Current Protein & Peptide Science

Author(s): Ritu Kataria and Anurag Khatkar*

DOI: 10.2174/1389203720666190320170215

Lead Molecules for Targeted Urease Inhibition: An Updated Review from 2010 -2018

Page: [1158 - 1188] Pages: 31

  • * (Excluding Mailing and Handling)

Abstract

The field of enzyme inhibition is a tremendous and quickly growing territory of research. Urease a nickel containing metalloenzyme found in bacteria, algae, fungi, and plants brings hydrolysis of urea and plays important role in environmental nitrogen cycle. Apart from this it was found to be responsible for many pathological conditions due to its presence in many microorganisms such as H. Pylori, a ureolytic bacteria having urease which elevates pH of gastric medium by hydrolyzing urea present in alimentary canal and help the bacteria to colonize and spread infection. Due to the infections caused by the various bacterial ureases such as Bacillus pasteurii, Brucella abortus, H. pylori, H. mustelae, Klebsiella aerogenes, Klebsiella tuberculosis, Mycobacterium tuberculosis, Pseudomonas putida, Sporosarcina pasteurii and Yersinia enterocolitica, it has been the current topic of today’s research. About a wide range of compounds from the exhaustive literature survey has been discussed in this review which is enveloped into two expansive classes, as Inhibitors from synthetic origin and Inhibitors from natural origin. Moreover active site details of enzyme, mechanism of catalysis of substrate by enzyme, uses of plant urease and its pathogenic behavior has been included in the current review. So, overall, this review article diagrams the current landscape of the developments in the improvements in the thriving field of urease inhibitory movement in medicinal chemistry from year 2010 to 2018, with an emphasis on mechanism of action of inhibitors that may be used for more development of recent and strong urease inhibitors and open up new doors for assist examinations in a standout amongst the most lively and promising regions of research.

Keywords: Urea, urease, catalytic mechanism, active site, H. pylori, enzyme inhibition.

Graphical Abstract

[1]
Mobley, H.L.T.; Hausinger, R.P. Microbial ureases: significance, regulation, and molecular characterization. Microbiol. Rev., 1989, 53(1), 85-108.
[2]
Manunza, B.; Deiana, S.; Pintore, M.; Gessa, C. The binding mechanism of urea, hydroxamic acid and N-(N-butyl)-phosphoric triamide to the urease active site. A comparative molecular dynamics study. Soil Biol. Biochem., 1999, 31(5), 789-796.
[3]
Tamaddon, F.; Ghazi, S. Urease: A highly biocompatible cata-lyst for switchable Biginelli reaction and synthesis of 1, 4-dihydropyridines from the in situ formed ammonia. Catal. Commun., 2015, 72, 63-67.
[4]
Mobley, H.L.T.; Island, M.D.; Hausinger, R.P. Molecular biology of microbial ureases. Microbiol. Rev., 1995, 59(3), 451-480.
[5]
Vassiliou, S.; Grabowiecka, A.; Kosikowska, P.; Yiotakis, A.; Kafarski, P.; Berlicki, Ł. Design, synthesis, and evaluation of novel organophosphorus inhibitors of bacterial ureases. J. Med. Chem., 2008, 51(18), 5736-5744.
[6]
Ha, N.C.; Oh, S.T.; Sung, J.Y.; Cha, K.A.; Lee, M.H.; Oh, B.H. Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nat. Struct. Biol., 2001, 8(6), 505-509.
[7]
Jabri, E.; Carr, M.B.; Hausinger, R.P.; Karplus, P.A. The crystal structure of urease from Klebsiella aerogenes. Science, 1995, 268(5213), 998-1004.
[8]
Ciurli, S.; Benini, S.; Rypniewski, W.R.; Wilson, K.S.; Miletti, S.; Mangani, S. Structural properties of the nickel ions in urease : novel insights into the catalytic and inhibition mechanisms. Coord. Chem. Rev., 1999, 192, 331-355.
[9]
LeVeen, H.H.; LeVeen, E.G.; LeVeen, R.F. Awakenings to the pathogenicity of urease and the requirement for continuous long term therapy. Biomed. Pharmacother., 1994, 48(3-4), 157-166.
[10]
Gripenberg-Lerche, C.; Zhang, L.; Ahtonen, P.; Toivanen, P.; Skurnik, M. Construction of urease-negative mutants of Yersinia enterocolitica serotypes O:3 and o:8: role of urease in virulence and arthritogenicity. Infect. Immun., 2000, 68(2), 942-947.
[11]
Li, X.; Zhao, H.; Lockatell, C.V.; Drachenberg, C.B.; Johnson, D.E.; Mobley, H.L. Visualization of Proteus mirabilis within the matrix of urease-induced bladder stones during experimental urinary tract infection. Infect. Immun., 2002, 70(1), 389-394.
[12]
Jang, H.J.; Choi, M.H.; Shin, W.G.; Kim, K.H.; Chung, Y.W.; Kim, K.O.; Park, C.H.; Baek, I.H.; Baik, K.H.; Kae, S.H.; Kim, H.Y. Has peptic ulcer disease changed during the past ten years in Korea? A prospective multi-center study. Dig. Dis. Sci., 2008, 53(6), 1527-1531.
[13]
Cuadrado-Lavín, A.; Salcines-Caviedes, J.R.; Carrascosa, M.F.; Dierssen-Sotos, T.; Cobo, M.; Campos, M.R.; Ayestarán, B.; Fernández-Pousa, A.; González-Colominas, E.; Aresti-Zárate, S.; Hernández, M.; Pascual, E.L. Levofloxacin versus clarithromycin in a 10 day triple therapy regimen for first-line Helicobacter pylori eradication: a single-blind randomized clinical trial. J. Antimicrob. Chemother., 2012, 67(9), 2254-2259.
[14]
Brown, L.M. Helicobacter pylori: epidemiology and routes of transmission. Epidemiol. Rev., 2000, 22(2), 283-297.
[15]
Krajewska, B.; Ureases, I. Functional, catalytic and kinetic properties: A review. J. Mol. Catal., B Enzym., 2009, 59(1–3), 9-21.
[16]
Balasubramanian, A.; Ponnuraj, K. Crystal structure of the first plant urease from jack bean: 83 years of journey from its first crystal to molecular structure. J. Mol. Biol., 2010, 400(3), 274-283.
[17]
Wöhler, F. Ueber künstliche Bildung des Harnstoffs. Ann. Phys. Chem., 1828, 12, 253-256.
[18]
Fearon, W.R. Urease. Part I. The chemical changes involved in the zymolysis of urea. Biochem. J., 1923, 17(1), 84-93.
[19]
Sumner, J.B. The isolation and crystallization of the enzyme urease preliminary paper. J. Biol. Chem., 1926, 69(2), 435-441.
