Turning Fear of Boron Toxicity into Boron-containing Drug Design

Page: [5005 - 5018] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Despite the historical employment of boron-containing compounds (BCCs) with medicinal purposes, the reported cases of BCC toxicity in humans during the twentieth-century drived us towards a “boron-withdrawal” period. Fortunately, the use of boric acid for specific purposes remains, and the discovery of natural BCCs with biological action attractive for therapeutic purposes as well as the introduction of some new BCCs for clinical use has reactivated the interest in studying the properties of these BCCs.

Methods: We carried out a structured search of bibliographic databases for scientific peerreviewed research literature regarding boron toxicity and linked that information to that of BCCs in drug design and development. A deductive qualitative content analysis methodology was applied to analyse the interventions and findings of the included studies using a theoretical outline.

Results: This review recapitulates the following on a timeline: the boron uses in medicine, the data known about the toxicological profiles of some BCCs, the pharmacological properties of some BCCs that are employed in cancer and infectious disease therapies, and the known properties of BCCs recently introduced into clinical assays as well as the identification of their structure-activity relationships for toxicity and therapeutic use. Then, we discuss the use of new approaches taking advantage of some toxicological data to identify potent and efficient BCCs for prevention and therapy while limiting their toxic effects.

Conclusion: Data for boron toxicity can be strategically used for boron-containing drug design.

Keywords: Boron, boron-containing compounds, structure-toxicity relationship, drug design, toxicology, infectious disease therapies.

[1]
Farfán-García, E.D.; Castillo-Mendieta, N.T.; Ciprés-Flores, F.J.; Padilla-Martínez, I.I.; Trujillo-Ferrara, J.G.; Soriano-Ursúa, M.A. Current data regarding the structure-toxicity relationship of boron-containing compounds. Toxicol. Lett., 2016, 258, 115-125.
[http://dx.doi.org/10.1016/j.toxlet.2016.06.018] [PMID: 27329537]
[2]
Kim, H.; Furukawa, Y.; Kakegawa, T.; Bita, A.; Scorei, R.; Benner, S. Angew. Chem. Int. Ed., 2016, 55, 15816-15820.
[http://dx.doi.org/10.1002/anie.201608001]
[3]
Woods, W.G. An introduction to boron: history, sources, uses, and chemistry. Environ. Health Perspect., 1994, 102(Suppl. 7), 5-11.
[PMID: 7889881]
[4]
Watson, E.H. Boric acid: A dangerous drug of little value. JAMA, 1945, 129(5), 332-333.
[http://dx.doi.org/10.1001/jama.1945.02860390018004]
[5]
Krackow, E.H. Toxicity and health hazards of boron hydrides. A.M.A. Arch. Ind. Hyg. Occup. Med., 1953, 8(4), 335-339.
[PMID: 13091433]
[6]
Soriano-Ursúa, M.; Das, B. Boron-containing compounds: chemico-biological properties and expanding medicinal potential in prevention, diagnosis and therapy. J. Exp. Opin. Ther. Pat, 2014, 24, 485-500.
[7]
Hosmane, N.S. Boron science: new technologies and applications, (1st ed.), CRC Press Published October 3. 2011.
[8]
Bregadze, V.; Xie, Z. Boron chemistry: a rapid expanding research field. Eur. J. Inorg. Chem., 2017, 4348-4349.
[http://dx.doi.org/10.1002/ejic.201701175]
[9]
Bolt, H.; Duydu, Y.; Başaran, N.; Golka, K. Boron and its compounds: current biological research activities. Arch. Toxicol., 2017, 91, 2719-2722.
[http://dx.doi.org/10.1007/s00204-017-2010-1]
[10]
Habes, D.; Morakchi, S.; Aribi, N.; Farine, J.; Soltani, N. Boric acid toxicity to the German cockroach, Blattella germanica: alterations in midgut structure, and acetylcholinesterase and glutathione S-transferase activity. Pestic. Biochem. Physiol., 2006, 84, 17-24.
[http://dx.doi.org/10.1016/j.pestbp.2005.05.002]
[11]
Gentz, M.M.C.; Grace, J.K. A Review of boron toxicity in insects with an emphasis on termites. J. Agric. Urban Entomol., 2006, 23(4), 201-207.
[12]
Howe, P.D. A review of boron effects in the environment. Biol. Trace Elem. Res., 1998, 66(1-3), 153-166.
[http://dx.doi.org/10.1007/BF02783135] [PMID: 10050917]
[13]
Pérez-Rodríguez, M.; García-Mendoza, E.; Farfán-García, E.D.; Das, B.C.; Ciprés-Flores, F.J.; Trujillo-Ferrara, J.G.; Tamay-Cach, F.; Soriano-Ursúa, M.A. Not all boronic acids with a five-membered cycle induce tremor, neuronal damage and decreased dopamine. Neurotoxicology, 2017, 62, 92-99.
[http://dx.doi.org/10.1016/j.neuro.2017.06.004] [PMID: 28595910]
[14]
Başaran, N.; Duydu, Y.; Bolt, H.M. Reproductive toxicity in boron exposed workers in Bandirma, Turkey. J. Trace Elem. Med. Biol., 2012, 26(2-3), 165-167.
[http://dx.doi.org/10.1016/j.jtemb.2012.04.013] [PMID: 22575543]
[15]
Culver, B.D.; Hubbard, S.A. Inorganic boron health effects in humans: an aid to risk assessment and clinical judgment. J. Trace Elem. Exp. Med., 1996, 9(4), 175-184.
