Brahmachari: 2014, pp 1-57.
[53]
Beebe, X.; Schore, N.E.; Kurth, M.J. Polymer-supported synthesis of 2,5-disubstituted tetrahydrofurans. J. Am. Chem. Soc., 1992, 114, 10061-10062.
[54]
Gowravaram, M.R.; Gallop, M.A. “Traceless” solid phase synthesis of furans via 1,3-dipolar cycloaddition reactions of isomünchnones. Tetrahedron Lett., 1997, 38, 6973-6976.
[55]
Barn, D.R.; Morphy, J.R. Solid phase synthesis of cyclic imides. J. Comb. Chem., 1999, 1, 151-156.
[56]
Romoff, T.T.; Ma, L.; Wang, Y.; Campbell, D.A. Solid phase synthesis of 3-acyl-2,4-pyrrolidinediones (3-acyl tetramic acids) via mild cyclative cleavage. Synlett, 1998, 12, 1341-1342.
[57]
Kulkarni, B.A.; Ganesan, A. Solid phase synthesis of tetramic acids. Tetrahedron Lett., 1998, 39, 4369-4372.
[58]
Mattews, J.; Rivero, R.A. Solid phase synthesis of substituted tetramic acids. J. Org. Chem., 1998, 63, 4808-4810.
[59]
Anzini, M.; Cappelli, A.; Vomero, S.; Giorgi, G.; Langer, T.; Bruni, G.; Romeo, M.R.; Basile, A.S. Molecular basis of peripheral vs central benzodiazepine receptor selectivity in a new class of peripheral benzodiazepine receptor ligands related to alpidem. J. Med. Chem., 1996, 39, 4275-4284.
[60]
Bhandari, A.; Li, B.; Gallop, M. Solid phase synthesis of pyrrolo [3,4-b] pyridines and related pyridine-fused heterocycles. Synthesis, 1999, 11, 1951-1960.
[61]
Luca, L.D.; Giacomelli, G.; Nieddu, G. Synthesis of substituted benzofurans via microwave-enhanced catch and release strategy. J. Comb. Chem., 2008, 10, 517-520.
[62]
Frigola, J.; Colombo, A.; Pares, J.; Martinez, L.; Sagarra, R.; Roster, R. Synthesis, structure and inhibitory effects on cyclooxygenase, lipoxygenase, thromboxane synthetase and platelet aggregation of 3-amino-4,5-dihydro-1H-pyrazole derivatives. Eur. J. Med. Chem., 1989, 24, 435-445.
[63]
Groutas, W.C.; Venkataman, R.; Chong, L.S.; Yoder, J.E.; Epp, J.B.; Stanga, M.A.; Kim, E. Isoxazoline derivatives as potential inhibitors of the proteolytic enzymes human leukocyte elastase, cathepsin g and proteinase 3: A structure--activity relationship study. Bioorg. Med. Chem., 1995, 3, 125-128.
[64]
Dorlars, A.; Schellhammer, C.W.; Schroeder, J. Heterocycles as structural units in new optical brighteners. Angew. Chem. Int. Ed., 1975, 14, 665-679.
[65]
Silva, A.P.; Gunaratne, H.Q.N.; Gunnlaugsson, T.; Nieuwenhuizen, M. Fluorescent switches with high selectivity towards sodium ions: Correlation of ion-induced conformation switching with fluorescence function. Chem. Commun., 1996, 1967-1968.
[66]
Kozikowski, A.P. The isoxazoline route to the molecules of nature. Acc. Chem. Res., 1984, 17, 410-416.
[67]
Chen, Y.; Lam, Y.; Lai, Y.H. Solid phase synthesis of pyrazolines and isoxazolines with sodium benzenesulfinate as a traceless linker. Org. Lett., 2003, 5, 1067-1069.
