[1]
Simone, P.D.; Pavlov, Y.I.; Borgstahl, G.E.O. ITPA (inosine triphosphate pyrophosphatase): from surveillance of nucleotide pool to human disease and pharmacogenetics. Mutation. Res. Rev. Mut. Res., 2013, 753(2), 131-146.
[2]
Bierau, J.; Lindhout, M.; Bakker, J.A. Pharmacogenetic significance of inosine triphosphatase. Pharmacogenomics, 2007, 8(9), 1221-1228.
[3]
Sumi, S.; Marinaki, A.M.; Arenass, M.; Fairbanks, L.; Shobowale-Bakre, M.; Rees, D.C.; Thein, S.L.; Ansari, A.; Sanderson, J.; De Abreu, R.A.; Simmonds, H.A.; Duley, J.A. Genetic basis of inosine triphosphate pyrophosphohydrolases deficiency. Human Genetics., 2002, 111(4-5), 360-367.
[4]
Stepchenkova, E.I.; Tarakhovskaya, E.R.; Spitler, K.; Frahm, C.; Menezes, M.R.; Simone, P.D.; Kolar, C.; Marky, L.A.; Borgstahl, G.E.; Pavlov, Y.I. Functional Study of the P32T ITPA variant associated with drug sensitivity in humans. J. Mol. Biol., 2009, 392(3), 602-613.
[5]
Lin, S.; McLennan, A.G.; Ying, K. Cloning, expression, and characterization of a human inosine triphosphate pyrophosphotase encoded by the ITPA gene. J. Biol. Chem., 2001, 276(22), 18695-18701.
[6]
Porta, J.; Kolar, C.; Kozmin, S.G.; Pavlov, Y.I.; Borgstahl, G.E. Structure of the orthorhombic form of human inosine triphosphate pyrophosphatase. Acta Cryst. Section F. Struct. Biol. Crystallization Communications, 2006, F62, 1076-1081.
[7]
Simone, P.D.; Struble, L.R.; Kellezi, A.; Brown, C.A.; Grabow, C.E.; Khutsishvili, I.; Marky, L.A.; Pavlov, Y.I.; Borgstahl, G.E.O. The human ITPA polymorphic variant P32T is destabilized by the unpacking of the hydrophobic core. J. Struct. Biol., 2013, 182(3), 197-208.
[8]
Stenmark, P.; Kursula, P.; Flodin, S.; Gräslund, S.; Landry, R.; Nordlund, P.; Schüler, H. Crystal structure of human inosine triphosphatase. Substitute binding and implication of the inosine triphosphatase deficiency mutation P32T. J. Biol. Chem., 2007, 282(5), 3182-3187.
[9]
Dushanov, E.B.; Kholmurodov, Kh.T.; Koltovaya, N.A. Simulation of mutant P32T homo- and heterodimers of human inosine triphosphate pyrophosphatase hITPA. Biophysics, 2015, 60(4), 529-537.
[10]
Dushanov, E.B.; Koltovaya, N.A. Comparison of modeling structures of wild-type homodimer and mutant hetero- and homodimers of phosphatase hITPA-P32T. Preprint JINR, 2015. E19-2015-98.
[11]
Dushanov, E.B.; Koltovaya, N.A. Conformational changes induced by P32T substitution in human phosphatase ITPA. Curr. Chem. Biol., 2018, 12(2), 158-168.
[12]
Case, D.C.; Pearlman, D.A.; Caldwell, J.W.; Cheatham, T.E., III; Ross, W.S.; Simmerling, C.L.; Darden, T.A.; Merz, K.M.; Stanton, R.V.; Cheng, A.L.; Vincent, J.J.; Crowley, M.; Ferguson, D.M.; Radmer, R.J.; Seibel, G.L.; Singh, U.C.; Weiner, P.K.; Kollman, P.A. MD Simulations of the P53 oncoprotein structure: the effect of the Arg273→His mutation on the DNA binding domain. AMBER, 2011, 2(5), 330-335.
[13]
Sali, A.; Blundell, T.L. Comparative protein modelling by satisfaction of the restraints. J. Mol. Biol., 1993, 234(3), 779-815.
[14]
Humphrey, W.; Dalke, A.; Schulten, K. VMD – Visual Molecular Dynamics. J. Mol. Graphics., 1996, 14(1), 33-38.
[15]
Izaguirre, J.A.; Catarello, D.P.; Wozniak, J.M.; Skeel, R.D. Langevin stabilization of molecular dynamics. J. Chem. Phys., 2001, 114(5), 2090-2098.
[16]
Cornell, W.D.; Cieplak, P.; Bayly, C.I.; Gould, I.R.; Merz, Jr, K.M.; Ferguson, D.M.; Spellmeyer, D.C.; Fox, T.; Caldwell, J.W.; Kollman, P.A. A second Generation forth field for the simulation of Proteins and Nucleic Acids. J. Am. Chem. Soc., 1995, 117(19), 5179-5197.
[17]
Lovell, S.C.; Davis, I.W.; Arendall, W.B., 3rd; de Bakker, P.I.; Word, J.M.; Prisant, M.G.; Richardson, J.S.; Richardson, D.C. Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins, 2003, 50(3), 437-450.
[18]
Whitmore, L.; Wallace, B.A. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res., 2004, 32(sup.2), W668-W673.
[19]
Andrade, M.A.; Chancón, P.; Merelo, J.J.; Morán, F. Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Eng. Des. Selection., 1993, 6(4), 383-390.