[http://dx.doi.org/10.1002/(SICI)1520-670X(1996)9:4<175:AID-JTRA5>3.0.CO;2-Q]
[16]
McNally, W.D.; Rust, C.A. The distribution of boric acid in human organs in six deaths due to boric acid poisoning. JAMA, 1928, 90(5), 382-383.
[http://dx.doi.org/10.1001/jama.1928.02690320044013]
[17]
Garabrant, D.H.; Bernstein, L.; Peters, J.M.; Smith, T.J.; Wright, W.E. Respiratory effects of borax dust. Br. J. Ind. Med., 1985, 42(12), 831-837.
[PMID: 3878156]
[18]
Benderdour, M.; Bui-Van, T.; Dicko, A.; Belleville, F. In vivo and in vitro effects of boron and boronated compounds. J. Trace Elem. Med. Biol., 1998, 12(1), 2-7.
[http://dx.doi.org/10.1016/S0946-672X(98)80014-X] [PMID: 9638606]
[19]
Diaz, D.B.; Yudin, A.K. The versatility of boron in biological target engagement. Nat. Chem., 2017, 9(8), 731-742.
[http://dx.doi.org/10.1038/nchem.2814] [PMID: 28754930]
[20]
Uluisik, I.; Karakaya, H.C.; Koc, A. The importance of boron in biological systems. J. Trace Elem. Med. Biol., 2018, 45, 156-162.
[http://dx.doi.org/10.1016/j.jtemb.2017.10.008] [PMID: 29173473]
[21]
Yilmaz, M.T. Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains. Turk. J. Med. Sci., 2012, 42(S2), 1423-1429.
[22]
Bailey, P.J.; Cousins, G.; Snow, G.A.; White, A.J. Boron-containing antibacterial agents: Effects on growth and morphology of bacteria under various culture conditions. Antimicrob. Agents Chemother., 1980, 17(4), 549-553.
[http://dx.doi.org/10.1128/AAC.17.4.549] [PMID: 6994634]
[23]
O’Donovan, M.R.; Mee, C.D.; Fenner, S.; Teasdale, A.; Phillips, D.H. Boronic acids-a novel class of bacterial mutagen. Mutat. Res., 2011, 724(1-2), 1-6.
[http://dx.doi.org/10.1016/j.mrgentox.2011.05.006] [PMID: 21645632]
[24]
Ciaravino, V.; Plattner, J.; Chanda, S. An assessment of the genetic toxicology of novel boron-containing therapeutic agents. Environ. Mol. Mutagen., 2013, 54(5), 338-346.
[http://dx.doi.org/10.1002/em.21779] [PMID: 23625818]
[25]
Ahmed, I.; Yokota, A.; Fujiwara, T. A novel highly boron tolerant bacterium, Bacillus boroniphilus sp. nov., isolated from soil, that requires boron for its growth. Extremophiles, 2007, 11(2), 217-224.
[http://dx.doi.org/10.1007/s00792-006-0027-0] [PMID: 17072687]
[26]
Şen, M.; Yılmaz, U.; Baysal, A.; Akman, S.; Çakar, Z.P. In vivo evolutionary engineering of a boron-resistant bacterium: Bacillus boroniphilus. Antonie van Leeuwenhoek, 2011, 99(4), 825-835.
[http://dx.doi.org/10.1007/s10482-011-9557-2] [PMID: 21279440]
[27]
Ahmed, I.; Fujiwara, T. Mechanism of boron tolerance in soil bacteria. Can. J. Microbiol., 2010, 56(1), 22-26.
[http://dx.doi.org/10.1139/W09-106] [PMID: 20130690]
[28]
Deora, A.; Gossen, B.D.; Walley, F.; McDonald, M.R. Boron reduces development of clubroot in canola. Can. J. Plant Pathol., 2011, 33(4), 475-484.
[http://dx.doi.org/10.1080/07060661.2011.620630]
[29]
Rolshausen, P.E.; Gubler, W.D. Use of boron for the control of eutypa dieback of grapevines. Plant Dis., 2005, 89(7), 734-738.
[http://dx.doi.org/10.1094/PD-89-0734] [PMID: 30791243]
[30]
Bowen, J.E.; Gauch, H.G. Nonessentiality of boron in fungi and the nature of its toxicity. Plant Physiol., 1966, 41(2), 319-324.
[http://dx.doi.org/10.1104/pp.41.2.319] [PMID: 16656256]
[31]
Camacho-Cristóbal, J.J.; Rexach, J.; González-Fontes, A. Boron in plants: Deficiency and toxicity. J. Integr. Plant Biol., 2008, 50(10), 1247-1255.
[http://dx.doi.org/10.1111/j.1744-7909.2008.00742.x] [PMID: 19017112]
[32]
Reid, R.J.; Hayes, J.E.; Post, A.; Stangoulis, J.C.R.; Graham, R.D. A Critical analysis of the causes of boron toxicity in plants. Plant Cell Environ., 2004, 27(11), 1405-1414.
[http://dx.doi.org/10.1111/j.1365-3040.2004.01243.x]
[33]
Liu, C.; Lu, W.; Ma, Q.; Ma, C. Effect of silicon on the alleviation of boron toxicity in wheat growth, boron accumulation, photosynthesis activities, and oxidative responses. J. Plant Nutr., 2017, 40(17), 2458-2467.
[http://dx.doi.org/10.1080/01904167.2017.1380817]
[34]
Brown, P.H.; Bellaloui, N.; Wimmer, M.A.; Bassil, E.S.; Ruiz, J.; Hu, H.; Pfeffer, H.; Dannel, F.; Römheld, V. Boron in plant biology. Plant Biol., 2002, 4(2), 205-223.