[68]
Luca, L.D.; Giacomelli, G.; Porcheddu, A.; Salaris, M.; Taddei, M. Cellulose beads: A new versatile solid-support for microwaveassisted synthesis. preparation of pyrazole and isoxazole libraries. J. Comb. Chem., 2003, 5, 465-471.
[69]
Hofreiter, M.; Serre, D.; Poinar, H.N.; Kuch, M.; Pääbo, S. Ancient DNA. Nat. Rev. Genet., 2001, 2, 353-359.
[70]
Sim, M.M.; Ganesan, A. Solution-phase synthesis of a combinatorial thiohydantoin library. J. Org. Chem., 1997, 62, 3230-3225.
[71]
Scicinski, J.J.; Barker, M.D.; Murray, P.J.; Jarvie, E.M. The solid phase syntheses of a series of tri-substituted hydantoin ligands for the somatostatin SST5 receptor. Bioorg. Med. Chem. Lett., 1998, 8, 3609-3614.
[72]
Dressman, B.A.; Spangle, L.A.; Kaldor, S.W. Solid phase synthesis of hydantoins using a carbamate linker and a novel cyclization / cleavage step. Tetrahedron Lett., 1996, 37, 937-940.
[73]
Hanessian, S.; Yang, R.Y. Solution and solid phase synthesis of 5-alkoxyhydantoin libraries with a three-fold functional diversity. Tetrahedron Lett., 1996, 37, 5835-5838.
[74]
Stadlwieser, J.; Ellmerer-Muller, E.P.; Tako, A.; Maslouh, N.; Bannwarth, W. Combinatorial solid phase synthesis of structurally complex thiazolylhydantoines. Angew. Chem. Int. Ed., 1998, 37, 1402-1404.
[75]
Kim, S.W.; Ahn, S.Y.; Koh, J.S.; Lee, J.H.; Seonggu, R.; Cho, H.Y. Solid phase synthesis of hydantoin library using a novel cyclization and traceless cleavage step. Tetrahedron Lett., 1997, 38, 4603-4606.
[76]
Lee, S.H.; Chung, S.H.; Lee, Y.S. Preparation of resin-bound ketimines via transimination and its application in the synthesis of hydantoin libraries. Tetrahedron Lett., 1998, 39, 9469-9472.
[77]
Mattews, J.; Rivero, R.A. Base-promoted solid phase synthesis of substituted hydantoins and thiohydantoins. J. Org. Chem., 1997, 62, 6090-6092.
[78]
Lin, M.J.; Sun, C.M. Microwave-assisted traceless synthesis of thiohydantoin. Tetrahedron Lett., 2003, 44, 8739-8742.
[79]
Park, K.H.; Kurth, M.J. An uncatalyzed cyclo-elimination process for the release of N3-alkylated hydantoins from solid phase: synthesis of novel isoxazoloimidazolidinediones. Tetrahedron Lett., 1999, 40, 5841-5844.
[80]
Park, K.H.; Kurth, M.J. Solid phase synthesis of novel heterocycles containing thiohydantoin and isoxazole rings. J. Org. Chem., 1999, 64, 9297-9300.
[81]
Roger, C.; Roberts, J.A.; Muller, L. Clinical pharmacokinetics and pharmacodynamics of oxazolidinones. Clin. Pharmacokinet., 2018, 57, 559-575.
[82]
Mishra, K.B.; Agrihari, A.K.; Tiwari, V.K. One-Pot facile synthesis of carbohydrate derived oxazolodine-2-thiones from sugar azido alcohols. Carbohydr. Res., 2017, 450, 1-9.
[83]
Kifli, N.; Htar, T.T.; De Clercq, E.; Balzarini, J.; Simons, C. Bioorg. Med. Chem., 2004, 12, 3247-3257.
[84]
Holte, P.; Thijs, L.; Zwanenburg, B. Solid phase synthesis of 3,5-disubstituted 1,3-oxazolidin-2-ones by an activation/cyclo-elimination process. Tetrahedron Lett., 1998, 39, 7407-7410.
