Human Amylin: From Pathology to Physiology and Pharmacology

Page: [944 - 957] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

The histopathological hallmark of type 2 diabetes is islet amyloid implicated in the developing treatment options. The major component of human islet amyloid is 37 amino acid peptide known as amylin or islet amyloid polypeptide (IAPP). Amylin is an important hormone that is co-localized, copackaged, and co-secreted with insulin from islet β cells. Physiologically, amylin regulates glucose homeostasis by inhibiting insulin and glucagon secretion. Furthermore, amylin modulates satiety and inhibits gastric emptying via the central nervous system. Normally, human IAPP is soluble and natively unfolded in its monomeric state. Pathologically, human IAPP has a propensity to form oligomers and aggregate. The oligomers show misfolded α-helix conformation and can further convert themselves to β-sheet-rich fibrils as amyloid deposits. The pathological findings and physiological functions of amylin have led to the introduction of pramlintide, an amylin analog, for the treatment of diabetes. The history of amylin’s discovery is a representative example of how a pathological finding can translate into physiological exploration and lead to pharmacological intervention. Understanding the importance of transitioning from pathology to physiology and pharmacology can provide novel insight into diabetes mellitus and Alzheimer's disease.

Keywords: Amyloid polypeptide (IAPP), pramlintide, insulinoma amyloid peptide, human amylin, pathology, pharmacology.

Graphical Abstract

[1]
Alpert, J.S. An amazing story: The discovery of insulin. Am. J. Med., 2016, 129, 231-232.
[2]
Wallia, A.; Molitch, M.E. Insulin therapy for type 2 diabetes mellitus. JAMA, 2014, 311, 2315-2325.
[3]
Westermark, P.; Andersson, A.; Westermark, G.T. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol. Rev., 2011, 91, 795-826.
[4]
Ferrannini, E. Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: Problems and prospects. Endocr. Rev., 1998, 19, 477-490.
[5]
Hoppener, J.W.; Ahren, B.; Lips, C.J. Islet amyloid and type 2 diabetes mellitus. N. Engl. J. Med., 2000, 343, 411-419.
[6]
Kahn, S.E.; Andrikopoulos, S.; Verchere, C.B. Islet amyloid: A long-recognized but underappreciated pathological feature of type 2 diabetes. Diabetes, 1999, 48, 241-253.
[7]
Opie, E.L. On the relation of chronic interstitial pancreatitis to the islands of Langerhans and to diabetes melutus. J. Exp. Med., 1901, 5, 397-428.
[8]
Westermark, P.; Wernstedt, C.; Wilander, E.; Sletten, K. A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas. Biochem. Biophys. Res. Commun., 1986, 140, 827-831.
[9]
Clark, A.; Cooper, G.J.; Lewis, C.E.; Morris, J.F.; Willis, A.C.; Reid, K.B.; Turner, R.C. Islet amyloid formed from diabetes-associated peptide may be pathogenic in type-2 diabetes. Lancet, 1987, 2, 231-234.
[10]
Westermark, P.; Wernstedt, C.; O’Brien, T.D.; Hayden, D.W.; Johnson, K.H. Islet amyloid in type 2 human diabetes mellitus and adult diabetic cats contains a novel putative polypeptide hormone. Am. J. Pathol., 1987, 127, 414-417.
[11]
Westermark, P.; Wernstedt, C.; Wilander, E.; Hayden, D.W.; O’Brien, T.D.; Johnson, K.H. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc. Natl. Acad. Sci. USA, 1987, 84, 3881-3885.
[12]
Cooper, G.J.; Leighton, B.; Dimitriadis, G.D.; Parry-Billings, M.; Kowalchuk, J.M.; Howland, K.; Rothbard, J.B.; Willis, A.C.; Reid, K.B. Amylin found in amyloid deposits in human type 2 diabetes mellitus may be a hormone that regulates glycogen metabolism in skeletal muscle. Proc. Natl. Acad. Sci. USA, 1988, 85, 7763-7766.
[13]
Pearse, A.G.; Ewen, S.W.; Polak, J.M. The genesis of apudamyloid in endocrine polypeptide tumours: histochemical distinction from immunamyloid. Virchows Arch. B Cell Pathol., 1972, 10, 93-107.
[14]
Westermark, P. Quantitative studies on amyloid in the islets of Langerhans. Ups. J. Med. Sci., 1972, 77, 91-94.
[15]
Bell, E.T. Hyalinization of the islets of Langerhans in nondiabetic individuals. Am. J. Pathol., 1959, 35, 801-805.
[16]
Bell, E.T. Hyalinization of the islet of Langerhans in diabetes mellitus. Diabetes, 1952, 1, 341-344.
[17]
Ehrlich, J.C.; Ratner, I.M. Amyloidosis of the islets of Langerhans. A restudy of islet hyalin in diabetic and non-diabetic individuals. Am. J. Pathol., 1961, 38, 49-59.
[18]
Cohen, A.S.; Calkins, E. Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature, 1959, 183, 1202-1203.
[19]
Glenner, G.G.; Terry, W.; Harada, M.; Isersky, C.; Page, D. Amyloid fibril proteins: Proof of homology with immunoglobulin light chains by sequence analyses. Science, 1971, 172, 1150-1151.
[20]
Benditt, E.P.; Eriksen, N.; Hermodson, M.A.; Ericsson, L.H. The major proteins of human and monkey amyloid substance: Common properties including unusual N-terminal amino acid sequences. FEBS Lett., 1971, 19, 169-173.
[21]
Sanke, T.; Bell, G.I.; Sample, C.; Rubenstein, A.H.; Steiner, D.F. An islet amyloid peptide is derived from an 89-amino acid precursor by proteolytic processing. J. Biol. Chem., 1988, 263, 17243-17246.
[22]
Nishi, M.; Chan, S.J.; Nagamatsu, S.; Bell, G.I.; Steiner, D.F. Conservation of the sequence of islet amyloid polypeptide in five mammals is consistent with its putative role as an islet hormone. Proc. Natl. Acad. Sci. USA, 1989, 86, 5738-5742.
[23]
Mosselman, S.; Hoppener, J.W.; Lips, C.J.; Jansz, H.S. The complete islet amyloid polypeptide precursor is encoded by two exons. FEBS Lett., 1989, 247, 154-158.
[24]
Zhao, H.L.; Lai, F.M.; Tong, P.C.; Zhong, D.R.; Yang, D.; Tomlinson, B.; Chan, J.C. Prevalence and clinicopathological characteristics of islet amyloid in chinese patients with type 2 diabetes. Diabetes, 2003, 52, 2759-2766.
[25]
Rocken, C.; Linke, R.P.; Saeger, W. Immunohistology of islet amyloid polypeptide in diabetes mellitus: Semi-quantitative studies in a post-mortem series. Virchows Arch. A Pathol. Anat. Histopathol., 1992, 421, 339-344.