[http://dx.doi.org/10.1055/s-2002-25740]
[35]
Nable, R.O.; Bañuelos, G.S.; Paull, J.G. Boron Toxicity. Plant Soil, 1997, 193, 181-198.
[http://dx.doi.org/10.1023/A:1004272227886]
[36]
Bourgeois, A.C.; Koski, K.G.; Scott, M.E. Comparative sensitivity of feeding and nonfeeding stages of Heligmosomoides bakeri (Nematoda) to boron. Comp. Parasitol., 2007, 74(2), 319-326.
[http://dx.doi.org/10.1654/4275.1]
[37]
Rajaratnam, J.A.; Hock, L.I. Effect of Boron Nutrition on intensity of red spider mite attack on oil palm seedlings. Exp. Agric., 1975, 11(1), 59-63.
[http://dx.doi.org/10.1017/S0014479700006232]
[38]
English, M.D.; Robertson, G.J.; Mallory, M.L. Trace element and stable isotope analysis of fourteen species of marine invertebrates from the Bay of Fundy, Canada. Mar. Pollut. Bull., 2015, 101(1), 466-472.
[http://dx.doi.org/10.1016/j.marpolbul.2015.09.046] [PMID: 26490410]
[39]
Taylor, D.; Maddock, B.G.; Mance, G. The acute toxicity of nine “grey list” metals (arsenic, boron, chromium, copper, lead, nickel, tin, vanadium and zinc) to two marine fish species: Dab (Limanda Limanda) and Grey Mullet (Chelon Labrosus). Aquat. Toxicol., 1985, 7(3), 135-144.
[http://dx.doi.org/10.1016/S0166-445X(85)80001-1]
[40]
Topal, A.; Oruc, E.; Altun, S.; Ceyhun, S.B.; Atamanalp, M. The Effects of acute boric acid treatment on gill, kidney and muscle tissues in juvenile rainbow trout. J. Appl. Anim. Res., 2016, 44(1), 297-302.
[http://dx.doi.org/10.1080/09712119.2015.1031784]
[41]
Fort, D.J.; Stover, E.L.; Strong, P.L.; Murray, F.J.; Keen, C.L. Chronic feeding of a low boron diet adversely affects reproduction and development in Xenopus laevis. J. Nutr., 1999, 129(11), 2055-2060.
[http://dx.doi.org/10.1093/jn/129.11.2055] [PMID: 10539784]
[42]
Zhang, S.; Henehan, M.J.; Hull, P.M.; Reid, R.P.; Hardisty, D.S.; Hood, A.V.S.; Planavsky, N.J. Investigating controls on boron isotope ratios in shallow marine carbonates. Earth Planet. Sci. Lett., 2017, 458, 380-393.
[http://dx.doi.org/10.1016/j.epsl.2016.10.059]
[43]
Wilson, J.H.; Ruszler, P.L. Effects of boron on growing pullets. Biol. Trace Elem. Res., 1997, 56(3), 287-294.
[http://dx.doi.org/10.1007/BF02785300] [PMID: 9197925]
[44]
Smith, G.J.; Anders, V.P. Toxic effects of boron on mallard reproduction. Environ. Toxicol. Chem., 1989, 8(10), 943-950.
[http://dx.doi.org/10.1002/etc.5620081013]
[45]
Price, C.J.; Strong, P.L.; Murray, F.J.; Goldberg, M.M. Blood boron concentrations in pregnant rats fed boric acid throughout gestation. Reprod. Toxicol., 1997, 11(6), 833-842.
[http://dx.doi.org/10.1016/S0890-6238(97)00067-1] [PMID: 9407594]
[46]
Murray, F.J. A human health risk assessment of boron (boric acid and borax) in drinking water. Regul. Toxicol. Pharmacol., 1995, 22(3), 221-230.
[http://dx.doi.org/10.1006/rtph.1995.0004] [PMID: 8837846]
[47]
Scorei, R.I.; Popa, R., Jr Boron-containing compounds as preventive and chemotherapeutic agents for cancer. Anticancer. Agents Med. Chem., 2010, 10(4), 346-351.
[http://dx.doi.org/10.2174/187152010791162289] [PMID: 19912103]
[48]
Borzelleca, J.F. Paracelsus: herald of modern toxicology. Toxicol. Sci., 2000, 53(1), 2-4.
[http://dx.doi.org/10.1093/toxsci/53.1.2] [PMID: 10653514]
[49]
Kohno, J.; Kawahata, T.; Otake, T.; Morimoto, M.; Mori, H.; Ueba, N.; Nishio, M.; Kinumaki, A.; Komatsubara, S.; Kawashima, K. Boromycin, an anti-HIV antibiotic. Biosci. Biotechnol. Biochem., 1996, 60(6), 1036-1037.
[http://dx.doi.org/10.1271/bbb.60.1036] [PMID: 8695905]
[50]
Dias, D.A.; Kouremenos, K.A.; Beale, D.J.; Callahan, D.L.; Jones, O.A.H. Metal and metalloid containing natural products and a brief overview of their applications in biology, biotechnology and biomedicine. Biometals, 2016, 29(1), 1-13.
[http://dx.doi.org/10.1007/s10534-015-9892-2] [PMID: 26553050]
[51]
Das, B.C.; Thapa, P.; Karki, R.; Schinke, C.; Das, S.; Kambhampati, S.; Banerjee, S.K.; Van Veldhuizen, P.; Verma, A.; Weiss, L.M.; Evans, T. Boron chemicals in diagnosis and therapeutics. Future Med. Chem., 2013, 5(6), 653-676.