[85]
Buchstaller, H.P. Solid phase synthesis of oxazolidinones via a novel Cyclisation/Cleavage reaction. Tetrahedron, 1998, 54, 3465-3470.
[86]
Tietze, L.F.; Steinmetz, A. A General and expedient method for the solid phase synthesis of structurally diverse 1-Phenylpyrazolone derivatives. Synlett, 1996, 667-668.
[87]
Lepore, S.D.; Wiley, M.R. Studies on the synthetic compatibility of aryloxime linkers in the solid phase synthesis of 3-Aminobenzisoxazoles. J. Org. Chem., 2000, 65, 2924-2932.
[88]
Boldi, A.M.; Johnson, C.R.; Eissa, H.O. Solid phase library synthesis of triazolopyridazines via [4+2] cyeloadditions. Tetrahedron Lett., 1999, 40, 619-622.
[89]
Kolb, V.M.; Dworkin, J.P.; Miller, S.L. Alternative bases in the RNA world: The prebiotic synthesis of urazole and its ribosides. J. Mol. Evol., 1994, 38, 549-557.
[90]
Park, K.H.; Cox, L.J. Solid phase synthesis of 1,2,4-triazolidine-3,5-diones. Tetrahedron Lett., 2002, 43, 3899-3901.
[91]
Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95, 2457-2483.
[92]
Phoon, C.W.; Sim, M.M. Solid phase syntheses of 1,2,4-trisubstituted urazole and thiourazole derivatives. J. Comb. Chem., 2002, 4, 491-495.
[93]
Hu, Y.; Baudart, S.; Porco, J.A. Parallel synthesis of 1,2,3- thiadiazoles employing a “catch and release” strategy. J. Org. Chem., 1999, 64, 1049-1051.
[94]
Thomas, E.W.; Nishizawa, E.E.; Zimmermann, D.C.; Williams, D.J. Synthesis and platelet aggregation inhibitory activity of 4,5-bis(substituted)-1,2,3-thiadiazoles. J. Med. Chem., 1985, 28, 442-446.
[95]
Jagtap, S. Heck reaction-State of the Art. Catalysts, 2017, 7, 267-320.
[96]
Kondo, Y.; Inamoto, K.; Sakamoto, T. Photoinduced cyclorelease for condensed heteroaromatic synthesis. J. Comb. Chem., 2000, 2, 232-233.
[97]
McCormick, J.L.; McKee, T.C.; Cardellina, J.H., II; Boyd, M.R. J. Nat. Prod., 1996, 59, 469-471.
[98]
DeVita, R.J.; Goulet, M.T.; Wyvratt, M.J.; Fisher, M.H.; Lo, J.L.; Yang, Y.T.; Cheng, K.; Smith, R.G. Bioorg. Med. Chem. Lett., 1999, 9, 2621-2624.
[99]
Rowley, M.; Kulagowski, J.J.; Watt, A.P.; Rathbone, D.; Stevenson, G.I.; Carling, R.W.; Baker, R.; Marshall, G.R.; Kemp, J.A.; Foster, A.C.; Grimwood, S.; Hargreaves, R.; Hurley, C.; Saywell, K.L.; Tricklebank, M.D.; Leeson, P.D. J. Med. Chem., 1997, 40, 4053-4068.
[100]
Sherlock, M.H.; Kaminski, J.J.; Tom, W.C.; Lee, J.F.; Wong, S.C.; Kreutner, W.; Bryant, R.W.; McPhail, A.T. J. Med. Chem., 1988, 31, 2108-2121.
[101]
Sim, M.M.; Lee, C.L.; Ganesan, A. Solid phase combinatorial synthesis of 4-hydroxyquinolin-2(1H)-ones. Tetrahedron Lett., 1998, 39, 6399-6402.