[26]
Maclean, N.; Ogilvie, R.F. Quantitative estimation of the pancreatic islet tissue in diabetic subjects. Diabetes, 1955, 4, 367-376.
[27]
Butler, A.E.; Janson, J.; Bonner-Weir, S.; Ritzel, R.; Rizza, R.A.; Butler, P.C. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes, 2003, 52, 102-110.
[28]
Sempoux, C.; Guiot, Y.; Dubois, D.; Moulin, P.; Rahier, J. Human type 2 diabetes: morphological evidence for abnormal beta-cell function. Diabetes, 2001, 50(Suppl. 1), S172-S177.
[29]
Ohsawa, H.; Kanatsuka, A.; Mizuno, Y.; Tokuyama, Y.; Takada, K.; Mikata, A.; Makino, H.; Yoshida, S. Islet amyloid polypeptide-derived amyloid deposition increases along with the duration of type 2 diabetes mellitus. Diabetes Res. Clin. Pract., 1992, 15, 17-21.
[30]
Clark, A.; Wells, C.A.; Buley, I.D.; Cruickshank, J.K.; Vanhegan, R.I.; Matthews, D.R.; Cooper, G.J.; Holman, R.R.; Turner, R.C. Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res., 1988, 9, 151-159.
[31]
Vishwanathan, K.A.; Bazaz-Malik, G.; Dandekar, J.; Vaishnava, H. A qualitative and quantitative histological study of the islets of Langerhans in diabetes mellitus. Indian J. Med. Sci., 1972, 26, 807-812.
[32]
Westermark, P.; Grimelius, L. The pancreatic islet cells in insular amyloidosis in human diabetic and non-diabetic adults. Acta Pathol. Microbiol. Scand. A, 1973, 81, 291-300.
[33]
Maloy, A.L.; Longnecker, D.S.; Greenberg, E.R. The relation of islet amyloid to the clinical type of diabetes. Hum. Pathol., 1981, 12, 917-922.
[34]
Zhao, H.L.; Sui, Y.; Guan, J.; He, L.; Lai, F.M.; Zhong, D.R.; Yang, D.; Baum, L.; Tong, P.C.; Tomlinson, B.; Chan, J.C. Higher islet amyloid load in men than in women with type 2 diabetes mellitus. Pancreas, 2008, 37, e68-e73.
[35]
Johnson, K.H.; Wernstedt, C.; O’Brien, T.D.; Westermark, P. Amyloid in the pancreatic islets of the cougar (Felis concolor) is derived from islet amyloid polypeptide (IAPP). Comp. Biochem. Physiol. B, 1991, 98, 115-119.
[36]
Martinez-Alvarez, R.M.; Volkoff, H.; Cueto, J.A.; Delgado, M.J. Molecular characterization of calcitonin gene-related peptide (CGRP) related peptides (CGRP, amylin, adrenomedullin and adrenomedullin-2/intermedin) in goldfish (Carassius auratus): Cloning and distribution. Peptides, 2008, 29, 1534-1543.
[37]
Miyazato, M.; Nakazato, M.; Shiomi, K.; Aburaya, J.; Kangawa, K.; Matsuo, H.; Matsukura, S. Molecular forms of islet amyloid polypeptide (IAPP/amylin) in four mammals. Diabetes Res. Clin. Pract., 1992, 15, 31-36.
[38]
Johnson, K.H.; O’Brien, T.D.; Betsholtz, C.; Westermark, P. Islet amyloid, islet-amyloid polypeptide, and diabetes mellitus. N. Engl. J. Med., 1989, 321, 513-518.
[39]
de Koning, E.J.; Bodkin, N.L.; Hansen, B.C.; Clark, A. Diabetes mellitus in Macaca mulatta monkeys is characterised by islet amyloidosis and reduction in beta-cell population. Diabetologia, 1993, 36, 378-384.
[40]
Betsholtz, C.; Christmanson, L.; Engstrom, U.; Rorsman, F.; Jordan, K.; O’Brien, T.D.; Murtaugh, M.; Johnson, K.H.; Westermark, P. Structure of cat islet amyloid polypeptide and identification of amino acid residues of potential significance for islet amyloid formation. Diabetes, 1990, 39, 118-122.
[41]
O’Brien, T.D.; Hayden, D.W.; Johnson, K.H.; Stevens, J.B. High dose intravenous glucose tolerance test and serum insulin and glucagon levels in diabetic and non-diabetic cats: Relationships to insular amyloidosis. Vet. Pathol., 1985, 22, 250-261.
[42]
Jakob, W. Studies on amyloidosis in carnivora with special reference to age-dependent amyloidosis. Zentralbl. Veterinarmed. A, 1970, 17, 818-829.
[43]
Westermark, P.; Johnson, K.H.; O’Brien, T.D.; Betsholtz, C. Islet amyloid polypeptide--a novel controversy in diabetes research. Diabetologia, 1992, 35, 297-303.
[44]
Westermark, P.; Eizirik, D.L.; Pipeleers, D.G.; Hellerstrom, C.; Andersson, A. Rapid deposition of amyloid in human islets transplanted into nude mice. Diabetologia, 1995, 38, 543-549.
[45]
Westermark, G.; Westermark, P.; Eizirik, D.L.; Hellerstrom, C.; Fox, N.; Steiner, D.F.; Andersson, A. Differences in amyloid deposition in islets of transgenic mice expressing human islet amyloid polypeptide versus human islets implanted into nude mice. Metabolism, 1999, 48, 448-454.
[46]
Westermark, P.; Engstrom, U.; Johnson, K.H.; Westermark, G.T.; Betsholtz, C. Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. Proc. Natl. Acad. Sci. USA, 1990, 87, 5036-5040.
[47]
Lukinius, A.; Wilander, E.; Westermark, G.T.; Engstrom, U.; Westermark, P. Co-localization of islet amyloid polypeptide and insulin in the B cell secretory granules of the human pancreatic islets. Diabetologia, 1989, 32, 240-244.
[48]
Hartter, E.; Svoboda, T.; Ludvik, B.; Schuller, M.; Lell, B.; Kuenburg, E.; Brunnbauer, M.; Woloszczuk, W.; Prager, R. Basal and stimulated plasma levels of pancreatic amylin indicate its co-secretion with insulin in humans. Diabetologia, 1991, 34, 52-54.
[49]
Cooper, G.J.; Willis, A.C.; Clark, A.; Turner, R.C.; Sim, R.B.; Reid, K.B. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc. Natl. Acad. Sci. USA, 1987, 84, 8628-8632.