[http://dx.doi.org/10.4155/fmc.13.38] [PMID: 23617429]
[52]
Baker, S.J.; Tomsho, J.W.; Benkovic, S.J. Boron-containing inhibitors of synthetases. Chem. Soc. Rev., 2011, 40(8), 4279-4285.
[http://dx.doi.org/10.1039/c0cs00131g] [PMID: 21298158]
[53]
García-López, D.; Cid, J.; Marqués, R.; Fernández, E.; Carbó, J.J. Quantitative structure-activity relationships for the nucleophilicity of trivalent boron compounds. Chemistry, 2017, 23(21), 5066-5075.
[http://dx.doi.org/10.1002/chem.201605798] [PMID: 28177532]
[54]
Di Fiore, A.; Monti, S.M.; Innocenti, A.; Winum, J.Y.; De Simone, G.; Supuran, C.T. Carbonic anhydrase inhibitors: crystallographic and solution binding studies for the interaction of a boron-containing aromatic sulfamide with mammalian isoforms I-XV. Bioorg. Med. Chem. Lett., 2010, 20(12), 3601-3605.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.114] [PMID: 20472429]
[55]
Alterio, V.; Cadoni, R.; Esposito, D.; Vullo, D.; Fiore, A.D.; Monti, S.M.; Caporale, A.; Ruvo, M.; Sechi, M.; Dumy, P.; Supuran, C.T.; De Simone, G.; Winum, J.Y. Benzoxaborole as a new chemotype for carbonic anhydrase inhibition. Chem. Commun. (Camb.), 2016, 52(80), 11983-11986.
[http://dx.doi.org/10.1039/C6CC06399C] [PMID: 27722534]
[56]
Geninatti-Crich, S.; Deagostino, A.; Toppino, A.; Alberti, D.; Venturello, P.; Aime, S. Boronated compounds for imaging guided BNCT applications. Anticancer. Agents Med. Chem., 2012, 12(5), 543-553.
[http://dx.doi.org/10.2174/187152012800617786] [PMID: 22263798]
[57]
Moss, R.L. Critical review, with an optimistic outlook, on Boron Neutron Capture Therapy (BNCT). Appl. Radiat. Isot., 2014, 88, 2-11.
[http://dx.doi.org/10.1016/j.apradiso.2013.11.109] [PMID: 24355301]
[58]
Nedunchezhian, K.; Aswath, N.; Thiruppathy, M.; Thirugnanamurthy, S. Boron neutron capture therapy - a literature review. J. Clin. Diagn. Res., 2016, 10(12), ZE01-ZE04.
[http://dx.doi.org/10.7860/JCDR/2016/19890.9024] [PMID: 28209015]
[59]
Alberti, D.; Toppino, A.; Geninatti Crich, S.; Meraldi, C.; Prandi, C.; Protti, N.; Bortolussi, S.; Altieri, S.; Aime, S.; Deagostino, A. Synthesis of a carborane-containing cholesterol derivative and evaluation as a potential dual agent for MRI/BNCT applications. Org. Biomol. Chem., 2014, 12(15), 2457-2467.
[http://dx.doi.org/10.1039/C3OB42414F] [PMID: 24604345]
[60]
Manasanch, E.E.; Orlowski, R.Z. Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol., 2017, 14(7), 417-433.
[http://dx.doi.org/10.1038/nrclinonc.2016.206] [PMID: 28117417]
[61]
Schrader, J.; Henneberg, F.; Mata, R.A.; Tittmann, K.; Schneider, T.R.; Stark, H.; Bourenkov, G.; Chari, A. The inhibition mechanism of human 20S proteasomes enables next-generation inhibitor design. Science, 2016, 353(6299), 594-598.
[http://dx.doi.org/10.1126/science.aaf8993] [PMID: 27493187]
[62]
Ge, Y.; Li, A.; Wu, J.; Feng, H.; Wang, L.; Liu, H.; Xu, Y.; Xu, Q.; Zhao, L.; Li, Y. Design, synthesis and biological evaluation of novel non-peptide boronic acid derivatives as proteasome inhibitors. Eur. J. Med. Chem., 2017, 128, 180-191.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.034] [PMID: 28182990]
[63]
Teicher, B.A.; Tomaszewski, J.E. Proteasome inhibitors. Biochem. Pharmacol., 2015, 96(1), 1-9.
[http://dx.doi.org/10.1016/j.bcp.2015.04.008] [PMID: 25935605]
[64]
Trippier, P.C.; McGuigan, C. Boronic acids in medicinal chemistry: anticancer, antibacterial and antiviral applications. MedChemComm, 2010, 1(3), 183.
[http://dx.doi.org/10.1039/c0md00119h]
[65]
Pizzorno, L. Nothing boring about boron. Integr. Med. (Encinitas), 2015, 14(4), 35-48.
[PMID: 26770156]
[66]
Yılmaz, S.; Ustundag, A.; Cemiloglu Ulker, O.; Duydu, Y. Protective effect of boric acid on oxidative DNA damage in chinese hamster lung fibroblast V79 cell lines. Cell J., 2016, 17(4), 748-754.
[PMID: 26862534]
[67]
Turkez, H.; Tatar, A.; Hacimuftuoglu, A.; Ozdemir, E. Boric acid as a protector against paclitaxel genotoxicity. Acta Biochim. Pol., 2010, 57(1), 95-97.
[http://dx.doi.org/10.18388/abp.2010_2378] [PMID: 20300661]
[68]
Yang, F.; Zhu, M.; Zhang, J.; Zhou, H. Synthesis of biologically active boron-containing compounds. MedChemComm, 2017, 9(2), 201-211.