[102]
Liu, Y.; Mills, A.D.; Kurth, M.J. Solid phase synthesis of 3-(5-arylpyridin-2-yl)-4-hydroxycoumarins. Tetrahedron Lett., 2006, 47, 1985-1988.
[103]
Hong, B.C.; Chen, Z.Y.; Chen, W.H. Traceless Solid phase synthesis of heterosteroid framework. Org. Lett., 2000, 2, 2647-2649.
[104]
Szardenings, A.K.; Burkoth, T.S.; Lu, H.H.; Tien, D.W.; Campbell, D.A. A simple procedure for the solid phase synthesis of diketopiperazine and diketomorpholine derivatives. Tetrahedron, 1997, 53, 6573-6593.
[105]
Gordon, D.W.; Stille, J. Reductive alkylation on a solid phase: Synthesis of a piperazinedione combinatorial library. Bioorg. Med. Chem. Lett., 1995, 5, 47-50.
[106]
Iyer, M.S.; Gigstad, K.M.; Namdev, N.D.; Lipton, M.A. Asymmetric catalysis of the strecker amino acid synthesis by a cyclic dipeptide. J. Am. Chem. Soc., 1996, 118, 4910-4911.
[107]
Kowalski, J.; Lipton, M.A. Solid phase synthesis of a diketopiperazine catalyst containing the unnatural amino acid (S)-Norarginine. Tetrahedron Lett., 1996, 37, 5839-5840.
[108]
Mhaske, S.B.; Argade, N.P. The chemistry of recently isolated naturally occurring quinazolinone alkaloids. Tetrahedron, 2006, 62, 9787.
[109]
Smith, A.L.; Thomson, C.G.; Leeson, P.D. An efficient solid phase synthetic route to 1,3-disubstituted 2,4(1H,3H)-quinazolinediones suitable for combinatorial synthesis. Bioorg. Med. Chem. Lett., 1996, 6, 1483-1486.
[110]
Berst, F.; Holmes, A.B.; Ladlow, M.; Murray, P.J. A latent aryl hydrazine ‘safety-catch’ linker compatible with N-alkylation. Tetrahedron Lett., 2000, 41, 6649-6653.
[111]
Wang, H.; Ganesan, A. Total synthesis of the fumiquinazoline alkaloids: Solid phase studies. J. Comb. Chem., 2000, 2, 186-194.
[112]
Tiwari, V.K.; Mishra, R.C.; Sharma, A.; Tripathi, R.P. Carbohydrate-based potential chemotherapeutic agents: Recent developments and their scope in future drug discovery. Mini Rev. Med. Chem., 2012, 12, 1497-1519.
[113]
Mishra, S.; Upadhayay, K.; Mishra, K.B.; Tripathi, R.P.; Tiwari, V.K. Carbohydrate-based Chemotherepeutics: A frontier in drug discovery and development. Studies Nat. Prod. Chem., 2016, 49, 307-361.
[114]
Burchenal, J.H.; Ciovacco, K.; Kalaher, K.; O’Toole, T.; Kiefner, R.; Dowling, M.D.; Chu, C.K.; Watanabe, K.A.; Wempen, I.; Fox, J.J. Antileukemic effects of pseudoisocytidine, a new synthetic pyrimidine C-Nucleoside. Cancer Res., 1976, 36, 1520-1523.
[115]
Schaeffer, H.J.; Beauchamp, L.; De-Miranda, P.; Elion, G.B.; Bauer, D.J.; Collins, P. 9-(2-Hydroxyethoxymethyl) guanine activity against viruses of the herpes group. Nature, 1978, 272, 583-585.
[116]
Cai, D.M.; Li, M.J.; Li, D.L.; You, T.P. Synthesis of C-Nucleoside analogues: 2-[2-(Hydroxymethyl)-1,3-dioxolan-5-yl]1, 3-thiazole-4-carboxamide and 2-[2-(Mercaptometh- yl)-1, 3-dioxolan-5-yl] 1, 3-thiazole-4-carboxamide. Chin. Chem. Lett., 2004, 15, 163-166.