[50]
De Vroede, M.; Foriers, A.; Van de Winkel, M.; Madsen, O.; Pipeleers, D. Presence of islet amyloid polypeptide in rat islet B and D cells determines parallelism and dissociation between rat pancreatic islet amyloid polypeptide and insulin content. Biochem. Biophys. Res. Commun., 1992, 182, 886-893.
[51]
Ahren, B.; Sundler, F. Localization of calcitonin gene-related peptide and islet amyloid polypeptide in the rat and mouse pancreas. Cell Tissue Res., 1992, 269, 315-322.
[52]
Mulder, H.; Lindh, A.C.; Sundler, F. Islet amyloid polypeptide gene expression in the endocrine pancreas of the rat: A combined in situ hybridization and immunocytochemical study. Cell Tissue Res., 1993, 274, 467-474.
[53]
Asai, J.; Nakazato, M.; Miyazato, M.; Kangawa, K.; Matsuo, H.; Matsukura, S. Regional distribution and molecular forms of rat islet amyloid polypeptide. Biochem. Biophys. Res. Commun., 1990, 169, 788-795.
[54]
Miyazato, M.; Nakazato, M.; Shiomi, K.; Aburaya, J.; Toshimori, H.; Kangawa, K.; Matsuo, H.; Matsukura, S. Identification and characterization of islet amyloid polypeptide in mammalian gastrointestinal tract. Biochem. Biophys. Res. Commun., 1991, 181, 293-300.
[55]
Mulder, H.; Lindh, A.C.; Ekblad, E.; Westermark, P.; Sundler, F. Islet amyloid polypeptide is expressed in endocrine cells of the gastric mucosa in the rat and mouse. Gastroenterology, 1994, 107, 712-719.
[56]
Toshimori, H.; Narita, R.; Nakazato, M.; Asai, J.; Mitsukawa, T.; Kangawa, K.; Matsuo, H.; Matsukura, S. Islet amyloid polypeptide (IAPP) in the gastrointestinal tract and pancreas of man and rat. Cell Tissue Res., 1990, 262, 401-406.
[57]
Macdonald, I.A. Amylin and the gastrointestinal tract. Diabet. Med., 1997, 14(Suppl. 2), S24-S28.
[58]
D’Este, L.; Wimalawansa, S.J.; Renda, T.G. Amylin-immunoreactivity is co-stored in a serotonin cell subpopulation of the vertebrate stomach and duodenum. Arch. Histol. Cytol., 1995, 58, 537-547.
[59]
Mulder, H.; Leckstrom, A.; Uddman, R.; Ekblad, E.; Westermark, P.; Sundler, F. Islet amyloid polypeptide (amylin) is expressed in sensory neurons. J. Neurosci., 1995, 15, 7625-7632.
[60]
Skofitsch, G.; Wimalawansa, S.J.; Jacobowitz, D.M.; Gubisch, W. Comparative immunohistochemical distribution of amylin-like and calcitonin gene related peptide like immunoreactivity in the rat central nervous system. Can. J. Physiol. Pharmacol., 1995, 73, 945-956.
[61]
Gilbey, S.G.; Ghatei, M.A.; Bretherton-Watt, D.; Zaidi, M.; Jones, P.M.; Perera, T.; Beacham, J.; Girgis, S.; Bloom, S.R. Islet amyloid polypeptide: Production by an osteoblast cell line and possible role as a paracrine regulator of osteoclast function in man. Clin. Sci. (Lond.), 1991, 81, 803-808.
[62]
Kalaitzoglou, E.; Fowlkes, J.L.; Popescu, I.; Thrailkill, K.M. Diabetes pharmacotherapy and effects on the musculoskeletal system. Diabetes Metab. Res. Rev., 2018, 35(2), e3100.
[63]
Kowalczyk, R.; Brimble, M.A.; Callon, K.E.; Watson, M.; Cornish, J. How to blast osteoblasts? Novel dicarba analogues of amylin-(1-8) to treat osteoporosis. Bioorg. Med. Chem., 2012, 20, 6011-6018.
[64]
Kowalczyk, R.; Harris, P.W.; Brimble, M.A.; Callon, K.E.; Watson, M.; Cornish, J. Synthesis and evaluation of disulfide bond mimetics of amylin-(1-8) as agents to treat osteoporosis. Bioorg. Med. Chem., 2012, 20, 2661-2668.
[65]
Ellegaard, M.; Thorkildsen, C.; Petersen, S.; Petersen, J.S.; Jorgensen, N.R.; Just, R.; Schwarz, P.; Ramirez, M.T.; Stahlhut, M. Amylin(1-8) is devoid of anabolic activity in bone. Calcif. Tissue Int., 2010, 86, 249-260.
[66]
Bronsky, J.; Prusa, R.; Nevoral, J. The role of amylin and related peptides in osteoporosis. Clin. Chim. Acta, 2006, 373, 9-16.
[67]
Bronsky, J.; Prusa, R. Amylin fasting plasma levels are decreased in patients with osteoporosis. Osteoporos. Int., 2004, 15, 243-247.
[68]
Cornish, J.; Naot, D. Amylin and adrenomedullin: Novel regulators of bone growth. Curr. Pharm. Des., 2002, 8, 2009-2021.
[69]
Wimalawansa, S.J. Amylin, calcitonin gene-related peptide, calcitonin, and adrenomedullin: A peptide superfamily. Crit. Rev. Neurobiol., 1997, 11, 167-239.
[70]
Percy, A.J.; Trainor, D.A.; Rittenhouse, J.; Phelps, J.; Koda, J.E. Development of sensitive immunoassays to detect amylin and amylin-like peptides in unextracted plasma. Clin. Chem., 1996, 42, 576-585.
[71]
Young, A. Tissue expression and secretion of amylin. Adv. Pharmacol., 2005, 52, 19-45.
[72]
Butler, P.C.; Chou, J.; Carter, W.B.; Wang, Y.N.; Bu, B.H.; Chang, D.; Chang, J.K.; Rizza, R.A. Effects of meal ingestion on plasma amylin concentration in NIDDM and nondiabetic humans. Diabetes, 1990, 39, 752-756.
[73]
Nakazato, M.; Asai, J.; Kangawa, K.; Matsukura, S.; Matsuo, H. Establishment of radioimmunoassay for human islet amyloid polypeptide and its tissue content and plasma concentration. Biochem. Biophys. Res. Commun., 1989, 164, 394-399.
[74]
Mitsukawa, T.; Takemura, J.; Nakazato, M.; Asai, J.; Kanagawa, K.; Matsuo, H.; Matsukura, S. Effects of aging on plasma islet amyloid polypeptide basal level and response to oral glucose load. Diabetes Res. Clin. Pract., 1992, 15, 131-134.