[http://dx.doi.org/10.1039/C7MD00552K] [PMID: 30108914]
[69]
Atiyeh, B.S.; Dibo, S.A.; Hayek, S.N. Wound cleansing, topical antiseptics and wound healing. Int. Wound J., 2009, 6(6), 420-430.
[http://dx.doi.org/10.1111/j.1742-481X.2009.00639.x] [PMID: 20051094]
[70]
Hunt, C.D. Regulation of enzymatic activity: one possible role of dietary boron in higher animals and humans. Biol. Trace Elem. Res., 1998, 66(1-3), 205-225.
[http://dx.doi.org/10.1007/BF02783139] [PMID: 10050921]
[71]
Schmidt, M. Boric acid inhibition of Trichophyton rubrum growth and conidia formation. Biol. Trace Elem. Res., 2017, 180(2), 349-354.
[http://dx.doi.org/10.1007/s12011-017-1019-x] [PMID: 28391495]
[72]
Larsen, B.; Petrovic, M.; De Seta, F. Boric acid and commercial organoboron products as inhibitors of drug-resistant Candida albicans. Mycopathologia, 2019, 183(2), 349-357.
[http://dx.doi.org/10.1007/s11046-017-0209-6] [PMID: 28993976]
[73]
Thorley, N.; Ross, J. Intravaginal boric acid: is it an alternative therapeutic option for vaginal trichomoniasis? Sex. Transm. Infect., 2018, 94(8), 574-577.
[http://dx.doi.org/10.1136/sextrans-2017-053343] [PMID: 29223972]
[74]
Galstyan, A.; Schiller, R.; Dobrindt, U. Boronic acid‐functionalized photosensitizers: a straightforward strategy to target the sweet site of bacteria and implement active agents in polymer coating. Angew. Chem. Int. Ed. Engl., 2017, 56(35), 10362-10366.
[http://dx.doi.org/10.1002/anie.201703398] [PMID: 28675648]
[75]
Santucci, M.; Spyrakis, F.; Cross, S.; Quotadamo, A.; Farina, D.; Tondi, D.; De Luca, F.; Docquier, J.D.; Prieto, A.I.; Ibacache, C.; Blázquez, J.; Venturelli, A.; Cruciani, G.; Costi, M.P. Computational and biological profile of boronic acids for the detection of bacterial serine- and metallo-β-lactamases. Sci. Rep., 2017, 7(1), 17716.
[http://dx.doi.org/10.1038/s41598-017-17399-7] [PMID: 29255163]
[76]
Venugopal, D.V.R.; Rao, A.K.; Devi, P.U.; Sastry, Y.N.; Lakshmi, K.A.; Ramji, M.T.; Shiralgi, Y. Design, synthesis and characterization of peptidyl boronate analogues as effective antimicrobial agents. Res. Chem. Intermed., 2017, 43(10), 5755-5778.
[http://dx.doi.org/10.1007/s11164-017-2961-0]
[77]
Cahill, S.T.; Cain, R.; Wang, D.Y.; Lohans, C.T.; Wareham, D.W.; Oswin, H.P.; Mohammed, J.; Spencer, J.; Fishwick, C.W.G.; McDonough, M.A.; Schofield, C.J.; Brem, J. Cyclic boronates inhibit all classes of β-lactamases. Antimicrob. Agents Chemother., 2017, 61(4), e02260-e16.
[http://dx.doi.org/10.1128/AAC.02260-16] [PMID: 28115348]
[78]
Benkovic, S.J.; Baker, S.J.; Alley, M.R.K.; Woo, Y.H.; Zhang, Y.K.; Akama, T.; Mao, W.; Baboval, J.; Rajagopalan, P.T.R.; Wall, M.; Kahng, L.S.; Tavassoli, A.; Shapiro, L. Identification of borinic esters as inhibitors of bacterial cell growth and bacterial methyltransferases, CcrM and MenH. J. Med. Chem., 2005, 48(23), 7468-7476.
[http://dx.doi.org/10.1021/jm050676a] [PMID: 16279806]
[79]
Jacobs, R.T.; Plattner, J.J.; Keenan, M. Boron-based drugs as antiprotozoals. Curr. Opin. Infect. Dis., 2011, 24(6), 586-592.
[http://dx.doi.org/10.1097/QCO.0b013e32834c630e] [PMID: 22001943]
[80]
Akama, T.; Zhang, Y.K.; Freund, Y.R.; Berry, P.; Lee, J.; Easom, E.E.; Jacobs, R.T.; Plattner, J.J.; Witty, M.J.; Peter, R.; Rowan, T.G.; Gillingwater, K.; Brun, R.; Nare, B.; Mercer, L.; Xu, M.; Wang, J.; Liang, H. Identification of a 4-fluorobenzyl l-valinate amide benzoxaborole (AN11736) as a potential development candidate for the treatment of Animal African Trypanosomiasis (AAT). Bioorg. Med. Chem. Lett., 2018, 28(1), 6-10.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.028] [PMID: 29169674]
[81]
Sonoiki, E.; Ng, C.L.; Lee, M.C.S.; Guo, D.; Zhang, Y.K.; Zhou, Y.; Alley, M.R.K.; Ahyong, V.; Sanz, L.M.; Lafuente-Monasterio, M.J.; Dong, C.; Schupp, P.G.; Gut, J.; Legac, J.; Cooper, R.A.; Gamo, F.J.; DeRisi, J.; Freund, Y.R.; Fidock, D.A.; Rosenthal, P.J. A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue. Nat. Commun., 2017, 8, 14574.
[http://dx.doi.org/10.1038/ncomms14574] [PMID: 28262680]
[82]
Bennett, A.; Rowe, R.I.; Soch, N.; Eckhert, C.D. Boron stimulates yeast (Saccharomyces cerevisiae) growth. J. Nutr., 1999, 129(12), 2236-2238.