[20]
Dixon, N.E.; Gazzola, T.C. blakeley, R.L.; Zermer, B. Letter: Jack bean urease (EC 3.5.1.5). A metalloenzyme. A simple biological role for nickel? J. Am. Chem. Soc., 1975, 97(14), 4131-4133.
[21]
Morou-Bermudez, E.; Burne, R.A. Genetic and physiologic characterization of urease of Actinomyces naeslundii. Infect. Immun., 1999, 67(2), 504-512.
[22]
Liu, Y.; Hu, T.; Zhang, J.; Zhou, X. Characterization of the Actinomyces naeslundii ureolysis and its role in bacterial aciduricity and capacity to modulate pH homeostasis. Microbiol. Res., 2006, 161(4), 304-310.
[23]
Olivera-Severo, D.; Wassermann, G.E.; Carlini, C.R. Ureases display biological effects independent of enzymatic activity: is there a connection to diseases caused by urease-producing bacteria? Braz. J. Med. Biol. Res., 2006, 39(7), 851-861.
[24]
Contreras-Rodriguez, A.; Quiroz-Limon, J.; Martins, A.M.; Peralta, H.; Avila-Calderon, E.; Sriranganathan, N.; Boyle, S.M.; Lopez-Merino, A. Enzymatic, immunological and phylogenetic characterization of Brucella suis urease. BMC Microbiol., 2008, 8(1), 121.
[25]
Bandara, A.B.; Contreras, A.; Contreras-Rodriguez, A.; Martins, A.M.; Dobrean, V.; Poff-Reichow, S.; Rajasekaran, P.; Sriranganathan, N.; Schurig, G.G.; Boyle, S.M. Brucella suis urease encoded by ure1 but not ure2 is necessary for intestinal infection of BALB/c mice. BMC Microbiol., 2007, 7(1), 57.
[26]
Verma, N.; Kaur, H.; Kumar, S. Whole cell based electro-chemical biosensor for monitoring lead ions in milk. Biotechnology (Faisalabad), 2011, 10(3), 259-266.
[27]
Cox, G.M.; Mukherjee, J.; Cole, G.T.; Casadevall, A.; Perfect, J.R. Urease as a virulence factor in experimental cryptococcosis. Infect. Immun., 2000, 68(2), 443-448.
[28]
Kountouras, J.; Tsolaki, M.; Gavalas, E.; Boziki, M.; Zavos, C.; Karatzoglou, P.; Chatzopoulos, D.; Venizelos, I. Relationship between Helicobacter pylori infection and Alzheimer disease. Neurology, 2006, 66(6), 938-940.
[29]
Benoit, S.L.; Zbell, A.L.; Maier, R.J. Nickel enzyme maturation in Helicobacter hepaticus: roles of accessory proteins in hydrogenase and urease activities. Microbiology, 2007, 153(Pt 11), 3748-3756.
[30]
Rashid, T.; Ebringer, A. Rheumatoid arthritis is linked to Proteus--the evidence. Clin. Rheumatol., 2007, 26(7), 1036-1043.
[31]
Granick, S. Urease distribution in plants: general methods. Plant Physiol., 1937, 12(2), 471.
[32]
Hirayama, C.; Sugimura, M.; Saito, H.; Nakamura, M. Purification and properties of urease from the leaf of mulberry, Morus alba. Phytochemistry, 2000, 53(3), 325-330.
[33]
Jin, M.; Rosario, W.; Watler, E.; Calhoun, D.H. Development of a large-scale HPLC-based purification for the urease from Staphylococcus leei and determination of subunit structure. Protein Expr. Purif., 2004, 34(1), 111-117.
[34]
Chen, Y.Y.; Clancy, K.A.; Burne, R.A. Streptococcus salivarius urease: genetic and biochemical characterization and expression in a dental plaque streptococcus. Infect. Immun., 1996, 64(2), 585-592.
[35]
Prakash, O.; Talat, M.; Hasan, S.H.; Pandey, R.K. Factorial design for the optimization of enzymatic detection of cadmium in aqueous solution using immobilized urease from vegetable waste. Bioresour. Technol., 2008, 99(16), 7565-7572.
[36]
Ibrahim, M.N.M.; Wijeratne, A.M.U.; Costa, M.J.I. Effect of different sources of urease on the treatment time and digestibility of urea-ammonia treated rice straw. Agric. Wastes, 1985, 13(3), 197-205.
[37]
Follmer, C.; Real‐Guerra, R.; Wasserman, G.E. Olivera‐Severo, D.; Carlini, C. R. Jackbean, soybean and Bacillus pasteurii ureases. FEBS J., 2004, 271(7), 1357-1363.
[38]
Polacco, J.C.; Holland, M.A. Roles of urease in plant cells. Int. Rev. Cytol., 1993, 145, 65-103.
[39]
Sujoy, B.; Aparna, A. Potential clinical significance of urease enzyme. Eur. Sci. J., 2013, 9(21), 94-102.
[40]
Jabri, E.; Karplus, P.A. Structures of the Klebsiella aerogenes urease apoenzyme and two active-site mutants. Biochemistry, 1996, 35(33), 10616-10626.
[41]
Benini, S.; Rypniewski, W.R.; Wilson, K.S.; Miletti, S.; Ciurli, S.; Mangani, S. A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Structure, 1999, 7(2), 205-216.
[42]
Benini, S.; Rypniewski, W.R.; Wilson, K.S.; Mangani, S.; Ciurli, S. Molecular details of urease inhibition by boric acid: insights into the catalytic mechanism. J. Am. Chem. Soc., 2004, 126(12), 3714-3715.
[43]
Carlsson, H.; Nordlander, E. Computational modeling of the mechanism of urease. Bioinorg. Chem. Appl., 2010, Article ID 36489.
[44]
King, G.J.; Zerner, B. Jack bean urease: mixed-metal derivatives. Inorg. Chim. Acta, 1997, 255(2), 381-388.
[45]
Available from: https://www.rcsb.org
[46]
Ciurli, S.; Benini, S.; Rypniewski, W.R.; Wilson, K.S.; Milet-ti, S.; Mangani, S. Structural properties of the nickel ions in urease: novel insights into the catalytic and inhibition mecha-nisms. Coord. Chem. Rev., 1999, 190-192, 331-355.
[47]
Jabri, E.; Lee, M.H.; Hausinger, R.P.; Karplus, P.A. Preliminary crystallographic studies of urease from jack bean and from Klebsiella aerogenes. J. Mol. Biol., 1992, 227(3), 934-937.
[48]
Sheridan, L.; Wilmot, C.M.; Cromie, K.D.; van der Logt, P.; Phillips, S.E.V. Crystallization and preliminary X-ray structure determination of jack bean urease with a bound antibody fragment. Acta Crystallogr. D Biol. Crystallogr., 2002, 58(Pt 2), 374-376.
