Does the Affinity of Cisplatin to B-Vitamins Impair the Therapeutic Effect in the Case of Patients with Lung Cancer-consuming Carrot or Beet Juice?

Page: [1775 - 1783] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Cisplatin (CisPt) has a well-recognized anticancer activity by interacting with DNA and inducing programmed cell death. However, theoretical studies performed on the molecular level suggest that such nonspecific interactions can also take place with many competitive compounds, such as vitamins containing aromatic rings with lone-pair orbitals.

Objective: This work is a theoretical study on the initial Pt-N7(N1) bond formation with vitamins from B group and their comparison with values characterizing native purines.

Methods: Geometries of studied structures were optimized with an aid of Gaussian 09 using the B3LYP functional with the 6-31G** basis set. Atomic orbitals of platinum were represented by the lanl2dz basis. Solvation free energies were evaluated by a self-consistent reaction field (SCRF) approach. A dielectric constant of 78 for water was used in the PCM continuum model computations along with radii Bondii.

Results: The affinities of mono-aqua cis~[Pt(NH3)2Cl(H2O)]+ and di-aqua cis~ [Pt(NH3)2(H2O)2]2+ derivatives of Cisplatinum toward compounds belonging to the group of eight B vitamins were studied and compared to interactions with canonical purines. All the values of ΔGr unambiguously indicate that reactions with cisPt-diaqua are more preferable, but the comparison of ΔGr values obtained for compounds from vitamin B group and the ones characterizing complexes created by Guanine molecules indicates higher affinity of cisPt monomers toward purines.

Conclusion: Based on the observations, the regular intake of vitamin-rich beetroot or carrot juices is strongly discouraged during anticancer therapy using CisPt drug. To confirm the results of the performed computational study, detailed clinical trials should be performed.

Keywords: Cisplatin (Cisplatinum, CisPt), platinum-based drugs, lung cancer, cancer treatment, vitaminum B, thiamine (B1), pyridoxal phosphate (B6), niacin (B3), riboflavin (B2).