[75]
van Hulst, K.L.; Hackeng, W.H.; Hoppener, J.W.; van Jaarsveld, B.C.; Nieuwenhuis, M.G.; Blankenstein, M.A.; Lips, C.J. An improved method for the determination of islet amyloid polypeptide levels in plasma. Ann. Clin. Biochem., 1994, 31(Pt 2), 165-170.
[76]
Hanabusa, T.; Kubo, K.; Oki, C.; Nakano, Y.; Okai, K.; Sanke, T.; Nanjo, K. Islet amyloid polypeptide (IAPP) secretion from islet cells and its plasma concentration in patients with non-insulin-dependent diabetes mellitus. Diabetes Res. Clin. Pract., 1992, 15, 89-96.
[77]
Edwards, B.J.; Perry, H.M.; Kaiser, F.E.; Morley, J.E.; Kraenzle, D.; Kreutter, D.K.; Stevenson, R.W. Age-related changes in amylin secretion. Mech. Ageing Dev., 1996, 86, 39-51.
[78]
Eriksson, J.; Nakazato, M.; Miyazato, M.; Shiomi, K.; Matsukura, S.; Groop, L. Islet amyloid polypeptide plasma concentrations in individuals at increased risk of developing type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia, 1992, 35, 291-293.
[79]
van Jaarsveld, B.C.; Hackeng, W.H.; Lips, C.J.; Erkelens, D.W. Plasma concentrations of islet amyloid polypeptide after glucagon administration in type 2 diabetic patients and non-diabetic subjects. Diabet. Med., 1993, 10, 327-330.
[80]
Koda, J.E.; Fineman, M.; Rink, T.J.; Dailey, G.E.; Muchmore, D.B. 24 hour plasma amylin profiles are elevated in IGT subjects vs. normal controls. Diabetes, 1995, 44(Suppl. 1), 238A.
[81]
Sanke, T.; Hanabusa, T.; Nakano, Y.; Oki, C.; Okai, K.; Nishimura, S.; Kondo, M.; Nanjo, K. Plasma islet amyloid polypeptide (Amylin) levels and their responses to oral glucose in type 2 (non-insulin-dependent) diabetic patients. Diabetologia, 1991, 34, 129-132.
[82]
Blackard, W.G.; Clore, J.N.; Kellum, J.M. Amylin/insulin secretory ratios in morbidly obese man: inverse relationship with glucose disappearance rate. J. Clin. Endocrinol. Metab., 1994, 78, 1257-1260.
[83]
Kailasam, M.T.; Parmer, R.J.; Tyrell, E.A.; Henry, R.R.; O’Connor, D.T. Circulating amylin in human essential hypertension: Heritability and early increase in individuals at genetic risk. J. Hypertens., 2000, 18, 1611-1620.
[84]
Dimsdale, J.E.; Kolterman, O.; Koda, J.; Nelesen, R. Effect of race and hypertension on plasma amylin concentrations. Hypertension, 1996, 27, 1273-1276.
[85]
Ludvik, B.; Clodi, M.; Kautzky-Willer, A.; Schuller, M.; Graf, H.; Hartter, E.; Pacini, G.; Prager, R. Increased levels of circulating islet amyloid polypeptide in patients with chronic renal failure have no effect on insulin secretion. J. Clin. Invest., 1994, 94, 2045-2050.
[86]
Watschinger, B.; Hartter, E.; Traindl, O.; Pohanka, E.; Pidlich, J.; Kovarik, J. Increased levels of plasma amylin in advanced renal failure. Clin. Nephrol., 1992, 37, 131-134.
[87]
Enoki, S.; Mitsukawa, T.; Takemura, J.; Nakazato, M.; Aburaya, J.; Toshimori, H.; Matsukara, S. Plasma islet amyloid polypeptide levels in obesity, impaired glucose tolerance and non-insulin-dependent diabetes mellitus. Diabetes Res. Clin. Pract., 1992, 15, 97-102.
[88]
Permert, J.; Larsson, J.; Westermark, G.T.; Herrington, M.K.; Christmanson, L.; Pour, P.M.; Westermark, P.; Adrian, T.E. Islet amyloid polypeptide in patients with pancreatic cancer and diabetes. N. Engl. J. Med., 1994, 330, 313-318.
[89]
Akter, R.; Cao, P.; Noor, H.; Ridgway, Z.; Tu, L.H.; Wang, H.; Wong, A.G.; Zhang, X.; Abedini, A.; Schmidt, A.M.; Raleigh, D.P. Islet amyloid polypeptide: Structure, function, and pathophysiology. J. Diabetes Res., 2016, 2016, 2798269.
[90]
Lutz, T.A. The role of amylin in the control of energy homeostasis. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2010, 298, R1475-R1484.
[91]
Young, A. Effects on plasma glucose and lactate. Adv. Pharmacol., 2005, 52, 193-208.
[92]
Young, A. Inhibition of gastric emptying. Adv. Pharmacol., 2005, 52, 99-121.
[93]
Woerle, H.J.; Albrecht, M.; Linke, R.; Zschau, S.; Neumann, C.; Nicolaus, M.; Gerich, J.E.; Goke, B.; Schirra, J. Impaired hyperglycemia-induced delay in gastric emptying in patients with type 1 diabetes deficient for islet amyloid polypeptide. Diabetes Care, 2008, 31, 2325-2331.
[94]
Reidelberger, R.D.; Arnelo, U.; Granqvist, L.; Permert, J. Comparative effects of amylin and cholecystokinin on food intake and gastric emptying in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2001, 280, R605-R611.
[95]
Gedulin, B.R.; Rink, T.J.; Young, A.A. Dose-response for glucagonostatic effect of amylin in rats. Metabolism, 1997, 46, 67-70.
[96]
Young, A. Amylin and the integrated control of nutrient influx. Adv. Pharmacol., 2005, 52, 67-77.
[97]
Degano, P.; Silvestre, R.A.; Salas, M.; Peiro, E.; Marco, J. Amylin inhibits glucose-induced insulin secretion in a dose-dependent manner. Study in the perfused rat pancreas. Regul. Pept., 1993, 43, 91-96.
[98]
Kogire, M.; Ishizuka, J.; Thompson, J.C.; Greeley, G.H., Jr Inhibitory action of islet amyloid polypeptide and calcitonin gene-related peptide on release of insulin from the isolated perfused rat pancreas. Pancreas, 1991, 6, 459-463.
[99]
Sandler, S.; Stridsberg, M. Chronic exposure of cultured rat pancreatic islets to elevated concentrations of islet amyloid polypeptide (IAPP) causes a decrease in islet DNA content and medium insulin accumulation. Regul. Pept., 1994, 53, 103-109.
[100]
Akesson, B.; Panagiotidis, G.; Westermark, P.; Lundquist, I. Islet amyloid polypeptide inhibits glucagon release and exerts a dual action on insulin release from isolated islets. Regul. Pept., 2003, 111, 55-60.
