Effect of Substitution Pro32Thr on the Interaction between Dimer Subunits of Human Phosphatase ITPA

Page: [46 - 54] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Cells have specific enzymes (nucleoside triphosphate pyrophosphohydrolase) that hydrolyze non-canonic nucleoside triphosphates into nucleoside monophosphophates and pyrophosphate, thus removing them from the metabolic processes. This class of enzymes includes inosine triphosphate pyrophosphatase (ITPA) which has specificity to ITP, dITP, XTP and dXTP.

Objective: The mutation (94C→A) rather often occurs in humans and can affect the sensitivity of patients to medicines. This mutation leads to a Pro32Thr substitution in the human ITPA protein. The mechanism for the inactivating effect of the mutation is unknown yet.

Methods: Molecular modeling of the polymorphic form of inosine triphosphate pyrophosphohydrolase Р32Т-hITPA showing the greatest decrease in the enzyme activity is performed. The analysis is given for four dimer variants: wild-type (P32/P32) and mutant (T32/T32) homodimers and two mutant heterodimers (Р32/Т32 and Т32/Р32).

Results: The analysis does not show the motion of the loop between α2 and β2 where mutation localized. Thus, the hypothesis of the flipped-out hydrophobic residue and subsequent of protein degradation have not been confirmed. Dimer displacements were much higher than subunit displacements. The analysis of hydrogen bonds between subunits shows that there are the more stable hydrogen bonds in the wild-type homodimer and fewer in the mutant homodimer, while heterodimers have intermediate stability.

Conclusion: The results confirm the assumption of possible weakening of bonds between the mutant subunits.

Keywords: Dimer, inosine triphosphate pyrophosphatase, MD modeling, mutant homo- and heterodimeric Р32Т enzyme variants, polymorphic forms, subunits.

Graphical Abstract

[1]
Simone, P.D.; Pavlov, Y.I.; Borgstahl, G.E.O. ITPA (inosine triphosphate pyrophosphatase): from surveillance of nucleotide pool to human disease and pharmacogenetics. Mutation. Res. Rev. Mut. Res., 2013, 753(2), 131-146.
[2]
Bierau, J.; Lindhout, M.; Bakker, J.A. Pharmacogenetic significance of inosine triphosphatase. Pharmacogenomics, 2007, 8(9), 1221-1228.
[3]
Sumi, S.; Marinaki, A.M.; Arenass, M.; Fairbanks, L.; Shobowale-Bakre, M.; Rees, D.C.; Thein, S.L.; Ansari, A.; Sanderson, J.; De Abreu, R.A.; Simmonds, H.A.; Duley, J.A. Genetic basis of inosine triphosphate pyrophosphohydrolases deficiency. Human Genetics., 2002, 111(4-5), 360-367.
[4]
Stepchenkova, E.I.; Tarakhovskaya, E.R.; Spitler, K.; Frahm, C.; Menezes, M.R.; Simone, P.D.; Kolar, C.; Marky, L.A.; Borgstahl, G.E.; Pavlov, Y.I. Functional Study of the P32T ITPA variant associated with drug sensitivity in humans. J. Mol. Biol., 2009, 392(3), 602-613.
[5]
Lin, S.; McLennan, A.G.; Ying, K. Cloning, expression, and characterization of a human inosine triphosphate pyrophosphotase encoded by the ITPA gene. J. Biol. Chem., 2001, 276(22), 18695-18701.
[6]
Porta, J.; Kolar, C.; Kozmin, S.G.; Pavlov, Y.I.; Borgstahl, G.E. Structure of the orthorhombic form of human inosine triphosphate pyrophosphatase. Acta Cryst. Section F. Struct. Biol. Crystallization Communications, 2006, F62, 1076-1081.
[7]
Simone, P.D.; Struble, L.R.; Kellezi, A.; Brown, C.A.; Grabow, C.E.; Khutsishvili, I.; Marky, L.A.; Pavlov, Y.I.; Borgstahl, G.E.O. The human ITPA polymorphic variant P32T is destabilized by the unpacking of the hydrophobic core. J. Struct. Biol., 2013, 182(3), 197-208.
[8]
Stenmark, P.; Kursula, P.; Flodin, S.; Gräslund, S.; Landry, R.; Nordlund, P.; Schüler, H. Crystal structure of human inosine triphosphatase. Substitute binding and implication of the inosine triphosphatase deficiency mutation P32T. J. Biol. Chem., 2007, 282(5), 3182-3187.
[9]
Dushanov, E.B.; Kholmurodov, Kh.T.; Koltovaya, N.A. Simulation of mutant P32T homo- and heterodimers of human inosine triphosphate pyrophosphatase hITPA. Biophysics, 2015, 60(4), 529-537.
[10]
Dushanov, E.B.; Koltovaya, N.A. Comparison of modeling structures of wild-type homodimer and mutant hetero- and homodimers of phosphatase hITPA-P32T. Preprint JINR, 2015. E19-2015-98.
[11]
Dushanov, E.B.; Koltovaya, N.A. Conformational changes induced by P32T substitution in human phosphatase ITPA. Curr. Chem. Biol., 2018, 12(2), 158-168.
[12]
Case, D.C.; Pearlman, D.A.; Caldwell, J.W.; Cheatham, T.E., III; Ross, W.S.; Simmerling, C.L.; Darden, T.A.; Merz, K.M.; Stanton, R.V.; Cheng, A.L.; Vincent, J.J.; Crowley, M.; Ferguson, D.M.; Radmer, R.J.; Seibel, G.L.; Singh, U.C.; Weiner, P.K.; Kollman, P.A. MD Simulations of the P53 oncoprotein structure: the effect of the Arg273→His mutation on the DNA binding domain. AMBER, 2011, 2(5), 330-335.
[13]
Sali, A.; Blundell, T.L. Comparative protein modelling by satisfaction of the restraints. J. Mol. Biol., 1993, 234(3), 779-815.
[14]
Humphrey, W.; Dalke, A.; Schulten, K. VMD – Visual Molecular Dynamics. J. Mol. Graphics., 1996, 14(1), 33-38.
[15]
Izaguirre, J.A.; Catarello, D.P.; Wozniak, J.M.; Skeel, R.D. Langevin stabilization of molecular dynamics. J. Chem. Phys., 2001, 114(5), 2090-2098.
[16]
Cornell, W.D.; Cieplak, P.; Bayly, C.I.; Gould, I.R.; Merz, Jr, K.M.; Ferguson, D.M.; Spellmeyer, D.C.; Fox, T.; Caldwell, J.W.; Kollman, P.A. A second Generation forth field for the simulation of Proteins and Nucleic Acids. J. Am. Chem. Soc., 1995, 117(19), 5179-5197.
[17]
Lovell, S.C.; Davis, I.W.; Arendall, W.B., 3rd; de Bakker, P.I.; Word, J.M.; Prisant, M.G.; Richardson, J.S.; Richardson, D.C. Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins, 2003, 50(3), 437-450.
[18]
Whitmore, L.; Wallace, B.A. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res., 2004, 32(sup.2), W668-W673.
[19]
Andrade, M.A.; Chancón, P.; Merelo, J.J.; Morán, F. Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Eng. Des. Selection., 1993, 6(4), 383-390.