Graphical Abstract

[1]
Rosenberg, B.; Vancamo, L.; Trosko, J.E.; Mansour, V.H. Platinum compounds: A new class of potent antitumour agents. Nature, 1969, 222(5191), 385-386.
[2]
Wiltshaw, E.; Kroner, T.; Phase, I.I. Study of cis-dichlorodiammineplatinum[II] (NSC-119875] in advanced adenocarcinoma of the ovary. Cancer Treat. Rep., 1976, 60(1), 55-60.
[3]
Frezza, M.; Hindo, S.; Chen, D.; Davenport, A.; Schmitt, S.; Tomco, D.; Dou, Q.P. Novel metals and metal complexes as platforms for cancer therapy. Curr. Pharm. Des., 2010, 16(16), 1813-1825.
[4]
Desoize, B.; Madoulet, C. Particular aspects of platinum compounds used at present in cancer treatment. Crit. Rev. Oncol. Hematol., 2002, 42(3), 317-325.
[5]
Fraval, H.N.; Rawlings, C.J.; Roberts, J.J. Increased sensitivity of UV-repair-deficient human cells to DNA bound platinum products which unlike thymine dimers are not recognized by an endonuclease extracted from Micrococcus luteus. Mutat. Res., 1978, 51(1), 121-132.
[6]
Wiernik, P.H.; Yeap, B.; Vogl, S.E.; Kaplan, B.H.; Comis, R.L.; Falkson, G.; Davis, T.E.; Fazzini, E.; Cheuvart, B.; Horton, J. Hexamethylmelamine and low or moderate dose cisplatin with or without pyridoxine for treatment of advanced ovarian carcinoma: A study of the eastern cooperative oncology group. Cancer Invest., 1992, 10(1), 1-9.
[7]
Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[8]
Ivanov, A.I.; Christodoulou, J.; Parkinson, J.A.; Barnham, K.J.; Tucker, A.; Woodrow, J.; Sadler, P.J. Cisplatin binding sites on human albumin. J. Biol. Chem., 1998, 273(24), 14721-14730.
[9]
Lippert, B. Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug; Verlag Helvetica Chimica Acta: Zürich, 1999.
[10]
Gately, D.P.; Howell, S.B. Cellular accumulation of the anticancer agent cisplatin: A review. Br. J. Cancer, 1993, 67(6), 1171-1176.
[11]
Ishida, S.; Lee, J.; Thiele, D.J.; Herskowitz, I. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc. Natl. Acad. Sci., 2002, 99(22), 14298-14302.
[12]
Farrell, N.; Kelland, L.R. Platinum-Based Drugs in Cancer Therapy; Humana Press, 2000.
[13]
Baik, M-H.; Friesner, R.A.; Lippard, S.J. Theoretical study of cisplatin binding to purine bases: Why does cisplatin prefer guanine over adenine? J. Am. Chem. Soc., 2003, 125(46), 14082-14092.
[14]
Takahara, P.M.; Rosenzweig, A.C.; Frederick, C.A.; Lippard, S.J. Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin. Nature, 1995, 377(6550), 649-652.
[15]
Sarmah, A.; Roy, R.K. Understanding the preferential binding interaction of aqua-cisplatins with nucleobase guanine over adenine: A density functional reactivity theory based approach. RSC Adv., 2013, 3(8), 2822.
[16]
Fuertes, M.A.; Castilla, J.; Alonso, C.; Pérez, J.M. Novel concepts in the development of platinum antitumor drugs. Curr. Med. Chem. Anticancer Agents, 2002, 2(4), 539-551.
[17]
Zhang, Y.; Guo, Z.; You, X.Z. Hydrolysis theory for cisplatin and its analogues based on density functional studies. J. Am. Chem. Soc., 2001, 123(38), 9378-9387.
[18]
Raber, J.; Zhu, C.; Eriksson, L.A. Activation of anti-cancer drug cisplatin — is the activated complex fully aquated? Mol. Phys., 2004, 102(23-24), 2537-2544.
[19]
Mantri, Y.; Lippard, S.J.; Baik, M-H. Bifunctional binding of cisplatin to DNA: Why does cisplatin form 1,2-intrastrand cross-links with Ag but not with GA? J. Am. Chem. Soc., 2007, 129(16), 5023-5030.
[20]
Zeizinger, M.; Burda, J.V.; Leszczynski, J. The influence of a sugar-phosphate backbone on the cisplatin-bridged BpB? models of DNA purine bases. Quantum chemical calculations of Pt[Ii] bonding characteristics. Phys. Chem. Chem. Phys., 2004, 6(13), 3585.
[21]
Spiegel, K.; Rothlisberger, U.; Carloni, P. Cisplatin binding to DNA oligomers from hybrid car-parrinello/molecular dynamics simulations. J. Phys. Chem. B, 2004, 108(8), 2699-2707.