[117]
Tripathi, R.P.; Tiwari, V.K.; Mishra, R.C.; Srivastava, R.; Srivastava, S.; Srivastava, K.K.; Srivastava, B.S. Solid phase combinatorial synthesis of carbohydrate-containing ureas with four point diversity. Trends Carbohydr. Res., 2012, 4(3), 28-44.
[118]
Tewari, N.; Mishra, R.C.; Tiwari, V.K.; Tripathi, R.P. DBU/TBAB/4A0 catalysed cyclatic amidation reactions: A highly efficient & convenient synthesis of C-Nucleosides. Synlett, 2002, 11, 1779-1782.
[119]
Tewari, N.; Tiwari, V.K.; Mishra, R.C.; Tripathi, R.P.; Srivastava, A.K.; Ahmad, R.; Srivastava, R.; Srivastava, B.S. Synthesis and bioevaluation of glycosyl ureas as α-glucosidase inhibitors and their effect on Mycobacterium. Bioorg. Med. Chem., 2003, 11, 2911-2922.
[120]
Schmidt, R.R.; Kinzy, W. Anomeric-oxygen activation for glycoside synthesis: The trichloroacetimidate method. Adv. Carbohydr. Chem. Biochem., 1994, 50, 21-123.
[121]
Zhu, X.; Schmidt, R.R. New principles for glycoside-bond formation. Angew. Chem. Int. Ed., 2009, 48, 1900-1935.
[122]
Ito, Y.; Manabe, S. Solid phase oligosaccharide synthesis and related technologies. Curr. Opin. Chem. Biol., 1998, 2, 701-708.
[123]
Manabe, S.; Nakahara, Y.; Ito, Y. Novel nitro wang type linker for polymer support oligosaccharide synthesis; Polymer supported acceptor. Synlett, 2000, 9, 1241-1244.
[124]
Ghosh, S.; Ghosh, S.; Sarkar, N. Factors influencing ring closure through olefin metathesis-A perspective. J. Chem. Sci., 2006, 118, 223-235.
[125]
Grubbs, R.H.; Chang, S. Recent advances in olefin metathesis and its application in organic synthesis. Tetrahedron, 1998, 54, 4413-4450.
[126]
Piscopio, A.D.; Miller, J.F.; Koch, K. Ring closing metathesis in organic synthesis: Evolution of a high speed, solid phase method for the preparation of β-Turn mimetics. Tetrahedron, 1999, 55, 8189-8198.
[127]
Piscopio, A.D.; Miller, J.F.; Koch, K. A second generation solid phase approach to freidinger lactams: Application of Fukuyama’s amine synthesis and cyclative release via ring closing metathesis. Tetrahedron Lett., 1998, 39, 2667-2670.
[128]
Perdih, A.; Kikelj, D. The application of freidinger lactams and their analogs in the design of conformationally constrained peptidomimetics. Curr. Med. Chem., 2006, 13, 1525-1556.
[129]
Piscopio, A.D.; Miller, J.F.; Koch, K. Solid phase heterocyclic synthesis via ring closing metathesis: traceless linking and cyclative cleavage through a carbon-carbon double bond. Tetrahedron Lett., 1997, 38, 7143-7146.
[130]
Maarseveen, J.H.; Hartog, J.A.J.; Engelen, V.; Finner, E.; Visser, G.; Kruse, C.G. Solid phase ring-closing metathesis: Cyclization/cleavage approach towards a seven membered cycloolefin. Tetrahedron Lett., 1996, 37, 8249-8252.
[131]
Brown, R.C.D.; Castro, L.; Moriggi, J.D. Solid phase synthesis of cyclic sulfonamides employing a ring-closing metathesis-cleavage strategy. Tetrahedron Lett., 2000, 41, 3681-3685.