[http://dx.doi.org/10.1093/jn/129.12.2236] [PMID: 10573556]
[83]
Del Rosso, J.Q.; Plattner, J.J. From the test tube to the treatment room: fundamentals of boron-containing compounds and their relevance to dermatology. J. Clin. Aesthet. Dermatol., 2014, 7(2), 13-21.
[PMID: 24578778]
[84]
Thareja, S.; Zhu, M.; Ji, X.; Wang, B. Boron-based small molecules in disease detection and treatment (2013-2016). Heterocycl. Commun., 2017, 23(3), 137-153.
[http://dx.doi.org/10.1515/hc-2017-0086]
[85]
Elewski, B.E.; Aly, R.; Baldwin, S.L.; González Soto, R.F.; Rich, P.; Weisfeld, M.; Wiltz, H.; Zane, L.T.; Pollak, R. Efficacy and safety of tavaborole topical solution, 5%, a novel boron-based antifungal agent, for the treatment of toenail onychomycosis: Results from 2 randomized phase-III studies. J. Am. Acad. Dermatol., 2015, 73(1), 62-69.
[http://dx.doi.org/10.1016/j.jaad.2015.04.010] [PMID: 25956661]
[86]
Baker, S.J.; Zhang, Y.K.; Akama, T.; Lau, A.; Zhou, H.; Hernandez, V.; Mao, W.; Alley, M.R.K.; Sanders, V.; Plattner, J.J. Discovery of a new boron-containing antifungal agent, 5-fluoro-1,3-dihydro-1-hydroxy-2,1- benzoxaborole (AN2690), for the potential treatment of onychomycosis. J. Med. Chem., 2006, 49(15), 4447-4450.
[http://dx.doi.org/10.1021/jm0603724] [PMID: 16854048]
[87]
Bicho, R.C.; Gomes, S.I.L.; Soares, A.M.V.M.; Amorim, M.J.B. Non-avoidance behaviour in enchytraeids to boric acid is related to the GABAergic mechanism. Environ. Sci. Pollut. Res. Int., 2015, 22(9), 6898-6903.
[http://dx.doi.org/10.1007/s11356-014-3921-5] [PMID: 25471724]
[88]
Kilani-Morakchi, S.; Aribi, N.; Soltani, N. Activity of boric acid on german cockroaches: analysis of residues and effects on reproduction. Afr. J. Biotechnol., 2009, 8(4), 703-708.
[89]
Schulz, M.; Schmoldt, A. Therapeutic and toxic blood concentrations of more than 800 drugs and other xenobiotics. Pharmazie, 2003, 58(7), 447-474.
[PMID: 12889529]
[90]
Turkez, H.; Geyikoglu, F.; Tatar, A.; Keles, M.S.; Kaplan, I. The effects of some boron compounds against heavy metal toxicity in human blood. Exp. Toxicol. Pathol., 2012, 64(1-2), 93-101.
[http://dx.doi.org/10.1016/j.etp.2010.06.011] [PMID: 20663653]
[91]
Çelikezen, F.Ç.; Toğar, B.; Özgeriş, F.B.; İzgi, M.S.; Türkez, H. Cytogenetic and oxidative alterations after exposure of cultured human whole blood cells to lithium metaborate dehydrate. Cytotechnology, 2016, 68(4), 821-827.
[http://dx.doi.org/10.1007/s10616-014-9833-x] [PMID: 25680697]
[92]
Oto, G.; Arihan, O.; Celikezen, F.C.; Basbugan, Y.; Sen, S. Effect of doxorubicin and some boron compounds on erythrocyte fragility in rats. Nat. Sci. Discov., 2015, 1(2), 50-53.
[http://dx.doi.org/10.20863/nsd.27011]
[93]
Akbaba, G.B.; Turkez, H.; Sönmez, E.; Tatar, A.; Yilmaz, M. Genotoxicity in primary human peripheral lymphocytes after exposure to lithium titanate nanoparticles in vitro. Toxicol. Ind. Health, 2016, 32(8), 1423-1429.
[http://dx.doi.org/10.1177/0748233714562624] [PMID: 25552539]
[94]
Jin, E.; Li, S.; Ren, M.; Hu, Q.; Gu, Y.; Li, K. Boron affects immune function through modulation of splenic t lymphocyte subsets, cytokine secretion, and lymphocyte proliferation and apoptosis in rats. Biol. Trace Elem. Res., 2017, 178(2), 261-275.
[http://dx.doi.org/10.1007/s12011-017-0932-3] [PMID: 28092075]
[95]
Routray, I.; Ali, S. Boron induces lymphocyte proliferation and modulates the priming effects of lipopolysaccharide on macrophages. PLoS One, 2016, 11(3)e0150607
[http://dx.doi.org/10.1371/journal.pone.0150607] [PMID: 26934748]
[96]
Canturk, Z.; Tunali, Y.; Korkmaz, S.; Gulbaş, Z. Cytotoxic and apoptotic effects of boron compounds on leukemia cell line. Cytotechnology, 2016, 68(1), 87-93.
[http://dx.doi.org/10.1007/s10616-014-9755-7] [PMID: 25159521]
[97]
Kopalli, S.R.; Kang, T-B.; Lee, K-H.; Koppula, S. NLRP3 inflammasome activation inhibitors in inflammation-associated cancer immunotherapy: an update on the recent patents. Recent Patents Anticancer Drug Discov., 2018, 13(1), 106-117.
