Punicic Acid Inhibits Glioblastoma Migration and Proliferation via the PI3K/AKT1/mTOR Signaling Pathway

Page: [1120 - 1131] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Punicic Acid (PA) is a polyunsaturated fatty acid that accounts for approximately 70%- 80% of Pomegranate Seed Oil (PSO). PA possesses strong antioxidant, anti-inflammatory, anti-atherogenic effects, and anti-tumorigenic properties. Pomegranate extracts have been shown to have anticancer activity in many studies. However, there is no evidence for the effect of PSO on T98 glioblastoma cells. Therefore, the present study was the first to investigate the mechanisms induced by PA on T98 cells, which is one of the major compounds extracted from PSO.

Methods: The effects of PA on cell viability; oxidative stress; and migration, proliferation, and apoptosis at the IC50 dose were studied.

Results: The proliferation and migration were inhibited in the treated group compared to the non-treated group by 9.85µl/ml PA. The difference was statistically significant (***p<0.001). Furthermore, PA-induced apoptosis in the T98 glioblastoma cells compared to non-treated group and the difference was statistically significant (***p<0.001). Apoptosis was determined via immunocytochemistry staining of caspase-3, caspase-9 and TUNEL methods. Apoptosis was checked by flow cytometry (using caspase 3 methods) and Scanning Electron Microscopy Analysis. We also investigated the potential signaling pathway underlying this apoptotic effect. The immunocytochemical stainings of PI3K/ Akt-1/ mTOR-1 demonstrated that Akt-1 staining was increased with PA treatment similar to mTOR-1 and PI3K staining (***p<0.001). These increases were statistically significant compared to the non-treated group.

Conclusion: PA exhibited exceptional abilities as an anticancer agent against GBM cells. The use of punicic acid in combination with other drugs used in the treatment of glioblastoma may increase the efficacy of the treatment. This study provided a basis for future investigation of its use in preclinical and clinical studies.

Keywords: Punicic acid, glioblastoma, PI3K/AKT1/mTOR, signaling pathway, glioblastoma multiforme, tumor infiltration, apoptosis.