[132]
Shorter, E. Benzodiazepines: A Historical Dictionary of Psychiatry; Oxford University Press, 2005, p. 41.
[133]
Sternbach, L.H. The benzodiazepine story. J. Med. Chem., 1979, 22, 1-7.
[134]
DeWitt, S.H.; Kiely, J.S.; Stankovic, C.J.; Schroeder, M.C.; Cody, D.M.R.; Pavia, M.R. “Diversomers”: An approach to nonpeptide, nonoligomeric chemical diversity. Proc. Natl. Acad. Sci. USA, 1993, 90, 6909-6913.
[135]
Kremen, F.; Gazvoda, M.; Kafka, S.; Proisl, K.; Srholcová, A.; Klásek, A.; Urankar, D.; Košmrlj, J. J. Org. Chem., 2017, 82, 715-722.
[136]
Mayer, J.P.; Zhang, J.; Bjergarde, K.; Lenz, D.M.; Gaudino, J.J. Solid phase synthesis of 1,4-Benzodiazepine-2,5-diones. Tetrahedron Lett., 1996, 37, 8081-8084.
[137]
Park, K.H.; Olmstead, M.M.; Kurth, M.J. Diastereoselective solid phase synthesis of novel hydantoin and isoxazoline-containing heterocycles. J. Org. Chem., 1998, 63, 6579-6585.
[138]
Velter, I.; Ferla, B.L.; Nicotra, F. Carbohydrate based molecular scaffolding. J. Carbohydr. Chem., 2006, 25, 97-138.
[139]
Duffy, R.A.; Morgan, C.; Naylor, R.; Higgins, G.A.; Varty, G.B.; Lachowicz, J.E.; Parker, E.M. Rolapitant (SCH 619734): A potent, selective and orally active neurokinin NK1 receptor antagonist with centrally-mediated antiemetic effects in ferrets. Pharmacol. Biochem. Behav., 2012, 102, 95-100.
[140]
Lewis, J.G.; Bartlett, P.A. Amino acid-derived heterocycles as combinatorial library targets: Bicyclic aminal lactones. J. Comb. Chem., 2003, 5, 278-284.
[141]
Li, Y.; Giulianotti, M.; Houghten, R.A. High throughput synthesis of 2,3,6-trisubstituted-5,6-dihydroimidazo[2,1-b] thiazole derivatives. Tetrahedron Lett., 2011, 52, 696-698.
[142]
Grover, R.K.; Kesarwani, A.P.; Srivastava, G.K.; Kundu, B.; Roy, R. Base catalyzed intramolecular transamidation of2-aminoquinazoline derivatives on solid phase. Tetrahedron, 2005, 61, 5011-5018.
[143]
Kesarwani, A.P.; Grover, R.K.; Kundu, B. Solid phase synthesis of imidazoquinazolinone derivatives withthree-point diversity. Tetrahedron, 2005, 61, 629-635.
[144]
Pérez, R.; Beryozkina, T.; Zbruyev, O.I.; Haas, W.; Kappe, C.O. Traceless Solid phase synthesis of bicyclic dihydropyrimidones using multidirectional cyclization cleavage. J. Comb. Chem., 2002, 4, 501-510.
[145]
Myers, A.G.; Lanman, B.A. A solid-supported, enantioselective synthesis suitable for the rapid preparation of large numbers of diverse structural analogues of (-)-saframycin. J. Am. Chem. Soc., 2002, 124, 12969-12971.
[146]
Vézina, C.; Kudelski, A.; Sehgal, S.N. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot., 1975, 28, 721-726.
[147]
Höfle, G.; Bedorf, N.; Steinmetz, H.; Schomburg, D.; Gerth, K.; Reichenbach, H. Epothilone A and B-Novel 16‐Membered macrolides with cytotoxic activity: Isolation, crystal structure, and conformation in solution. Angew. Chem. Int. Ed. Engl., 1996, 35, 1567-1569.