[22]
Wysokiński, R.; Michalska, D. The performance of different density functional methods in the calculation of molecular structures and vibrational spectra of Platinum[II] antitumor drugs: Cisplatin and carboplatin. J. Comput. Chem., 2001, 22(9), 901-912.
[23]
Chval, Z.; Sip, M. Pentacoordinated transition states of cisplatin hydrolysis—ab initio study. J. Mol. Struct. Theochem, 2000, 532(1-3), 59-68.
[24]
Carloni, P.; Sprik, M.; Andreoni, W. Key steps of the Cis -Platin-DNA interaction: Density functional theory-based molecular dynamics simulations. J. Phys. Chem. B, 2000, 104(4), 823-835.
[25]
Sarmah, A.; Saha, S.; Bagaria, P.; Kinkar Roy, R. On the complementarity of comprehensive decomposition analysis of stabilization energy (CDASE) scheme and supermolecular approach. Chem. Phys., 394(1), 29-35.
[26]
Ayers, P.W.; Parr, R.G. Variational principles for describing chemical reactions. Reactivity indices based on the external potential. J. Am. Chem. Soc., 2001, 123(9), 2007-2017.
[27]
Parr, R.G.; Yang, W. Density-functional theory of the electronic structure of molecules. Annu. Rev. Phys. Chem., 1995, 46(1), 701-728.
[28]
Roy, R.K.; Saha, S. Studies of regioselectivity of large molecular systems using DFT based reactivity descriptors. Annu. Reports Sect. “C. Phys. Chem., 2010, 106, 118.
[29]
Calais, J-L. Density-Functional Theory of Atoms and Molecules. R.G. Parr and W. Yang, Oxford University Press, New York, Oxford, 1989. IX + 333 Pp. Price £45.00. Int. J. Quantum Chem., 1993, 47(1), 101-101.
[30]
Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev., 1964, 136(3B), B864-B871.
[31]
Parr, R.G.; Szentpály, L.V.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc., 1999, 121(9), 1922-1924.
[32]
Maynard, A.T.; Huang, M.; Rice, W.G.; Covell, D.G. Reactivity of the HIV-1 nucleocapsid protein P7 zinc finger domains from the perspective of density-functional theory. Proc. Natl. Acad. Sci., 1998, 95(20), 11578-11583.
[33]
Parr, R.G.; Chattaraj, P.K. Principle of maximum hardness. J. Am. Chem. Soc., 1991, 113(5), 1854-1855.
[34]
Ayers, P.W.; Anderson, J.S.M.; Rodriguez, J.I.; Jawed, Z. Indices for predicting the quality of leaving groups. Phys. Chem. Chem. Phys., 2005, 7(9), 1918.
[35]
Yang, W.; Parr, R.G. Hardness, softness, and the fukui function in the electronic theory of metals and catalysis (chemical reactivity/density functional theory/local softness/density of states). Chemistry (Easton), 1985, 82, 6723-6726.
[36]
Ghosh, S.K.; Berkowitz, M. A classical fluid-like approach to the density-functional formalism of many-electron systems. J. Chem. Phys., 1985, 83(6), 2976-2983.
[37]
Saha, S.; Roy, R.K. “One-into-Many” model: An approach on DFT based reactivity descriptor to predict the regioselectivity of large systems. J. Phys. Chem. B, 2007, 111(32), 9664-9674.
[38]
Bagaria, P.; Saha, S.; Murru, S.; Kavala, V.; Patel, B.K.; Roy, R.K. A comprehensive decomposition analysis of stabilization energy (CDASE) and its application in locating the rate-determining step of multi-step reactions. Phys. Chem. Chem. Phys., 2009, 11(37), 8306.
[39]
Urzad Rejestracji Produktów Leczniczych. Charakterystyka Produktu Leczniczego UR.DZL.ZLN.4020.02877.2015: Poland; , 2015.
[40]
Smithline, H.A.; Donnino, M.; Greenblatt, D.J. Pharmacokinetics of high-dose oral thiamine hydrochloride in healthy subjects. BMC Clin. Pharmacol., 2012, 12, 4.
[41]
Pietrzak, I. Vitamin disturbances in chronic renal insufficiency. I. Water soluble vitamins. Przegl. Lek., 1995, 52(10), 522-525.
[42]