[49]
Farrugia, M.A.; Macomber, L.; Hausinger, R.P. Biosynthesis of the urease metallocenter. J. Biol. Chem., 2013, 288(19), 13178-13185.
[50]
Follmer, C. Insights into the role and structure of plant ureases. Phytochemistry, 2008, 69(1), 18-28.
[51]
Mora, D.; Arioli, S. Microbial urease in health and disease. PLoS Pathog., 2014, 10(12)e1004472
[52]
Dixon, N.E.; Hinds, J.A.; Fihelly, A.K.; Gazzola, C.; Winzor, D.J.; Blakeley, R.L.; Zerner, B. Jack bean urease (EC 3.5.1.5). IV. The molecular size and the mechanism of inhibition by hydroxamic acids. Spectrophotometric titration of enzymes with reversible inhibitors. Can. J. Biochem., 1980, 58(12), 1323-1334.
[53]
Polacco, J.C.; Havir, E.A. Comparisons of soybean urease isolated from seed and tissue culture. J. Biol. Chem., 1979, 254(5), 1707-1715.
[54]
Das, N.; Kayastha, A.M.; Srivastava, P.K. Purification and characterization of urease from dehusked pigeonpea (Cajanus cajan L) seeds. Phytochemistry, 2002, 61(5), 513-521.
[55]
Takishima, K.; Suga, T.; Mamiya, G. The structure of jack bean urease. The complete amino acid sequence, limited proteolysis and reactive cysteine residues. Eur. J. Biochem., 1988, 175(1), 151-165.
[56]
Riddles, P.W.; Whan, V.; Blakeley, R.L.; Zerner, B. Cloning and sequencing of a jack bean urease-encoding cDNA. Gene, 1991, 108(2), 265-267.
[57]
Dilrukshi, R.A.; Kawasaki, S. Effective use of plant-derived urease in the field of geoenvironmental. Geotechnical Engineering. J. Civil Environ. Eng, 2016, 6(207), 2.
[58]
Lubbers, M.W.; Rodriguez, S.B.; Honey, N.K.; Thornton, R.J. Purification and characterization of urease from schizosaccharomyces pombe. Can. J. Microbiol., 1996, 42(2), 132-140.
[59]
Mirbod, F.; Schaller, R.A.; Cole, G.T. Purification and characterization of urease isolated from the pathogenic fungus Coccidioides immitis. Med. Mycol., 2002, 40(1), 35-44.
[60]
Schäfer, U.K.; Kaltwasser, H. Urease from Staphylococcus saprophyticus: purification, characterization and comparison to Staphylococcus xylosus urease. Arch. Microbiol., 1994, 161(5), 393-399.
[61]
Geweely, N.S. Purification and characterization of intracellular urease enzyme isolated from Rhizopus oryzae. Biotechnology (Faisalabad), 2006, 5(3), 358-364.
[62]
Lee, S.G.; Calhoun, D.H. Urease from a potentially pathogenic coccoid isolate: purification, characterization, and comparison to other microbial ureases. Infect. Immun., 1997, 65(10), 3991-3996.
[63]
Hu, L.T.; Mobley, H.L. Purification and N-terminal analysis of urease from Helicobacter pylori. Infect. Immun., 1990, 58(4), 992-998.
[64]
Mobley, H.L.; Cortesia, M.J.; Rosenthal, L.E.; Jones, B.D. Characterization of urease from Campylobacter pylori. J. Clin. Microbiol., 1988, 26(5), 831-836.
[65]
Evans, D.J., Jr; Evans, D.G.; Kirkpatrick, S.S.; Graham, D.Y. Characterization of the Helicobacter pylori urease and purification of its subunits. Microb. Pathog., 1991, 10(1), 15-26.
[66]
Dunn, B.E.; Campbell, G.P.; Perez-Perez, G.I.; Blaser, M.J. Purification and characterization of urease from Helicobacter pylori. J. Biol. Chem., 1990, 265(16), 9464-9469.
[67]
Clayton, C.L.; Pallen, M.J.; Kleanthous, H.; Wren, B.W.; Tabaqchali, S. Nucleotide sequence of two genes from Helicobacter pylori encoding for urease subunits. Nucleic Acids Res., 1990, 18(2), 362.
[68]
Labigne, A.; Cussac, V.; Courcoux, P. Shuttle cloning and nucleotide sequences of Helicobacter pylori genes responsible for urease activity. J. Bacteriol., 1991, 173(6), 1920-1931.
[69]
Yamaoka, Y., Ed.; Helicobacter pylori: molecular genetics and cellular biology; Horizon Scientific Press, 2008.
[70]
Miyagawa, K.; Sumida, M.; Nakao, M.; Harada, M.; Yamamoto, H.; Kusumi, T.; Yoshizawa, K.; Amachi, T.; Nakayama, T. Purification, characterization, and application of an acid urease from Arthrobacter mobilis. J. Biotechnol., 1999, 68(2-3), 227-236.
[71]
Martin, P.R.; Hausinger, R.P. Site-directed mutagenesis of the active site cysteine in Klebsiella aerogenes urease. J. Biol. Chem., 1992, 267(28), 20024-20027.
[72]
Todd, M.J.; Hausinger, R.P. Reactivity of the essential thiol of Klebsiella aerogenes urease. Effect of pH and ligands on thiol modification. J. Biol. Chem., 1991, 266(16), 10260-10267.
[73]
Follmer, C. Ureases as a target for the treatment of gastric and urinary infections. J. Clin. Pathol., 2010, 63(5), 424-430.
[74]
Dunn, B.E.; Phadnis, S.H. Structure, function and localization of Helicobacter pylori urease. Yale J. Biol. Med., 1998, 71(2), 63-73.
[75]
Hameed, A.; Khan, K.M.; Zehra, S.T.; Ahmed, R.; Shafiq, Z.; Bakht, S.M.; Yaqub, M.; Hussain, M.; de la Vega de León, A.; Furtmann, N.; Bajorath, J.; Shad, H.A.; Tahir, M.N.; Iqbal, J. Synthesis, biological evaluation and molecular docking of N-phenyl thiosemicarbazones as urease inhibitors. Bioorg. Chem., 2015, 61, 51-57.
[76]
Karplus, P.A.; Pearson, M.A.; Hausinger, R.P. 70 years of crystalline urease: what have we learned. Acc. Chem. Res., 1997, 30(8), 330-337.
[77]
Hausinger, R.P.; Karplus, P.A.; Wieghardt, K.R. Huber.; T.L. Poulos.; A. Messer schmidt (Eds.), Handbook of Metalloproteins, Wiley, West Sussex, UK, , 2001; pp. 867-879.