[101]
Young, A. Inhibition of glucagon secretion. Adv. Pharmacol., 2005, 52, 151-171.
[102]
Panagiotidis, G.; Salehi, A.A.; Westermark, P.; Lundquist, I. Homologous islet amyloid polypeptide: effects on plasma levels of glucagon, insulin and glucose in the mouse. Diabetes Res. Clin. Pract., 1992, 18, 167-171.
[103]
Silvestre, R.A.; Rodriguez-Gallardo, J.; Jodka, C.; Parkes, D.G.; Pittner, R.A.; Young, A.A.; Marco, J. Selective amylin inhibition of the glucagon response to arginine is extrinsic to the pancreas. Am. J. Physiol. Endocrinol. Metab., 2001, 280, E443-E449.
[104]
James, J.H.; Wagner, K.R.; King, J.K.; Leffler, R.E.; Upputuri, R.K.; Balasubramaniam, A.; Friend, L.A.; Shelly, D.A.; Paul, R.J.; Fischer, J.E. Stimulation of both aerobic glycolysis and Na(+)-K(+)-ATPase activity in skeletal muscle by epinephrine or amylin. Am. J. Physiol., 1999, 277, E176-E186.
[105]
Young, A.A.; Mott, D.M.; Stone, K.; Cooper, G.J. Amylin activates glycogen phosphorylase in the isolated soleus muscle of the rat. FEBS Lett., 1991, 281, 149-151.
[106]
Riediger, T.; Schmid, H.A.; Lutz, T.A.; Simon, E. Amylin and glucose co-activate area postrema neurons of the rat. Neurosci. Lett., 2002, 328, 121-124.
[107]
Wimalawansa, S.J.; el-Kholy, A.A. Comparative study of distribution and biochemical characterization of brain calcitonin gene-related peptide receptors in five different species. Neuroscience, 1993, 54, 513-519.
[108]
Beaumont, K.; Kenney, M.A.; Young, A.A.; Rink, T.J. High affinity amylin binding sites in rat brain. Mol. Pharmacol., 1993, 44, 493-497.
[109]
Young, A. Central nervous system and other effects. Adv. Pharmacol., 2005, 52, 281-288.
[110]
Grabauskas, G.; Zhou, S.Y.; Das, S.; Lu, Y.; Owyang, C.; Moises, H.C. Prolactin-releasing peptide affects gastric motor function in rat by modulating synaptic transmission in the dorsal vagal complex. J. Physiol., 2004, 561, 821-839.
[111]
Young, A. Inhibition of food intake. Adv. Pharmacol., 2005, 52, 79-98.
[112]
Bhavsar, S.; Watkins, J.; Young, A. Synergy between amylin and cholecystokinin for inhibition of food intake in mice. Physiol. Behav., 1998, 64, 557-561.
[113]
Cooper, G.J.; Day, A.J.; Willis, A.C.; Roberts, A.N.; Reid, K.B.; Leighton, B. Amylin and the amylin gene: structure, function and relationship to islet amyloid and to diabetes mellitus. Biochim. Biophys. Acta, 1989, 1014, 247-258.
[114]
Arnelo, U.; Permert, J.; Adrian, T.E.; Larsson, J.; Westermark, P.; Reidelberger, R.D. Chronic infusion of islet amyloid polypeptide causes anorexia in rats. Am. J. Physiol., 1996, 271, R1654-R1659.
[115]
Lutz, T.A. Amylinergic control of food intake. Physiol. Behav., 2006, 89, 465-471.
[116]
Young, A. Effects on bone. Adv. Pharmacol., 2005, 52, 269-280.
[117]
MacIntyre, I. Amylinamide, bone conservation, and pancreatic beta cells. Lancet, 1989, 2, 1026-1027.
[118]
Zaidi, M.; Datta, H.K.; Bevis, P.J.; Wimalawansa, S.J.; MacIntyre, I. Amylin-amide: A new bone-conserving peptide from the pancreas. Exp. Physiol., 1990, 75, 529-536.
[119]
Stridsberg, M.; Tjalve, H.; Wilander, E. Whole-body autoradiography of 123I-labelled islet amyloid polypeptide (IAPP). Accumulation in the lung parenchyma and in the villi of the intestinal mucosa in rats. Acta Oncol., 1993, 32, 155-159.
[120]
Wookey, P.J.; Cao, Z.; Cooper, M.E. Interaction of the renal amylin and renin-angiotensin systems in animal models of diabetes and hypertension. Miner. Electrolyte Metab., 1998, 24, 389-399.
[121]
Young, A. Renal effects. Adv. Pharmacol., 2005, 52, 251-268.
[122]
Young, A. Cardiovascular effects. Adv. Pharmacol., 2005, 52, 239-250.
[123]
Brain, S.D.; Wimalawansa, S.; MacIntyre, I.; Williams, T.J. The demonstration of vasodilator activity of pancreatic amylin amide in the rabbit. Am. J. Pathol., 1990, 136, 487-490.
[124]
Fernandes-Santos, C.; Zhang, Z.; Morgan, D.A.; Guo, D.F.; Russo, A.F.; Rahmouni, K. Amylin acts in the central nervous system to increase sympathetic nerve activity. Endocrinology, 2013, 154, 2481-2488.
[125]
MacIntyre, I. Treatment of bone disorders. U.S. patent 5,405,831, April 11, 1995.
[126]
Horcajada-Molteni, M.N.; Davicco, M.J.; Lebecque, P.; Coxam, V.; Young, A.A.; Barlet, J.P. Amylin inhibits ovariectomy-induced bone loss in rats. J. Endocrinol., 2000, 165, 663-668.
[127]
Novials, A.; Rodriguez-Manas, L.; Chico, A.; El Assar, M.; Casas, S.; Gomis, R. Amylin and hypertension: Association of an amylin -G132A gene mutation and hypertension in humans and amylin-induced endothelium dysfunction in rats. J. Clin. Endocrinol. Metab., 2007, 92, 1446-1450.
[128]
Ikeda, T.; Iwata, K.; Ochi, H. Effect of insulin, proinsulin, and amylin on renin release from perfused rat kidney. Metabolism, 2001, 50, 763-766.
[129]
Bretherton-Watt, D.; Gilbey, S.G.; Ghatei, M.A.; Beacham, J.; Bloom, S.R. Failure to establish islet amyloid polypeptide (amylin) as a circulating beta cell inhibiting hormone in man. Diabetologia, 1990, 33, 115-117.
[130]
Ghatei, M.A.; Datta, H.K.; Zaidi, M.; Bretherton-Watt, D.; Wimalawansa, S.J.; MacIntyre, I.; Bloom, S.R. Amylin and amylin-amide lack an acute effect on blood glucose and insulin. J. Endocrinol., 1990, 124, R9-R11.