de Bernardi di Valserra, M.; Germogli, R.; Feletti, F.; Covini, D.; Borgonovo, E. Pharmacokinetics of a sustained release formulation of pyridoxal phosphate of buflomedil after single or repeated oral doses in healthy volunteers. Arzneimittelforschung, 1992, 42(5), 632-636.
[43]
Bode, W.; van den Berg, H. Pyridoxal-5′-phosphate and pyridoxal biokinetics in male wistar rats fed graded levels of vitamin B-6. J. Nutr., 1991, 121(11), 1738-1745.
[44]
Surjana, D.; Halliday, G.M.; Damian, D.L. Role of nicotinamide in DNA damage, mutagenesis, and DNA repair. J. Nucleic Acids, 2010, 2010.
[45]
Farmaceutyczne, P.T. Farmakopea Polska IX; Urząd Rejestracji Produktów Leczniczych, Wyrobów Medycznych i Produktów Biobójczych: Warszawa, 2011.
[46]
Ghosal, A.; Said, H.M. Mechanism and regulation of vitamin B2 (Riboflavin) uptake by mouse and human pancreatic β-cells/islets: Physiological and molecular aspects. Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 303(9), G1052-8.
[47]
Powers, H.J. Riboflavin (Vitamin B-2) and health. Am. J. Clin. Nutr., 2003, 77(6), 1352-1360.
[48]
Koch, W.; Holthausen, M.C. A Chemist’s Guide to Density Functional Theory; Wiley-VCH, 2001.
[49]
Council, N.R. Diet, Nutrition, and Cancer; The National Academies Press: Washington, DC, 1982.
[50]
Kennedy, D.B. Vitamins and the brain: Mechanisms, dose and efficacy—A review. Nutrients, 2016, 8(2), 68.
[51]
Zielińska-Dawidziak, M.; Grajek, K.; Olejnik, A.; Czaczyk, K.; Grajek, W. Transport of high concentration of thiamin, riboflavin and pyridoxine across intestinal epithelial cells Caco-2. J. Nutr. Sci. Vitaminol. (Tokyo), 2008, 54(6), 423-429.
[52]
Vandemark, N.L.; Salisbury, G.W. The concentration of some B vitamins in bull semen. J. Biol. Chem., 1944, 156, 289-291.
[53]
Seifollah, S.; Mousavi, B. Prevention of cisplatin nephrotoxicity. J. Nephropharmacol., 2016, 5(1), 57-60.
[54]
Miller, R.P.; Tadagavadi, R.K.; Ramesh, G.; Reeves, W.B. Mechanisms of cisplatin nephrotoxicity. Toxins (Basel), 2010, 2(11), 2490-2518.
[55]
Stipanuk, M.; Caudill, M. Biochemical; Physiological and Molecular Aspects of Human Nutrition, 2013.
[56]
Winkler, C.; Wirleitner, B.; Schroecksnadel, K.; Schennach, H.; Fuchs, D. Beer down-regulates activated peripheral blood mononuclear cells in vitro. Int. Immunopharmacol., 2006, 6(3), 390-395.
[57]
National Agricultural Library. National Nutrient Database for Standard, https://ndb.nal.usda.gov/ndb/search/list
[58]
Bancroft, D.P.; Lepre, C.A.; Lippard, S.J. Platinum-195 NMR kinetic and mechanistic studies of Cis- and Trans-Diamminedichloroplatinum[II] binding to DNA. J. Am. Chem. Soc., 1990, 112(19), 6860-6871.
[59]
Legendre, F.; Bas, V.; Kozelka, J.; Chottard, J-C. A complete kinetic study of GG versus AG Platination suggests that the doubly aquated derivatives of cisplatin are the actual DNA binding species. Chem - A Eur. J., 2000, 6(11), 2002-2010.
[60]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegaw, C.J. Gaussian 09 Citation Gaussian.com.
[61]
Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. Addit., 1993, 98(5648)
[62]
Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys., 1985, 82(1), 270-283.
[63]
Cramer, C.J.; Truhlar, D.G. Implicit solvation models: Equilibria, structure, spectra, and dynamics. Chem. Rev., 1999, 99(8), 2161-2200.
[64]
Marten, B.; Kim, K.; Cortis, C.; Friesner, R.A.; Murphy, R.B.; Ringnalda, M.N.; Sitkoff, D.; Honig, B. New model for calculation of solvation free energies: Correction of self-consistent reaction field continuum dielectric theory for short-range hydrogen-bonding effects. J. Phys. Chem., 1996, 100(28), 11775-11788.
[65]
Barone, V.; Cossi, M.; Tomasi, J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J. Chem. Phys., 1998, 107(8), 3210-3221.
[66]
Nandala, S. Effects of cisplatin analog size on the reaction with DNA bases; Western Kentucky University: USA, 2013.