[78]
Pearson, M.A.; Park, I.S.; Schaller, R.A.; Michel, L.O.; Karplus, P.A.; Hausinger, R.P. Kinetic and structural characterization of urease active site variants. Biochemistry, 2000, 39(29), 8575-8584.
[79]
Manunza, B.; Deiana, S.; Pintore, M.; Gessa, C. The binding mechanism of urea, hydroxamic acid and N-(N-butyl)-phosphoric triamide to the urease active site. A comparative molecular dynamics study. Soil Biol. Biochem., 1999, 31(5), 789-796.
[80]
Marlier, J.F.; Cleland, W.W. Multiple isotope effect study of the hydrolysis of formamide by urease from jack bean (Canavalia ensiformis). Biochemistry, 2006, 45(32), 9940-9948.
[81]
Musiani, F.; Arnofi, E.; Casadio, R. Structure-based computa-tional study of the catalytic and inhibition mechanisms of urease. J. Biol. Inorg. Chem., 2001, 6, 300-314.
[82]
Nagata, K.; Mizuta, T.; Tonokatu, Y.; Fukuda, Y.; Okamura, H.; Hayashi, T.; Shimoyama, T.; Tamura, T. Monoclonal antibodies against the native urease of Helicobacter pylori: synergistic inhibition of urease activity by monoclonal antibody combinations. Infect. Immun., 1992, 60(11), 4826-4831.
[83]
Thomson, A.; Visek, W.J. Some effects of induction of urease immunity in patients with hepatic insufficiency. Am. J. Med., 1963, 35, 804-812.
[84]
Tetiker, A.T.; Ertan, F. Investigation of some properties of immobilized urease from Cicer arietinum and its using in determination of urea level in some animal feed. JIPBS, 2017, 4(2), 1-6.
[85]
Wright, C.I.; Van-Buren, L.; Kroner, C.I.; Koning, M.M. Herbal medicines as diuretics: a review of the scientific evidence. J. Ethnopharmacol., 2007, 114(1), 1-31.
[86]
Kappaun, K.; Piovesan, A.R.; Carlini, C.R.; Ligabue-Braun, R. Ureases: Historical aspects, catalytic, and non-catalytic properties - A review. J. Adv. Res., 2018, 13, 3-17.
[87]
Menegassi, A.; Wassermann, G.E.; Olivera-Severo, D.; Becker-Ritt, A.B.; Martinelli, A.H.; Feder, V.; Carlini, C.R. Urease from cotton (Gossypium hirsutum) seeds: isolation, physicochemical characterization, and antifungal properties of the protein. J. Agric. Food Chem., 2008, 56(12), 4399-4405.
[88]
Beckerritt, A.B.; Martinelli, A.H.S.; Mitidieri, S.; Feder, V. Antifungal activity of plant and bacterial ureases. Toxicon, 2007, 50, 971-983.
[89]
Verma, N.; Kaur, H.; Kumar, S. A whole cell based electro-chemical lead biosensor for monitoring Lead ions in Milk. Biotechnology (Faisalabad), 2011, 10, 259-266.
[90]
Ramesh, R.; Puhazhendi, P.; Kumar, J.; Gowthaman, M.K.; D’Souza, S.F.; Kamini, N.R. Potentiometric biosensor for determination of urea in milk using immobilized Arthrobacter creatinolyticus urease. Mater. Sci. Eng. C, 2015, 49, 786-792.
[91]
Burne, R.A.; Chen, Y.Y.M. Bacterial ureases in infectious diseases. Microbes Infect., 2000, 2(5), 533-542.
[92]
Collins, C.M.; D’Orazio, S.E. Bacterial ureases: structure, regulation of expression and role in pathogenesis. Mol. Microbiol., 1993, 9(5), 907-913.
[93]
Summerskill, W.H.J.; Thorsell, F.; Feinberg, J.H.; Aldrete, J.S. Effects of urease inhibition in hyperammonemia: clinical and experimental studies with acetohydroxamic acid. Gastroenterology, 1968, 54(1), 20-26.
[94]
Sherlock, S. Diseases of the liver and biliary system; Blackwell Scientific Publications: Oxford, 1981, pp. 91-106.
[95]
Sabbaj, J.; Sutter, V.L.; Finegold, S.M. Urease and deaminase activities of fecal bacteria in hepatic coma. Antimicrob. Agents Chemother., 1970, 10, 181-185.
[96]
Samtoy, B.; DeBeukelaer, M.M. Ammonia encephalopathy secondary to urinary tract infection with Proteus mirabilis. Pediatrics, 1980, 65(2), 294-297.
[97]
Fishbein, W.N.; Carbone, P.P.; Hochstein, H.D. Acetohydroxamate: bacterial urease inhibitor with therapeutic potential in hyperammonaemic states. Nature, 1965, 208(5005), 46-48.
[98]
Kusters, J.G.; van Vliet, A.H.M.; Kuipers, E.J. Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev., 2006, 19(3), 449-490.
[99]
Kuipers, E.J. Relationship between Helicobacter pylori, atrophic gastritis and gastric cancer. Aliment. Pharmacol. Ther., 1998, 12(Suppl. 1), 25-36.
[100]
Backert, S.; Clyne, M. Pathogenesis of Helicobacter pylori infection. Helicobacter, 2011, 16(Suppl. 1), 19-25.
[101]
Forman, D.; Sitas, F.; Newell, D.G.; Stacey, A.R.; Boreham, J.; Peto, R.T.C. Campbell.; J. Li.; J. Chen. Geographic association of Helicobacter pylori antibody prevalence and gastric cancer mortality in rural China. Int. J. Cancer, 1990, 46, 608-611.
[102]
The EUROGAST Study Group. An international association between Helicobacter pylori infection and gastric cancer. Lancet, 1993, 341(8857), 1359-1362.
[103]
Ladeira, M.S.; Rodrigues, M.A.; Salvadori, D.M.; Queiroz, D.M.; Freire-Maia, D.V. DNA damage in patients infected by Helicobacter pylori. Cancer Epidemiol. Biomarkers Prev., 2004, 13(4), 631-637.
[104]
Rosenstein, I.J.M. Urinary calculi: microbiological and crystallographic studies. Crit. Rev. Clin. Lab. Sci., 1986, 23(3), 245-277.
[105]
Rosenstein, I.J.; Hamilton-Miller, J.M.; Brumfitt, W. Role of urease in the formation of infection stones: comparison of ureases from different sources. Infect. Immun., 1981, 32(1), 32-37.
[106]
Hedelin, H. Uropathogens and urinary tract concretion formation and catheter encrustations. Int. J. Antimicrob. Agents, 2002, 19(6), 484-487.