[131]
Wilding, J.P.; Khandan-Nia, N.; Bennet, W.M.; Gilbey, S.G.; Beacham, J.; Ghatei, M.A.; Bloom, S.R. Lack of acute effect of amylin (islet associated polypeptide) on insulin sensitivity during hyperinsulinaemic euglycaemic clamp in humans. Diabetologia, 1994, 37, 166-169.
[132]
Cooper, M.E.; McNally, P.G.; Phillips, P.A.; Johnston, C.I. Amylin stimulates plasma renin concentration in humans. Hypertension, 1995, 26, 460-464.
[133]
da Silva, D.C.; Fontes, G.N.; Erthal, L.C.; Lima, L.M. Amyloidogenesis of the amylin analogue pramlintide. Biophys. Chem., 2016, 219, 1-8.
[134]
Young, A.A.; Vine, W.; Gedulin, B.R.; Pittner, R.; Janes, S.; Gaeta, L.S.L.; Percy, A.; Moore, C.X.; Koda, J.E.; Rink, T.J.; Beaumont, K. Preclinical pharmacology of pramlintide in the rat: Comparisons with human and rat amylin. Drug Dev. Res., 1996, 37, 231-248.
[135]
Moyses, C.; Kolterman, O.; Nuttall, A.; Mant, T. First administration to man of the human amylin analogue tripro‐amylin. Diabetologia, 1994, 37, A72.
[136]
Moyses, C.; Kolterman, O.; Mant, T. Pharmacokinetics and hyperglycaemic effects of the amylin analogue, AC137, in man. Diabet. Med., 1993, 10, S25.
[137]
Amylin Pharmaceuticals Inc San Diego, CA; Amylin Pharmaceuticals, Inc., 2008.
[138]
Fineman, M.S.; Koda, J.E.; Shen, L.Z.; Strobel, S.A.; Maggs, D.G.; Weyer, C.; Kolterman, O.G. The human amylin analog, pramlintide, corrects postprandial hyperglucagonemia in patients with type 1 diabetes. Metabolism, 2002, 51, 636-641.
[139]
Fineman, M.; Weyer, C.; Maggs, D.G.; Strobel, S.; Kolterman, O.G. The human amylin analog, pramlintide, reduces postprandial hyperglucagonemia in patients with type 2 diabetes mellitus. Horm. Metab. Res., 2002, 34, 504-508.
[140]
Kong, M.F.; King, P.; Macdonald, I.A.; Stubbs, T.A.; Perkins, A.C.; Blackshaw, P.E.; Moyses, C.; Tattersall, R.B. Infusion of pramlintide, a human amylin analogue, delays gastric emptying in men with IDDM. Diabetologia, 1997, 40, 82-88.
[141]
Kong, M.F.; Stubbs, T.A.; King, P.; Macdonald, I.A.; Lambourne, J.E.; Blackshaw, P.E.; Perkins, A.C.; Tattersall, R.B. The effect of single doses of pramlintide on gastric emptying of two meals in men with IDDM. Diabetologia, 1998, 41, 577-583.
[142]
Chapman, I.; Parker, B.; Doran, S.; Feinle-Bisset, C.; Wishart, J.; Strobel, S.; Wang, Y.; Burns, C.; Lush, C.; Weyer, C.; Horowitz, M. Effect of pramlintide on satiety and food intake in obese subjects and subjects with type 2 diabetes. Diabetologia, 2005, 48, 838-848.
[143]
Thompson, R.G.; Gottlieb, A.; Organ, K.; Koda, J.; Kisicki, J.; Kolterman, O.G. Pramlintide: A human amylin analogue reduced postprandial plasma glucose, insulin, and C-peptide concentrations in patients with type 2 diabetes. Diabet. Med., 1997, 14, 547-555.
[144]
Thompson, R.G.; Peterson, J.; Gottlieb, A.; Mullane, J. Effects of pramlintide, an analog of human amylin, on plasma glucose profiles in patients with IDDM: Results of a multicenter trial. Diabetes, 1997, 46, 632-636.
[145]
Whitehouse, F.; Kruger, D.F.; Fineman, M.; Shen, L.; Ruggles, J.A.; Maggs, D.G.; Weyer, C.; Kolterman, O.G. A randomized study and open-label extension evaluating the long-term efficacy of pramlintide as an adjunct to insulin therapy in type 1 diabetes. Diabetes Care, 2002, 25, 724-730.
[146]
Thompson, R.G.; Pearson, L.; Schoenfeld, S.L.; Kolterman, O.G. Pramlintide, a synthetic analog of human amylin, improves the metabolic profile of patients with type 2 diabetes using insulin. The Pramlintide in Type 2 Diabetes Group. Diabetes Care, 1998, 21, 987-993.
[147]
Singh-Franco, D.; Perez, A.; Harrington, C. The effect of pramlintide acetate on glycemic control and weight in patients with type 2 diabetes mellitus and in obese patients without diabetes: a systematic review and meta-analysis. Diabetes Obes. Metab., 2011, 13, 169-180.
[148]
Qiao, Y.C.; Ling, W.; Pan, Y.H.; Chen, Y.L.; Zhou, D.; Huang, Y.M.; Zhang, X.X.; Zhao, H.L. Efficacy and safety of pramlintide injection adjunct to insulin therapy in patients with type 1 diabetes mellitus: A systematic review and meta-analysis. Oncotarget, 2017, 8, 66504-66515.
[149]
Hollander, P.A.; Levy, P.; Fineman, M.S.; Maggs, D.G.; Shen, L.Z.; Strobel, S.A.; Weyer, C.; Kolterman, O.G. Pramlintide as an adjunct to insulin therapy improves long-term glycemic and weight control in patients with type 2 diabetes: A 1-year randomized controlled trial. Diabetes Care, 2003, 26, 784-790.
[150]
Thompson, R.; Pearson, L.; Schoenfeld, S.; Kolterman, O. Pramlintide improves glycemic control in patients with type II diabetes requiring insulin. Diabetologia, 1997, 40, A355.
[151]
Cooper, G.J. Amylin and insulin co-replacement therapy for insulin-dependent (type I) diabetes mellitus. Med. Hypotheses, 1991, 36, 284-288.
[152]
Nyholm, B.; Orskov, L.; Hove, K.Y.; Gravholt, C.H.; Moller, N.; Alberti, K.G.; Moyses, C.; Kolterman, O.; Schmitz, O. The amylin analog pramlintide improves glycemic control and reduces postprandial glucagon concentrations in patients with type 1 diabetes mellitus. Metabolism, 1999, 48, 935-941.
[153]
Adler, B.L.; Yarchoan, M.; Hwang, H.M.; Louneva, N.; Blair, J.A.; Palm, R.; Smith, M.A.; Lee, H.G.; Arnold, S.E.; Casadesus, G. Neuroprotective effects of the amylin analogue pramlintide on Alzheimer’s disease pathogenesis and cognition. Neurobiol. Aging, 2014, 35, 793-801.