Graphical Abstract

[1]
Cai, X.; Sughrue, M.E. Glioblastoma: New therapeutic strategies to address cellular and genomic complexity. Oncotarget, 2017, 9(10), 9540-9554.
[2]
Reitman, Z.J.; Winkler, F.; Elia, A.E.H. New directions in the treatment of glioblastoma. Semin. Neurol., 2018, 38(1), 50-61.
[3]
Tanrikulu, B.; Ziyal, İ.; Bayri, Y. In vitro effects of mesenchymal stem cells and various agents on apoptosis of glioblastoma cells. Turk Neurosurg., 2019, 29(1), 26-32.
[4]
Zeng, A.; Yin, J.; Li, Y.; Li, R.; Wang, Z.; Zhou, X.; Jin, X.; Shen, F.; Yan, W.; You, Y. miR-129-5p targets Wnt5a to block PKC/ERK/NF-κB and JNK pathways in glioblastoma. Cell Death Dis., 2018, 9(3), 394.
[5]
Yilmaz, B.; Usta, C.; Taşatargil, A.; Ozdemir, S. Punicic acid induces endothelium-dependent vasorelaxation in rat thoracic aortic rings. Akd. Med. J., 2015, 1, 43-49.
[6]
Coursodon-Boyiddle, C.F.; Snarrenberg, C.L.; Adkins-Rieck, C.K.; Bassaganya-Riera, J.; Hontecillas, R.; Lawrence, P.; Brenna, J.T.; Jouni, Z.E.; Dvorak, B. Pomegranate seed oil reduces intestinal damage in a rat model of necrotizing enterocolitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 303(6), G744-G751.
[7]
Wang, L.; Martins-Green, M. Pomegranate and its components as alternative treatment for prostate cancer. Int. J. Mol. Sci., 2014, 15(9), 14949-14966.
[8]
Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Holcroft, D.M.; Kader, A.A. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agric. Food Chem., 2000, 48(10), 4581-4589.
[9]
Grossmann, M.E.; Mizuno, N.K.; Schuster, T.; Cleary, M.P. Punicic acid is an omega-5 fatty acid capable of inhibiting breast cancer proliferation. Int. J. Oncol., 2010, 36(2), 421-426.
[10]
Lansky, E.P.; Newman, R.A. Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J. Ethnopharmacol., 2007, 109, 177-206.
[11]
Aruna, P.; Venkataramanamma, D.; Singh, A.K.; Singh, R. Health benefits of punicic acid: A review. Compr. Rev. Food Sci. Food Saf., 2016, 15, 16-27.
[12]
de Melo, I.L.P. de Oliveira e Silva, A.M.; de Carvalho, E.B.; Yoshime, L.T.; Jag, S.; Mancini-Filho, J. Incorporation and effects of punicic acid on muscle and adipose tissues of rats. Lipids Health Dis., 2016, 15, 40.
[13]
Shabbir, M.A.; Khan, M.R.; Saeed, M.; Pasha, I.; Khalil, A.A.; Siraj, N. Punicic acid: A striking health substance to combat metabolic syndromes in humans. Lipids Health Dis., 2017, 16(1), 99.
[14]
Deliloglu-Gurhan, I.; Tuglu, I.; Vatansever, H.S.; Ozdal-Kurt, F.; Ekren, H.; Taylan, M.; Sen, B.H. The effect of osteogenic medium on the adhesion of rat bone marrow stromal cell to the hydroxyapatite. Saudi Med. J., 2006, 27(3), 305-311.
[15]
Hsieh, C.F.; Yan, Z.; Schumann, R.G.; Milz, S.; Pfeifer, C.G.; Schieker, M.; Docheva, D. In vitro comparison of 2D-cell culture and 3D-cell sheets of scleraxis-programmed bone marrow derived mesenchymal stem cells to primary tendon stem/progenitor cells for tendon repair. Int. J. Mol. Sci., 2018, 19(8)pii: E2272
[16]
Vehof, J.W.; de Ruijter, A.E.; Spauwen, P.H.; Jansen, J.A. Influence of rhBMP-2 on rat bone marrow stromal cells cultured on titanium fiber mesh. Tissue Eng., 2001, 7(4), 373-383.
[17]
Özdal-Kurt, F.; Şen, B.H.; Tuğlu, I.; Vatansever, S.; Türk, B.T.; Deliloğlu-Gürhan, I. Attachment and growth of dental pulp stem cells on dentin in presence of 18- extra calcium. Arch. Oral Biol., 2016, 68, 131-141.
[18]
Mete, M.; Aydemir, I.; Ünsal, Ü.Ü.; Duransoy, Y.K.; Tuğlu, M.İ.; Selçuki, M. Neuroprotective effects of bone marrow-derived mesenchymal stem cells and 19- conditioned medium in mechanically injured neuroblastoma cells. Turk. J. Med. Sci., 2016, 46, 1900-1907.
[19]
Kurt, O.; Ozdal-Kurt, F.; Tuğlu, M.I.; Akçora, C.M. The cytotoxic, neurotoxic, apoptotic and antiproliferative activities of extracts of some marine algae on the 20- MCF-7 cell line. Biotech. Histochem., 2014, 89(8), 568-576.
[20]
Duan, X.; Chen, J.; Wu, Y.; Wu, S.; Shao, D.; Kong, J. Drug self-delivery systems based on hyperbranched polyprodrugs towards tumor therapy. Chem. Asian J., 2018, 13(8), 939-943.
[21]
Li, Q.T.; Cui, S.; Jing, G.; Ding, H.; Xia, Z.; He, X. The role of PI3K/Akt signal pathway in the protective effects of propofol on intestinal and lung injury induced by intestinal ischemia/ reperfusion1. Acta Cir. Bras., 2019, 34(1)e20190010000005
[22]
Hug, H.; Los, M.; Hirt, W.; Debatin, K.M. Rhodamine 110-linked amino acids and peptides as substrates to measure caspase activity upon apoptosis induction in intact cells. Biochemistry, 1999, 38(42), 13906-13911.
[23]