[107]
Konieczna, I.; Kwinkowski, M.; Kolesi, B.; Kami, Z.; Kaca, W. Bacterial urease and its role in long-lasting human diseases. Curr. Protein Pept. Sci., 2012, 13, 789-806.
[108]
Konieczna, I. Characteristic of the bacterial ureases molecular variety and estimation of reactivity of the human anti-urease anti bodies., PhD Thesis, The Jan Kochanowski University of Humanities..
[109]
Braude, A.I.; Siemienski, J. Role of bacterial urease in experimental pyelonephritis. J. Bacteriol., 1960, 80, 171-179.
[110]
MacLaren, D.M. The significance of urease in proteus pyelonephritis: a bacteriological study. J. Pathol. Bacteriol., 1968, 96(1), 45-56.
[111]
Gorrill, R.H. The fate of Pseudomonas aeruginosa, Prcoteuis inirabilis, and Eschlericlija coli in the mouse kidney. J. Pathol. Bacteriol., 1965, 89, 81-88.
[112]
Fitzpatrick, F.K. Pyelonephritis in the mouse. I. Infection experiments. Proc. Soc. Exp. Biol. Med., 1966, 123(2), 336-339.
[113]
Norberg, A.B.; Norberg, K. Lundbeck; U. Parkhede. Uri-nary pH and the indwelling catheter. Ups. J. Med. Sci., 1980, 85, 143-150.
[114]
Rózalski, A.; Kwil, I.; Torzewska, A.; Baranowska, M.; Staczek, P. Proteus bacilli: features and virulence factors. Postepy Hig. Med. Dosw., 2007, 61, 204-219.
[115]
Mathur, S.; Suller, M.T.; Stickler, D.J.; Feneley, R.C.L. Factors affecting crystal precipitation from urine in individuals with long-term urinary catheters colonized with urease-positive bacterial species. Urol. Res., 2006, 34, 173-177.
[116]
Shaw, G.L.; Choong, S.K. Fry, C. Encrustation of biomaterials in the urinary tract. Urol. Res., 2005, 33, 17-22.
[117]
Sofer, M.; Denstedt, J.D. Encrustation of biomaterials in the urinary tract. Curr. Opin. Urol., 2000, 10(6), 563-569.
[118]
Smith, D.G.; Russell, W.C.; Ingledew, W.J.; Thirkell, D. Hydrolysis of urea by Ureaplasma urealyticum generates a transmembrane potential with resultant ATP synthesis. J. Bacteriol., 1993, 175(11), 3253-3258.
[119]
Loes, A.N.; Ruyle, L.; Arvizu, M.; Gresko, K.E.; Wilson, A.L.; Deutch, C.E. Inhibition of urease activity in the urinary tract pathogen Staphylococcus saprophyticus. Lett. Appl. Microbiol., 2014, 58(1), 31-41.
[120]
Golub, L.M.; Borden, S.M.; Kleinberg, I. Urea content of gingival crevicular fluid and its relation to periodontal diseases in humans. J. Periodontal Res., 1971, 6(4), 243-251.
[121]
Sissons, C.H.; Hancock, E.M.; Perinpanayagam, H.E.R.; Cutress, T.W. The bacteria responsible for ureolysis in artificial dental plaque. Arch. Oral Biol., 1988, 33(10), 727-733.
[122]
Chen, Y.Y.; Burne, R.A. Analysis of Streptococcus salivarius urease expression using continuous chemostat culture. FEMS Microbiol. Lett., 1996, 135(2-3), 223-229.
[123]
Singer, D.L.; Chatterjee, R.; Denepitiya, L.; Kleinberg, I. A comparison of the acid-base metabolisms of pooled human dental plaque and salivary sediment. Arch. Oral Biol., 1983, 28(1), 29-35.
[124]
Sissons, C.H.; Cutress, T.W.; Pearce, E.I. Kinetics and product stoichiometry of ureolysis by human salivary bacteria and artificial mouth plaques. Arch. Oral Biol., 1985, 30(11-12), 781-790.
[125]
Beeson, P.B.; Rowley, D. The anticomplementary effect of kidney tissue; its association with ammonia production. J. Exp. Med., 1959, 110, 685-697.
[126]
Li, K.; Yu, J.J.; Hung, C.Y.; Lehmann, P.F.; Cole, G.T. Recombinant urease and urease DNA of Coccidioides immitis elicit an immunoprotective response against coccidioidomycosis in mice. Infect. Immun., 2001, 69(5), 2878-2887.
[127]
Lin, W.; Mathys, V.; Ang, E.L.; Koh, V.H.; Martínez Gómez, J.M.; Ang, M.L.; Zainul Rahim, S.Z.; Tan, M.P.; Pethe, K.; Alonso, S. Urease activity represents an alternative pathway for Mycobacterium tuberculosis nitrogen metabolism. Infect. Immun., 2012, 80(8), 2771-2779.
[128]
Clemens, D.L.; Lee, B-Y.; Horwitz, M.A. Purification, characterization, and genetic analysis of Mycobacterium tuberculosis urease, a potentially critical determinant of host-pathogen interaction. J. Bacteriol., 1995, 177(19), 5644-5652.
[129]
Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O. 2010 Rheumatoid Arthritis Classification Criteria. Arthritis Rheum., 2010, 62(9), 2569-2581.
[130]
Hasni, S.A. Role of Helicobacter pylori infection in autoimmune diseases. Curr. Opin. Rheumatol., 2012, 24(4), 429-434.
[131]
Tobón, G.J.; Youinou, P.; Saraux, A. The environment, geo-epidemiology, and autoimmune disease: Rheumatoid arthritis. J. Autoimmun., 2010, 35(1), 10-14.
[132]
Shamim, S.; Mohammed, K.; Salar, U.; Ali, F.; Arif, M.; Taha, M. 5-Acetyl-6-methyl-4-aryl-3, 4-dihydropyrimidin-2 (1 H) -ones : As potent urease inhibi-tors; synthesis, in vitro screening, and molecular modeling study. Bioorg. Chem., 2018, 76, 37-52.
[133]
You, Z.; Yu, H.; Zheng, B.; Zhang, C.; Lv, C.; Li, K.; Pan, L. Syntheses, structures, and inhibition studies of Jack bean urease by copper (II) complexes derived from a tridentate hydrazone ligand. Inorg. Chim. Acta, 2018, 469, 44-50.
[134]
Sangeeta, S.; Ahmad, K.; Noorussabah, N.; Bharti, S.; Mishra, M.K.; Sharma, S.R.; Choudhary, M. Synthesis, crystal structures, molecular docking and urease inhibition studies of Ni (II) and Cu (II) Schiff base complexes. J. Mol. Struct., 2018, 1156, 1-11.