[http://dx.doi.org/10.2174/1574892812666171027102627] [PMID: 29076433]
[98]
Ameen, H.N.M.; Hussain, S.A.; Ahmed, Z.A.; Aziz, T.A. Anti-inflammatory effects of boron alone or as adjuvant with dexamethasone in animal models of chronic and granulomatous inflammation. Int. J. Basic Clin. Pharmacol., 2017, 4(4), 701-707.
[99]
Hunt, C.D. Dietary boron: an overview of the evidence for its role in immune function. J. Trace Elem. Exp. Med., 2003, 16, 291-306.
[http://dx.doi.org/10.1002/jtra.10041]
[100]
Baldwin, A.G.; Rivers-Auty, J.; Daniels, M.J.D.; White, C.S.; Schwalbe, C.H.; Schilling, T.; Hammadi, H.; Jaiyong, P.; Spencer, N.G.; England, H.; Luheshi, N.M.; Kadirvel, M.; Lawrence, C.B.; Rothwell, N.J.; Harte, M.K.; Bryce, R.A.; Allan, S.M.; Eder, C.; Freeman, S.; Brough, D. Boron-based inhibitors of the NLRP3 inflammasome. Cell Chem. Biol., 2017, 24(11), 1321-1335.e5.
[http://dx.doi.org/10.1016/j.chembiol.2017.08.011] [PMID: 28943355]
[101]
Baldwin, A.G.; Tapia, V.S.; Swanton, T.; White, C.S.; Beswick, J.A.; Brough, D.; Freeman, S. Design, synthesis and evaluation of oxazaborine inhibitors of the NLRP3 inflammasome. ChemMedChem, 2018, 13(4), 312-320.
[http://dx.doi.org/10.1002/cmdc.201700731] [PMID: 29331080]
[102]
Doble, A. The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol. Ther., 1999, 81(3), 163-221.
[http://dx.doi.org/10.1016/S0163-7258(98)00042-4] [PMID: 10334661]
[103]
Macrez, R.; Stys, P.K.; Vivien, D.; Lipton, S.A.; Docagne, F. Mechanisms of glutamate toxicity in multiple sclerosis: biomarker and therapeutic opportunities. Lancet Neurol., 2016, 15(10), 1089-1102.
[http://dx.doi.org/10.1016/S1474-4422(16)30165-X] [PMID: 27571160]
[104]
Cisneros-Mejorado, A.; Pérez-Samartín, A.; Gottlieb, M.; Matute, C. ATP signaling in brain: release, excitotoxicity and potential therapeutic targets. Cell. Mol. Neurobiol., 2015, 35(1), 1-6.
[http://dx.doi.org/10.1007/s10571-014-0092-3] [PMID: 25096398]
[105]
Xu, R.; Dwoskin, L.P.; Grinevich, V.P.; Deaciuc, G.; Crooks, P.A. Neuronal nicotinic acetylcholine receptor binding affinities of boron-containing nicotine analogues. Bioorg. Med. Chem. Lett., 2001, 11(9), 1245-1248.
[http://dx.doi.org/10.1016/S0960-894X(01)00193-7] [PMID: 11354387]
[106]
Soriano-Ursúa, M.A.; Farfán-García, E.D.; López-Cabrera, Y.; Querejeta, E.; Trujillo-Ferrara, J.G. Boron-containing acids: preliminary evaluation of acute toxicity and access to the brain determined by Raman scattering spectroscopy. Neurotoxicology, 2014, 40, 8-15.
[http://dx.doi.org/10.1016/j.neuro.2013.10.005] [PMID: 24189445]
[107]
Araujo-Alvarez, J.M.; Trujillo-Ferrara, J.G.; Ponce-Franco, D.; Correa-Basurto, J.; Delgado, A.; Querejeta, E. (+)-(S)-trujillon, (+)-(S)-4-(2,2-diphenyl-1,3,2-oxazabolidin-5-oxo)propionic acid, a novel glutamatergic analog, modifies the activity of globus pallidus neurons by selective NMDA receptor activation. Chirality, 2011, 23(6), 429-437.
[http://dx.doi.org/10.1002/chir.20594] [PMID: 18570295]
[108]
Tang, J.; Zheng, X.T.; Xiao, K.; Wang, K.L.; Wang, J.; Wang, Y.X.; Wang, K.; Wang, W.; Lu, S.; Yang, K.L.; Sun, P.P.; Khaliq, H.; Zhong, J.; Peng, K.M. Effect of boric acid supplementation on the expression of BDNF in African ostrich chick brain. Biol. Trace Elem. Res., 2016, 170(1), 208-215.
[http://dx.doi.org/10.1007/s12011-015-0428-y] [PMID: 26226831]
[109]
Eisenstein, S.A.; Koller, J.M.; Black, K.D.; Campbell, M.C.; Lugar, H.M.; Ushe, M.; Tabbal, S.D.; Karimi, M.; Hershey, T.; Perlmutter, J.S.; Black, K.J. Functional anatomy of subthalamic nucleus stimulation in Parkinson disease. Ann. Neurol., 2014, 76(2), 279-295.
[http://dx.doi.org/10.1002/ana.24204] [PMID: 24953991]
[110]
Kızılay, Z.; Erken, H.A.; Çetin, N.K.; Aktaş, S.; Abas, B.İ.; Yılmaz, A. Boric acid reduces axonal and myelin damage in experimental sciatic nerve injury. Neural Regen. Res., 2016, 11(10), 1660-1665.
[http://dx.doi.org/10.4103/1673-5374.193247] [PMID: 27904499]
[111]
Çolak, S.; Geyikoğlu, F.; Keles, O.N.; Türkez, H.; Topal, A.; Unal, B. The neuroprotective role of boric acid on aluminum chloride-induced neurotoxicity. Toxicol. Ind. Health, 2011, 27(8), 700-710.