[148]
McGuire, J.M.; Bunch, R.L.; Anderson, R.C.; Boaz, H.E.; Flynn, E.H.; Powell, H.M.; Smith, J.W. Ilotycin, a new antibiotic. Antibiot. Chemother., 1952, 2, 281-283.
[149]
Nicolaou, K.C.; Daines, R.A.; Chakraborty, T.K.; Ogawa, Y. Total synthesis of amphotericin B. J. Am. Chem. Soc., 1987, 109, 2821-2822.
[150]
Wessjohann, L.A.; Ruijter, E. Strategies for total and diversity-oriented synthesis of natural product (-like) macrocycles. Top. Curr. Chem., 2005, 243, 137-184.
[151]
Goodin, S.; Kane, M.P.; Rubin, E.H. Epothilones: Mechanism of action and biologic activity. J. Clin. Oncol., 2004, 22, 2015-2205.
[152]
Regueiro-Ren, A.; Borzilleri, R.M.; Zheng, X.; Kim, S.H.; Johnson, J.A.; Fairchild, C.R.; Lee, F.Y.F.; Long, B.H.; Vite, G.D. Synthesis and biological activity of novel epothilone aziridines. Org. Lett., 2001, 3, 2693-2696.
[153]
Nicolaou, K.C.; Winssinger, N.; Pastor, J.; Ninkovic, S.; Sarabia, F.; He, Y.; Vourloumis, D.; Yang, Z.; Li, T.; Giannakakou, P.; Hamel, E. Synthesis of epothilones A and B in solid and solution phase. Nature, 1997, 387, 268-272.
[154]
Dowd, P.; Choi, S.C. Homologation of large ringd. Tetrahedron, 1992, 48, 4773-4792.
[155]
Takahashi, T.; Machida, K.; Kido, Y.; Nagashima, K.; Ebata, S.; Doi, T. Hydroformylation of ω-fnctionalized 1,1-disubstituted alkenes and its use toward the synthesis of (±) muscone. Chem. Lett., 1997, 26, 1291-1992.
[156]
Krishnaswamy, N.R.; Sundaresan, C.N. Fascinating organic molecules from nature (series) 6. Sweet stimulants of the olfactory nerves - Muscone, civetone and related compounds; Resonance, 2013, pp. 673-683.
[157]
Lin, D.L.; Chang, H.C.; Huang, S.H. Characterization of alegedly musk-containing medicinal products in Taiwan. J. Forensic Sci., 2004, 49, 1187-1193.
[158]
Nicolaou, K.C.; Pastor, J.; Winssinger, N.; Murphy, F. Solid phase synthesis of macrocycles by an intramolecular ketophosphonate reaction. synthesis of a (dl)-muscone library. J. Am. Chem. Soc., 1998, 120, 5132-5133.
[159]
Matthew, A.J.D.; Pattenden, G. The intramolecular Stille reaction. J. Chem. Soc., Perkin Trans., 1999, 1, 1235-1246.
[160]
Nicolaou, K.C.; Winssinger, N.; Pastor, J.; Murphy, F. Solid phase synthesis of macrocyclic systems by a cyclorelease strategy: Application of the stille coupling to a synthesis of (S)-Zearalenone. Angew. Chem. Int. Ed., 1998, 37, 2534-2537.
[161]
Marsault, E.; Hoveyda, H.R.; Peterson, M.L.; Saint-Louis, C.; Landry, A.; Ve’zina, M.; Ouellet, L.; Wang, Z.; Ramaseshan, M.; Beaubien, S.; Benakli, K.; Beauchemin, S.; De’ziel, R.; Peeters, T.; Fraser, G.L. Discovery of a new class of macrocyclic antagonists to the human motilin receptor. J. Med. Chem., 2006, 49, 7190-7197.