[135]
Taha, M.; Ullah, H.; Al Muqarrabun, L.M.R.; Khan, M.N.; Rahim, F.; Ahmat, N.; Javid, M.T.; Ali, M.; Khan, K.M. Bisindolylmethane thiosemicarbazides as potential inhibitors of urease : Synthesis and molecular modeling studies. Bioorg. Med. Chem., 2018, 26(1), 152-160.
[136]
Abdel-Baky, R.M.; Ali, M.A.; Abuo, G.E.; AbdelAziz, N. Inhibition of urease enzyme production and some other virulence factors expression in Proteus mirabilis by N-acetyl cysteine and Dipropyl disulphide. In: Advances in Microbiology, Infectious Diseases and Public Health; Springer: Cham, 2017; pp. 99-113.
[137]
Arshad, T.; Mohammed, K.; Rasool, N.; Salar, U.; Hussain, S.; Taha, M.; Hadiani, N. Dual inhibitors of a -glucosidase and urease enzymes. Bioorg. Chem., 2017, 72, 21-31.
[138]
Menteşe, E.; Bektaş, H.; Sokmen, B.B.; Emirik, M.; Çakır, D.; Kahveci, B. Synthesis and molecular docking study of some 5,6-dichloro-2-cyclopropyl-1H-benzimidazole derivatives bearing triazole, oxadiazole, and imine functionalities as potent inhibitors of urease. Bioorg. Med. Chem. Lett., 2017, 27(13), 3014-3018.
[139]
Noreen, M.; Rasool, N.; Gull, Y.; Nasim, F.; Fawad, A.; Ya-qoob, A. A facile synthesis of new 5-aryl-thiophenes bearing sulfonamide moiety via Pd (0) -catalyzed Suzuki – Miyaura cross coupling reactions and 5-bromothiophene-2-acetamide : As potent urease inhibitor, antibacterial agent and hemolytically active compounds. J. Saudi Chem. Soc., 2017, 21, S403-S414.
[140]
Ntatsopoulos, V.; Vassiliou, S.; Macegoniuk, K.; Berlicki, Ł.; Mucha, A. Novel organophosphorus scaffolds of urease inhibitors obtained by substitution of Morita-Baylis-Hillman adducts with phospho-rus nucleophiles. Eur. J. Med. Chem., 2017, 133, 107-120.
[141]
Iftikhar, F.; Ali, Y.; Ahmad Kiani, F.; Fahad Hassan, S.; Fatima, T.; Khan, A.; Niaz, B.; Hassan, A.; Latif Ansari, F.; Rashid, U. Design, synthesis, in vitro Evaluation and docking studies on dihydropyrimidine-based urease inhibitors. Bioorg. Chem., 2017, 74, 53-65.
[142]
Saeed, A. ur Rehman. S.; Channar, P.A.; Larika, F.A.; Abbas, Q.; Hassan, M.; Raza, H.; Flörke, U.; Seo, S.-Y. Long chain 1-acyl-3-arylthioureas as jack bean urease inhibitors, synthesis, kinetic mechanism and molecular docking studies. J. Taiwan Instit. Chem. Eng., 2017, 77, 54-63.
[143]
Abdullah, M.A.; Abuo-rahma, G.E.; Abdelhafez, E.M.; Hassan, H.A.; Abdel-baky, R.M. Design, synthesis, molecular docking, anti- Proteus mirabilis and urease inhibition of new fluoroquinolone carboxylic acid derivatives. Bioorg. Chem., 2017, 70, 1-11.
[144]
Yaseen, S.; Khawar, M.; Zaib, S.; Badshah, A.; Nawaz, M.; Irshad, M.; Iqbal, J. Synthesis, characterization and urease inhibition, in vitro anticancer and antileishmanial studies of Co (III) complexes with N, N, N 0 -trisubstituted acylthioureas. Inorg. Chim. Acta, 2016, 443, 69-77.
[145]
Rahim, F.; Ali, M.; Ullah, S.; Rashid, U.; Ullah, H.; Taha, M. Development of bis-thiobarbiturates as successful urease inhibitors and their molecular modeling studies. Chin. Chem. Lett., 2016, 27(5), 693-697.
[146]
Wang, H.; Lan, T.; Zhang, X.; Zhang, D.; Bi, C.; Fan, Y. Synthesis, crystal structures, DFT studies, molecular docking and urease inhibition studies of three Ni(II) complexes with a sexidentate N2O4-donor bis-Schiff base ligand. J. Inorg. Biochem., 2016, 165, 18-24.
[147]
Shi, W.K.; Deng, R.C.; Wang, P.F.; Yue, Q.Q.; Liu, Q.; Ding, K.L.; Yang, M.H.; Zhang, H.Y.; Gong, S.H.; Deng, M.; Liu, W.R.; Feng, Q.J.; Xiao, Z.P.; Zhu, H.L. 3-Arylpropionylhydroxamic acid derivatives as Helicobacter pylori urease inhibitors: Synthesis, molecular docking and biological evaluation. Bioorg. Med. Chem., 2016, 24(19), 4519-4527.
[148]
Jing, C.; Wang, C.; Yan, K.; Zhao, K.; Sheng, G.; Qu, D.; Niu, F.; Zhu, H.; You, Z. Synthesis, structures and urease inhibitory activity of cobalt(III) complexes with Schiff bases. Bioorg. Med. Chem., 2016, 24(2), 270-276.
[149]
Pan, L.; Wang, C.; Yan, K.; Zhao, K.; Sheng, G.; Zhu, H.; Zhao, X.; Qu, D.; Niu, F.; You, Z. Synthesis, structures and Helicobacter pylori urease inhibitory activity of copper(II) complexes with tridentate aroylhydrazone ligands. J. Inorg. Biochem., 2016, 159, 22-28.
[150]
Dong, X.; Guo, T.; Li, Y.; Cui, Y.; Wang, Q. Synthesis, structure and urease inhibition studies of Schiff base copper(II) complexes with planar four-coordinate copper(II) centers. J. Inorg. Biochem., 2013, 127, 82-89.
[151]
Rashid, U.; Rahim, F.; Taha, M.; Arshad, M.; Ullah, H.; Mahmood, T.; Ali, M. Synthesis of 2-acylated and sulfonated 4-hydroxycoumarins : In vitro ure-ase inhibition and molecular docking studies. Bioorg. Chem., 2016, 66, 111-116.
[152]
Khan, A.; Hashim, J.; Arshad, N.; Khan, I.; Siddiqui, N.; Wa-dood, A.; Choudhary, M.I. Dihydropy-rimidine based hydrazine dihydrochloride derivatives as po-tent urease inhibitors. Bioorg. Chem., 2016, 64, 85-96.