Ergin, K.; Aktaş, S.; Altun, Z.; Dınız, G.; Olgun, N. MicroRNA profiles in neuroblastoma: Differences in risk and histology groups. Asia Pac. J. Clin. Oncol., 2018, 14(5), e374-e379.
[24]
Pourheydar, B.; Soleimani Asl, S.; Azimzadeh, M.; Rezaei Moghadam, A.; Marzban, A.; Mehdizadeh, M. Neuroprotective effects of bone marrow mesenchymal stem cells on bilateral common carotid arteries occlusion model of cerebral ischemia in rat. Behav. Neurol., 2016, 20162964712
[25]
Liu, H.; Zeng, Z.; Wang, S.; Li, T.; Mastriani, E.; Li, Q.H.; Bao, H.X.; Zhou, Y.J.; Wang, X.; Liu, Y.; Liu, W.; Hu, S.; Gao, S.; Yu, M.; Qi, Y.; Shen, Z.; Wang, H.; Gao, T.; Dong, L.; Johnston, R.N.; Liu, S.L. Main components of pomegranate, ellagic acid and luteolin, inhibit metastasis of ovarian cancer by down-regulating MMP2 and MMP9. Cancer Biol. Ther., 2017, 18(12), 990-999.
[26]
Melo, I.L.M. Evaluation of the effects of pomegranate seed oil (Punica granatum L.) on tissue lipid profile and its influence on biochemical parameters in oxidative processes of rats. PhD Theis, Sao Paulo University: Sao Paulo, Brazil. , 2012.
[27]
Gasmi, J.; Sanderson, J.T. Growth inhibitory, antiandrogenic, and pro-apoptotic effects of punicic acid in LNCaP human prostate cancer cells. J. Agric. Food Chem., 2010, 58(23), 12149-12156.
[28]
Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 2008, 455(7216), 1061-1068.
[29]
Recio Despaigne, A.A.; Da Silva, J.G.; da Costa, P.R.; Dos Santos, R.G.; Beraldo, H. ROS-mediated cytotoxic effect of copper(II) hydrazone complexes against human glioblastoma cells. Molecules, 2014, 19(11), 17202-17220.
[30]
Chen, S.M.; Chen, H.C.; Chen, S.J.; Huang, C.Y.; Chen, P.Y.; Wu, T.W.; Feng, L.Y.; Tsai, H.C.; Lui, T.N.; Hsueh, C.; Wei, K.C. MicroRNA-495 inhibits proliferation of glioblastoma multiforme cells by downregulating cyclin-dependent kinase 6. World J. Surg. Oncol., 2013, 11, 87.
[31]
Feng, J.; Yan, P.F.; Zhao, H.Y.; Zhang, F.C.; Zhao, W.H.; Feng, M. Inhibitor of nicotinamide phosphoribosyltransferase sensitizes glioblastoma cells to temozolomide via activating ROS/JNK signaling pathway. BioMed Res. Int., 2016, 20161450843
[32]
Kannan, K.; Jain, S.K. Oxidative stress and apoptosis. Pathophysiology, 2000, 7(3), 153-163.
[33]
Chinje, E.C.; Stratford, I.J. Role of nitric oxide in growth of solid tumours: A balancing act. Essays Biochem., 1997, 32, 61-72.
[34]
Carpenter, A.W.; Schoenfisch, M.H. Nitric oxide release: Part II. Therapeut. Appl. Chem. Soc. Rev., 2012, 41, 3742-3752.
[35]
Vannini, F.; Kashfia, K.; Nath, N. The dual role of iNOS in cancer. Redox Biol., 2015, 6, 334-343.
[36]
Emsen, B.; Aslan, A.; Turkez, H.; Joughi, A.; Kaya, A. The anti-cancer efficacies of diffractaic, lobaric, and usnic acid: In vitro inhibition of glioblastoma. J. Cancer Res. Ther., 2018, 14(5), 941-951.
[37]
Turkez, H.; Tozlu, O.O.; Lima, T.C.; de Brito, A.E.M.; de Sousa, D.P. A comparative evaluation of the cytotoxic and antioxidant activity of mentha crispa essential oil, its major constituent rotundifolone, and analogues on human glioblastoma. Oxid. Med. Cell. Longev., 2018, 20182083923
[38]
Wang, J.; Li, M.; Cui, X.; Lv, D.; Jin, L.; Khan, M.; Ma, T. Brevilin A promotes oxidative stress and induces mitochondrial apoptosis in U87 glioblastoma cells. OncoTargets Ther., 2018, 11, 7031-7040.
[39]
Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. Oncology, 2005, 69(Suppl. 3), 4-10.
[40]
García-Aranda, M.; Pérez-Ruiz, E.; Redondo, M. Bcl-2 Inhibition to overcome resistance to chemo- and immunotherapy. Int. J. Mol. Sci., 2018, 19(12) pii: E3950
[41]
Pfeffer, C.M.; Singh, A.T.K. Apoptosis: A target for anticancer therapy. Int. J. Mol. Sci., 2018, 19(2) pii: E448
[42]
Liu, F.; Xu, K.; Yang, H.; Li, Y.; Liu, J.; Wang, J.; Guan, Z. A novel approach to glioblastoma therapy using an oncolytic adenovirus with two specific promoters. Oncol. Lett., 2018, 15(3), 3362-3368.
[43]
Lin, T.; Wang, M.; Liang, H.S.; Liu, E.Z. The expression of p53, MGMT and EGFR in brain glioblastoma and clinical significance. J. Biol. Regul. Homeost. Agents, 2015, 29(1), 143-149.
[44]
Massagué, J. TGF beta in Cancer. Cell, 2008, 134(2), 215-230.
[45]
Li, X.; Wu, C.; Chen, N.; Gu, H.; Yen, A.; Cao, L.; Wang, E.; Wang, L. PI3K/Akt-1/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget, 2016, 7(22), 33440-33450.
[46]
van de Stolpe, A. Quantitative measurement of functional activity of the PI3K signaling pathway in cancer. Cancers (Basel), 2019, 11(3)pii: E293
[47]
Chakravarti, A.; Zhai, G.; Suzuki, Y.; Sarkesh, S.; Black, P.M.; Muzikansky, A.; Loeffler, J.S. The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human glioblastomas. J. Clin. Oncol., 2004, 22, 1926-1933.