[154]
Wang, E.; Zhu, H.; Wang, X.; Gower, A.C.; Wallack, M.; Blusztajn, J.K.; Kowall, N.; Qiu, W.Q. Amylin treatment reduces neuroinflammation and ameliorates abnormal patterns of gene expression in the cerebral cortex of an Alzheimer’s disease mouse model. J. Alzheimers Dis., 2017, 56, 47-61.
[155]
Ott, A.; Stolk, R.P.; van Harskamp, F.; Pols, H.A.; Hofman, A.; Breteler, M.M. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology, 1999, 53, 1937-1942.
[156]
Zhang, Y.; Song, W. Islet amyloid polypeptide: Another key molecule in Alzheimer’s pathogenesis? Prog. Neurobiol., 2017, 153, 100-120.
[157]
Trevaskis, J.L.; Turek, V.F.; Wittmer, C.; Griffin, P.S.; Wilson, J.K.; Reynolds, J.M.; Zhao, Y.; Mack, C.M.; Parkes, D.G.; Roth, J.D. Enhanced amylin-mediated body weight loss in estradiol-deficient diet-induced obese rats. Endocrinology, 2010, 151, 5657-5668.
[158]
Boyle, C.N.; Lutz, T.A. Amylinergic control of food intake in lean and obese rodents. Physiol. Behav., 2011, 105, 129-137.
[159]
Jhamandas, J.H.; Li, Z.; Westaway, D.; Yang, J.; Jassar, S.; MacTavish, D. Actions of beta-amyloid protein on human neurons are expressed through the amylin receptor. Am. J. Pathol., 2011, 178, 140-149.
[160]
Jhamandas, J.H.; MacTavish, D. Antagonist of the amylin receptor blocks beta-amyloid toxicity in rat cholinergic basal forebrain neurons. J. Neurosci., 2004, 24, 5579-5584.
[161]
Ratner, R.E.; Want, L.L.; Fineman, M.S.; Velte, M.J.; Ruggles, J.A.; Gottlieb, A.; Weyer, C.; Kolterman, O.G. Adjunctive therapy with the amylin analogue pramlintide leads to a combined improvement in glycemic and weight control in insulin-treated subjects with type 2 diabetes. Diabetes Technol. Ther., 2002, 4, 51-61.
[162]
Young, A. Clinical studies. Adv. Pharmacol., 2005, 52, 289-320.
[163]
Kolterman, O.G.; Schwartz, S.; Corder, C.; Levy, B.; Klaff, L.; Peterson, J.; Gottlieb, A. Effect of 14 days’ subcutaneous administration of the human amylin analogue, pramlintide (AC137), on an intravenous insulin challenge and response to a standard liquid meal in patients with IDDM. Diabetologia, 1996, 39, 492-499.
[164]
Fineman, M.; Gottlieb, A.; Bahner, A.; Parker, J.; Waite, G.; Kolterman, O. Pramlintide therapy in addition to insulin in type 1 diabetes: Effect on metabolic control after 6 months. Diabetologia, 1999, 42(Suppl. 1), A232.
[165]
Zhang, X.X.; Pan, Y.H.; Huang, Y.M.; Zhao, H.L. Neuroendocrine hormone amylin in diabetes. World J. Diabetes, 2016, 7, 189-197.
[166]
Kayed, R.; Head, E.; Thompson, J.L.; McIntire, T.M.; Milton, S.C.; Cotman, C.W.; Glabe, C.G. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science, 2003, 300, 486-489.
[167]
Hartley, D.M.; Walsh, D.M.; Ye, C.P.; Diehl, T.; Vasquez, S.; Vassilev, P.M.; Teplow, D.B.; Selkoe, D.J. Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci., 1999, 19, 8876-8884.
[168]
Walsh, D.M.; Selkoe, D.J. A beta oligomers - a decade of discovery. J. Neurochem., 2007, 101, 1172-1184.
[169]
Haataja, L.; Gurlo, T.; Huang, C.J.; Butler, P.C. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr. Rev., 2008, 29, 303-316.
[170]
Zraika, S.; Hull, R.L.; Verchere, C.B.; Clark, A.; Potter, K.J.; Fraser, P.E.; Raleigh, D.P.; Kahn, S.E. Toxic oligomers and islet beta cell death: Guilty by association or convicted by circumstantial evidence? Diabetologia, 2010, 53, 1046-1056.
[171]
Zhao, H.L.; Sui, Y.; Guan, J.; He, L.; Gu, X.M.; Wong, H.K.; Baum, L.; Lai, F.M.; Tong, P.C.; Chan, J.C. Amyloid oligomers in diabetic and nondiabetic human pancreas. Transl. Res., 2009, 153, 24-32.
[172]
Masters, S.L.; Dunne, A.; Subramanian, S.L.; Hull, R.L.; Tannahill, G.M.; Sharp, F.A.; Becker, C.; Franchi, L.; Yoshihara, E.; Chen, Z.; Mullooly, N.; Mielke, L.A.; Harris, J.; Coll, R.C.; Mills, K.H.; Mok, K.H.; Newsholme, P.; Nunez, G.; Yodoi, J.; Kahn, S.E.; Lavelle, E.C.; O’Neill, L.A. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat. Immunol., 2010, 11, 897-904.
[173]
Janson, J.; Ashley, R.H.; Harrison, D.; McIntyre, S.; Butler, P.C. The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes, 1999, 48, 491-498.
[174]
Clark, A.; Nilsson, M.R. Islet amyloid: A complication of islet dysfunction or an aetiological factor in Type 2 diabetes? Diabetologia, 2004, 47, 157-169.
[175]
Treusch, S.; Cyr, D.M.; Lindquist, S. Amyloid deposits: Protection against toxic protein species? Cell Cycle, 2009, 8, 1668-1674.
[176]
Shah, S.A.; Yoon, G.H.; Chung, S.S.; Abid, M.N.; Kim, T.H.; Lee, H.Y.; Kim, M.O. Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve Alzheimer’s disease neuropathological deficits. Mol. Psychiatry, 2017, 22, 407-416.
[177]
Hu, R.; Zhang, M.; Chen, H.; Jiang, B.; Zheng, J. Cross-seeding interaction between beta-amyloid and human islet amyloid polypeptide. ACS Chem. Neurosci., 2015, 6, 1759-1768.
[178]
Olcott, A.P.; Tian, J.; Walker, V.; Dang, H.; Middleton, B.; Adorini, L.; Washburn, L.; Kaufman, D.L. Antigen-based therapies using ignored determinants of beta cell antigens can more effectively inhibit late-stage autoimmune disease in diabetes-prone mice. J. Immunol., 2005, 175, 1991-1999.