[153]
Hameed, A.; Yaqub, M.; Hussain, M.; Hameed, A.; Ashraf, M.; Asghar, H.; Naseer, M.M.; Mahmood, K.; Muddassar, M.; Tahir, M.N.; Shafiq, Z. Coumarin-based thiosemicarbazones as potent urease inhibitors: synthesis, solid state self-assembly and molecular docking. RSC Advances, 2016, 6(68), 63886-63894.
[154]
Rahim, F.; Zaman, K.; Ullah, H.; Taha, M.; Wadood, A.; Javed, M.T.; Rehman, W.; Ashraf, M.; Uddin, R.; Uddin, I.; Asghar, H.; Khan, A.A.; Khan, K.M. Synthesis of 4-thiazolidinone analogs as potent in vitro anti-urease agents. Bioorg. Chem., 2015, 63, 123-131.
[155]
Taha, M.; Shah, S.A.A.; Khan, A.; Arshad, F.; Ismail, N.H.; Afifi, M.; Choudhary, M.I. Synthesis of 3,4,5-trihydroxybenzohydrazone and evaluation of their urease in-hibition potential. Arab. J. Chem., 2015. In press
[http://dx.doi.org/10.1016/j.arabjc.2015.06.036]
[156]
Taha, M.; Ismail, N.H.; Khan, A.; Shah, S.A.A.; Anwar, A.; Halim, S.A.; Fatmi, M.Q.; Imran, S.; Rahim, F.; Khan, K.M. Synthesis of novel derivatives of oxindole, their urease inhibition and molecular docking studies. Bioorg. Med. Chem. Lett., 2015, 25(16), 3285-3289.
[157]
Taha, M.; Ismail, N.H.; Imran, S.; Wadood, A.; Rahim, F.; Riaz, M. Synthesis of potent urease inhibitors based on disulfide scaffold and their molecular docking studies. Bioorg. Med. Chem., 2015, 23(22), 7211-7218.
[158]
Rauf, A.; Shahzad, S.; Bajda, M.; Yar, M.; Ahmed, F.; Hussain, N.; Jon, J. Design and synthesis of new barbituric and thiobarbituric acid derivatives as potent urease inhibitors : Structure activity relationship and molecular modeling studies. Bioorg. Med. Chem., 2015, 23, 6049-6058.
[159]
Qazi, S.U.; Rahman, S.U.; Awan, A.N.; Al-Rashida, M.; Alharthy, R.D.; Asari, A.; Hameed, A.; Iqbal, J. Semicarbazone derivatives as urease inhibitors: Synthesis, biological evaluation, molecular docking studies and in-silico ADME evaluation. Bioorg. Chem., 2018, 79, 19-26.
[160]
Naureen, S.; Chaudhry, F.; Asif, N.; Ali, M.; Ashraf, M.; Hassan, F.; Ain, M. Discovery of indole-based tetraarylimidazoles as potent inhibitors of urease with low antilipoxygenase activity. Eur. J. Med. Chem., 2015, 102, 464-470.
[161]
Qu, D.; Niu, F.; Zhao, X.; Yan, K.; Ye, Y.; Wang, J.; You, Z. Synthesis, crystal structures, and urease inhibition of an acetohydroxamate-coordinated oxovanadium (V) complex derived from Nꞌ- (3-bromo-2-hydroxybenzylidene) -. Bioorg. Med. Chem., 2015, 23(9), 1944-1949.
[162]
Sirajuddin, M.; Ali, S.; Zaib, S.; Iqbal, J.; Nawaz, M.; Ben, T. Design, structural and spectroscopic elucidation and in vitro antimicrobial, anticancer, antileish-manial, urease inhibition activities and interaction with SS-DNA of newly synthesized amide based carboxylic acid. Inorg. Chim. Acta, 2015, 427, 178-187.
[163]
Barakat, A.; Al-Majid, A.M.; Lotfy, G.; Arshad, F.; Yousuf, S.; Choudhary, M.I.; Ashraf, S.; Ul-Haq, Z. Synthesis and dynamics studies of barbituric acid derivatives as urease inhibitors. Chem. Cent. J., 2015, 9, 63.
[164]
Khan, K.M.; Rahim, F.; Khan, A.; Shabeer, M.; Hussain, S.; Rehman, W.; Taha, M.; Khan, M.; Perveen, S.; Choudhary, M.I. Synthesis and structure-activity relationship of thiobarbituric acid derivatives as potent inhibitors of urease. Bioorg. Med. Chem., 2014, 22(15), 4119-4123.
[165]
Taha, M.; Hadiani, N.; Mohd, I.; Baharudin, S.; Lalani, S.; Mehboob, S.; Khan, K.M.; Yousuf, S.; Siddiqui, S.; Rahim, F.; Choudhary, M.I. Synthesis crystal structure of 2-methoxybenzoylhydrazones and evaluation of their α -glucosidase and urease inhibition potential. Med. Chem. Res., 2014, 24, 1310-1324.
[166]
Huo, Y.; Ye, Y.; Cheng, X.; You, Z. Synthesis, characterization and urease inhibition of a novel acetylhydroxamate-coordinated oxovanadium (V) complex with hydrazone lig-and. INOCHE, 2014, 45, 131-134.
[167]
Sheng, G.H.; You, Z.; Zhu, H.L. Synthesis, crystal structure, and urease inhibition of [N ’(3,5 Dibromo 2 Hydroxybenzylidene) isonicotinohydrazido ] (Benzohydroxamato) oxovanadium (V). Russ. J. Coord. Chem., 2014, 40(7), 505-509.
[168]
Habala, L.; Roller, A.; Matuška, M.; Valentová, J.; Rompel, A.; Devínsky, F. Complexes of N -hydroxyethyl- N -benzimidazolylmethylethyl- enediaminedi-acetic acid with copper (II) and cobalt (II): Preparation, crystal structure and urease inhibitory activity. Inorg. Chim. Acta, 2014, 421, 423-426.
[169]
Demuner, J. Synthesis, molecular properties and DFT studies of new phosphoramidates as potential urease inhibitors. Chemistry, 2014, 23, 5174-5187.
[170]
Gul, R.; Khawar, M.; Badshah, A.; Sikander, S.; Nawaz, M.; Khan, A. Ferro-cene-based guanidine derivatives : In vitro antimicrobial, DNA binding and docking supported urease inhibition studies. Eur. J. Med. Chem., 2014, 85, 438-449.
[171]
Sokmen, B.B.; Hasdemir, B.; Yusufoglu, A.; Yanardag, R. Some monohydroxy tetradecanoic acid isomers as novel urease and elastase inhibitors and as new antioxidants. Appl. Biochem. Biotechnol., 2014, 23, 1358-1364.
[172]
Khan, K.M.; Naz, F.; Taha, M.; Khan, A.; Perveen, S.; Choudhary, M.I.; Voelter, W. Synthesis and in vitro urease inhibitory activity of N,N′-disubstituted thioureas. Eur. J. Med. Chem., 2014, 74, 314-323.