[http://dx.doi.org/10.1177/0748233710395349] [PMID: 21543463]
[112]
Robbins, W.A.; Wei, F.; Elashoff, D.A.; Wu, G.; Xun, L.; Jia, J.Y. X sperm ratio in boron-exposed men. J. Androl., 2008, 29(1), 115-121.
[http://dx.doi.org/10.2164/jandrol.107.003541] [PMID: 17881766]
[113]
Duydu, Y.; Başaran, N.; Ustündağ, A.; Aydın, S.; Undeğer, U.; Ataman, O.Y.; Aydos, K.; Düker, Y.; Ickstadt, K.; Waltrup, B.S.; Golka, K.; Bolt, H.M. Is boric acid toxic to reproduction in humans? Assessment of the animal reproductive toxicity data and epidemiological study results. Curr. Drug Deliv., 2016, 13(3), 324-329.
[http://dx.doi.org/10.2174/1567201812666151029101514] [PMID: 26511087]
[114]
Robbins, W.A.; Xun, L.; Jia, J.; Kennedy, N.; Elashoff, D.A.; Ping, L. Chronic boron exposure and human semen parameters. Reprod. Toxicol., 2010, 29(2), 184-190.
[http://dx.doi.org/10.1016/j.reprotox.2009.11.003] [PMID: 19962437]
[115]
Bustos-Obregon, E.; Carvallo, M.; Hartley-Belmar, R.; Sarabia, L.; Ponce, C. Histopathological and histometrical assessment of boron exposure effects on mouse spermatogenesis. Int. J. Morphol., 2007, 25(4), 919-925.
[http://dx.doi.org/10.4067/S0717-95022007000400039]
[116]
Fail, P.A.; George, J.D.; Seely, J.C.; Grizzle, T.B.; Heindel, J.J. Reproductive toxicity of boric acid in Swiss (CD-1) mice: assessment using the continuous breeding protocol. Fundam. Appl. Toxicol., 1991, 17(2), 225-239.
[http://dx.doi.org/10.1016/0272-0590(91)90215-P] [PMID: 1765217]
[117]
Espinoza-Navarro, O.; Vilaxa, A.; Granifo, L.; Rojas, S.; Rodríguez, H. Histological study on the male reproductive organs of mouse CF1 treated with boron. Int. J. Morphol., 2007, 25(2), 341-347.
[http://dx.doi.org/10.4067/S0717-95022007000200017]
[118]
Naghii, M.R.; Mofid, M.; Asgari, A.R.; Hedayati, M.; Daneshpour, M.S. Comparative effects of daily and weekly boron supplementation on plasma steroid hormones and proinflammatory cytokines. J. Trace Elem. Med. Biol., 2011, 25(1), 54-58.
[http://dx.doi.org/10.1016/j.jtemb.2010.10.001] [PMID: 21129941]
[119]
Hou, M.; Eriksson, E.; Svechnikov, K.; Jahnukainen, K.; Söder, O.; Meinhardt, A.; Sävendahl, L. Bortezomib treatment causes long-term testicular dysfunction in young male mice. Mol. Cancer, 2014, 13(1), 155.
[http://dx.doi.org/10.1186/1476-4598-13-155] [PMID: 24950741]
[120]
Li, W.; Fu, J.; Zhang, S.; Zhao, J.; Xie, N.; Cai, G. The proteasome inhibitor bortezomib induces testicular toxicity by upregulation of oxidative stress, AMP-activated protein kinase (AMPK) activation and deregulation of germ cell development in adult murine testis. Toxicol. Appl. Pharmacol., 2015, 285(2), 98-109.
[http://dx.doi.org/10.1016/j.taap.2015.04.001] [PMID: 25886977]
[121]
Dixon, R.L.; Lee, I.P.; Sherins, R.J. Methods to assess reproductive effects of environmental chemicals: studies of cadmium and boron administered orally. Environ. Health Perspect., 1976, 13, 59-67.
[http://dx.doi.org/10.1289/ehp.761359] [PMID: 1269508]
[122]
Mahabir, S.; Spitz, M.R.; Barrera, S.L.; Dong, Y.Q.; Eastham, C.; Forman, M.R. Dietary boron and hormone replacement therapy as risk factors for lung cancer in women. Am. J. Epidemiol., 2008, 167(9), 1070-1080.
[http://dx.doi.org/10.1093/aje/kwn021] [PMID: 18343880]
[123]
Sheng, M.H.C.; Taper, L.J.; Veit, H.; Thomas, E.A.; Ritchey, S.J.; Lau, K.H.W. Dietary boron supplementation enhances the effects of estrogen on bone mineral balance in ovariectomized rats. Biol. Trace Elem. Res., 2001, 81(1), 29-45.
[http://dx.doi.org/10.1385/BTER:81:1:29] [PMID: 11508330]
[124]
Nielsen, F.H.; Gallagher, S.K.; Johnson, L.K.; Nielsen, E.J. Boron enhances and mimics some effects of estrogen therapy in postmenopausal women. J. Trace Elem. Exp. Med., 1992, 5(4), 237-246.
[125]
Jin, E.; Ren, M.; Liu, W.; Liang, S.; Hu, Q.; Gu, Y.; Li, S. Effect of boron on thymic cytokine expression, hormone secretion, antioxidant functions, cell proliferation, and apoptosis potential via the extracellular signal-regulated kinases 1 and 2 signaling pathway. J. Agric. Food Chem., 2017, 65(51), 11280-11291.
[http://dx.doi.org/10.1021/acs.jafc.7b04069] [PMID: 29032684]