[179]
Westwell-Roper, C.; Dunne, A.; Kim, M.L.; Verchere, C.B.; Masters, S.L. Activating the NLRP3 inflammasome using the amyloidogenic peptide IAPP. Methods Mol. Biol., 2013, 1040, 9-18.
[180]
Baker, R.L.; Delong, T.; Barbour, G.; Bradley, B.; Nakayama, M.; Haskins, K. Cutting edge: CD4 T cells reactive to an islet amyloid polypeptide peptide accumulate in the pancreas and contribute to disease pathogenesis in nonobese diabetic mice. J. Immunol., 2013, 191, 3990-3994.
[181]
Zhang, X.X.; Qiao, Y.C.; Li, W.; Zou, X.; Chen, Y.L.; Shen, J.; Liao, Q.Y.; Zhang, Q.J.; He, L.; Zhao, H.L. Human amylin induces CD4+Foxp3+ regulatory T cells in the protection from autoimmune diabetes. Immunol. Res., 2018, 66, 179-186.
[182]
Paul, K.C.; Jerrett, M.; Ritz, B. Type 2 diabetes mellitus and Alzheimer’s disease: Overlapping Biologic mechanisms and environmental risk factors. Curr. Environ. Health Rep., 2018, 5, 44-58.
[183]
Baglietto-Vargas, D.; Shi, J.; Yaeger, D.M.; Ager, R.; LaFerla, F.M. Diabetes and Alzheimer’s disease crosstalk. Neurosci. Biobehav. Rev., 2016, 64, 272-287.
[184]
Biessels, G.J.; Strachan, M.W.; Visseren, F.L.; Kappelle, L.J.; Whitmer, R.A. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: Towards targeted interventions. Lancet Diabetes Endocrinol., 2014, 2, 246-255.
[185]
Akter, K.; Lanza, E.A.; Martin, S.A.; Myronyuk, N.; Rua, M.; Raffa, R.B. Diabetes mellitus and Alzheimer’s disease: Shared pathology and treatment? Br. J. Clin. Pharmacol., 2011, 71, 365-376.
[186]
Dash, S.K. Cognitive impairment and diabetes. Recent Pat. Endocr. Metab. Immune Drug Discov., 2013, 7, 155-165.
[187]
Jucker, M.; Walker, L.C. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann. Neurol., 2011, 70, 532-540.
[188]
Adam, A.P. A potential new mechanism linking type II diabetes mellitus and Alzheimer’s disease. Bioessays, 2018, 40, e1800061.
[189]
LaFerla, F.M.; Green, K.N.; Oddo, S. Intracellular amyloid-beta in Alzheimer’s disease. Nat. Rev. Neurosci., 2007, 8, 499-509.
[190]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 2002, 297, 353-356.
[191]
Williams, T.L.; Serpell, L.C. Membrane and surface interactions of Alzheimer’s Abeta peptide--insights into the mechanism of cytotoxicity. FEBS J., 2011, 278, 3905-3917.
[192]
Luca, S.; Yau, W.M.; Leapman, R.; Tycko, R. Peptide conformation and supramolecular organization in amylin fibrils: Constraints from solid-state NMR. Biochemistry, 2007, 46, 13505-13522.
[193]
Brender, J.R.; Salamekh, S.; Ramamoorthy, A. Membrane disruption and early events in the aggregation of the diabetes related peptide IAPP from a molecular perspective. Acc. Chem. Res., 2012, 45, 454-462.
[194]
Andreetto, E.; Yan, L.M.; Tatarek-Nossol, M.; Velkova, A.; Frank, R.; Kapurniotu, A. Identification of hot regions of the Abeta-IAPP interaction interface as high-affinity binding sites in both cross- and self-association. Angew. Chem. Int. Ed. Engl., 2010, 49, 3081-3085.
[195]
Lu, Y.; Derreumaux, P.; Guo, Z.; Mousseau, N.; Wei, G. Thermodynamics and dynamics of amyloid peptide oligomerization are sequence dependent. Proteins, 2009, 75, 954-963.
[196]
Kalia, M.; Costa, E.S.J. Biomarkers of psychiatric diseases: Current status and future prospects. Metabolism, 2015, 64, S11-S15.
[197]
Kang, J.; Lemaire, H.G.; Unterbeck, A.; Salbaum, J.M.; Masters, C.L.; Grzeschik, K.H.; Multhaup, G.; Beyreuther, K.; Muller-Hill, B. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature, 1987, 325, 733-736.
[198]
Ponte, P.; Gonzalez-DeWhitt, P.; Schilling, J.; Miller, J.; Hsu, D.; Greenberg, B.; Davis, K.; Wallace, W.; Lieberburg, I.; Fuller, F. A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors. Nature, 1988, 331, 525-527.
[199]
Bogoyevitch, M.A.; Boehm, I.; Oakley, A.; Ketterman, A.J.; Barr, R.K. Targeting the JNK MAPK cascade for inhibition: basic science and therapeutic potential. Biochim. Biophys. Acta, 2004, 1697, 89-101.
[200]
Tabaton, M.; Zhu, X.; Perry, G.; Smith, M.A.; Giliberto, L. Signaling effect of amyloid-beta(42) on the processing of AbetaPP. Exp. Neurol., 2010, 221, 18-25.
[201]
Zou, K.; Gong, J.S.; Yanagisawa, K.; Michikawa, M. A novel function of monomeric amyloid beta-protein serving as an antioxidant molecule against metal-induced oxidative damage. J. Neurosci., 2002, 22, 4833-4841.
[202]
Hiltunen, M.; van Groen, T.; Jolkkonen, J. Functional roles of amyloid-beta protein precursor and amyloid-beta peptides: Evidence from experimental studies. J. Alzheimers Dis., 2009, 18, 401-412.
[203]
Glabe, C.G.; Kayed, R. Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology, 2006, 66, S74-S78.
[204]
Gotz, J.; Lim, Y.A.; Eckert, A. Lessons from two prevalent amyloidoses-what amylin and Abeta have in common. Front. Aging Neurosci., 2013, 5, 38.
[205]
Cummings, J.L.; Morstorf, T.; Zhong, K. Alzheimer’s disease drug-development pipeline: Few candidates, frequent failures. Alzheimers Res. Ther., 2014, 6, 37.
[206]
Penninkilampi, R.; Brothers, H.M.; Eslick, G.D. Safety and efficacy of anti-amyloid-beta immunotherapy in Alzheimer’s disease: a systematic review and meta-analysis. J. Neuroimmune Pharmacol., 2017, 12, 194-203.
[207]
Herrup, K. The case for rejecting the amyloid cascade hypothesis. Nat. Neurosci., 2015, 18, 794-799.