[173]
Saeed, A.; Khan, M.S.; Rafique, H.; Shahid, M.; Iqbal, J. Design, synthesis, molecular docking studies and in vitro screening of ethyl 4-(3-benzoylthioureido) benzoates as urease inhibitors. Bioorg. Chem., 2014, 52, 1-7.
[174]
Ikram, M.; Rehman, S.; Baker, R.J.; Ur, H.; Khan, A.; Iqbal, M. Synthesis and distinct urease enzyme inhibitory activities of metal complexes of Schiff-base ligands : Kinetic and thermodynamic parameters evaluation from TG-DTA analysis. Thermochim. Acta, 2013, 555, 72-80.
[175]
Rauf, M.K.; Talib, A.; Badshah, A.; Zaib, S.; Shoaib, K.; Shahid, M.; Flörke, U. Imtiaz-ud-Din; Iqbal, J. Solution-phase microwave assisted parallel synthesis of N,N′-disubstituted thioureas derived from benzoic acid: biological evaluation and molecular docking studies. Eur. J. Med. Chem., 2013, 70, 487-496.
[176]
Xiao, Z.P.; Peng, Z.Y.; Dong, J.J.; Deng, R.C.; Wang, X.D.; Ouyang, H.; Yang, P.; He, J.; Wang, Y.F.; Zhu, M.; Peng, X.C.; Peng, W.X.; Zhu, H.L. Synthesis, molecular docking and kinetic properties of β-hydroxy-βphenylpropionyl-hydroxamic acids as Helico-bacter pylori urease. Eur. J. Med. Chem., 2013, 68, 212-221.
[177]
Suyoga Vardhan, D.M.; Shantharam, C.S.; Suhas, R.; Sridhara, M.B.; Channe Gowda, D. Synthesis and urease inhibition studies of ureas and thioureas derived from amino acids conjugated het-erocycle. Int. J. Chem. Pharmaceut. Sci, 2013, 4(3), 54-58.
[178]
Ziarani, G.M.; Faramarzi, S.; Asadi, S.; Badiei, A.; Bazl, R.; Amanlou, M. Three-component synthesis of pyrano [2, 3-d]-pyrimidine dione derivatives facilitated by sulfonic acid nanoporous silica (SBA-Pr-SO 3 H) and their docking and urease inhibitory activity. Daru, 2013, 21(1), 3.
[179]
Ikram, M.; Rehman, S.; Baker, R.J.; Ur, H.; Khan, A.; Iqbal, M. Synthesis and distinct urease enzyme inhibitory activities of metal complexes of Schiff-base ligands : Kinetic and thermodynamic parameters evaluation from TG-DTA analysis. Thermochim. Acta, 2013, 555, 72-80.
[180]
Gou, Y.; Yu, M.; Li, Y.; Peng, Y.; Chen, W. Synthesis, structures and urease inhibition studies of dimeric copper (II) complexes of Schiff bases derived from glycine. Inorg. Chim. Acta, 2013, 404, 224-229.
[181]
Li, X.; Yang, X.; Li, Y.; Gou, Y.; Wang, Q. Inorganica Chim-ica Acta Synthesis, structure and urease inhibition studies of dimeric copper (II) complexes with a tridentate Schiff base ligand derived from tetrahydrofurfurylamine. Inorg. Chim. Acta, 2013, 408, 46-52.
[182]
Sokmen, B.B.; Ugras, S. Sarikaya, H.Y.; Ugras, H.I.; Yanardag, R. Antibacterial; antiurease, and anti-oxidant activities of some arylidene barbiturates. Appl. Biochem. Biotechnol., 2013, 171(8), 2030-2039.
[183]
Saeed, A.; Zaib, S. Synthesis, molecular docking studies, and in vitro screening of sulfanilamide-thiourea hybrids as antimicrobial and urease inhibitors. Med. Chem. Res., 2013, 22, 3653-3662.
[184]
Chen, W.; Xu, X.L.; Zhou, P.; Cui, Y.M.; Li, Y.G.; Ag, R. Synthesis, structure, and activity evaluation of two silver (I) complexes as Helicobacter pylori urease inhibitors. Russ. J. Coord. Chem., 2013, 39(3), 301-304.
[185]
Berlicki, Ł.; Bochno, M.; Grabowiecka, A.; Białas, A.; Kosikowska, P.; Kafarski, P. N-substituted aminomethanephosphonic and aminomethane- P -methylphosphinic acids as inhibitors of ureases. Amino Acids, 2012, 42, 1937-1945.
[186]
Xiao, Z.; Peng, Z.; Dong, J.; He, J.; Ouyang, H.; Feng, Y.; Zhu, H. Synthesis, structure-activity relationship analysis and kinetics study of reductive derivatives of flavonoids as Helicobacter pylori urease inhibitors. Eur. J. Med. Chem., 2013, 63, 685-695.
[187]
Cui, Y.; Dong, X.; Li, Y.; Li, Z.; Chen, W. Synthesis, structures and urease inhibition studies of Schiff base metal complexes derived from 3,5-dibromosalicylaldehyde. Eur. J. Med. Chem., 2012, 58, 323-331.
[188]
You, Z.L.; Xian, D.M.; Zhang, M.; Cheng, X.S.; Li, X.F. Synthesis, biological evaluation, and molecular docking studies of 2,5-substituted-1,4-benzoquinone as novel urease inhibitors. Bioorg. Med. Chem., 2012, 20(16), 4889-4894.
[189]
Hanif, M.; Saleem, M.; Hussain, M.T.; Rama, N.H.; Zaib, S.; Aslam, M.A.M.; Jones, P.G.; Iqbal, J. Synthesis, urease inhibition, antioxidant and antibacterial studies of some 4-amino-5-aryl-3 inhibition. J. Braz. Chem. Soc., 2012, 23(5), 854-860.
[190]
Nemati, A.; Bakhoda, A.; Bruno, G.; Amiri, H. Urease inhibitory activities of ZnBr 2 and ZnI 2 complexes of terpyridine derivatives : Systematic investigation of aryl substituents on urease inhibitory activities. Polyhedron, 2012, 45(1), 9-14.
[191]
You, Z.; Shi, D.; Zhang, J.; Ma, Y.; Wang, C.; Li, K. Synthesis, structures, and urease inhibitory activities of oxovanadium (V) complexes with Schiff bases. Inorg. Chim. Acta, 2012, 384, 54-61.
[192]
Bole, S.B.; Nargund, R.; Nargund, L.V.G.; Devarajuk, S. Synthesis and biological evaluation of novel pyrazole derivatives as urease inhibitors. Pharma Chem., 2011, 3(5), 73-80.
[193]
Aslam, M.A.; Mahmood, S.U.; Shahid, M.; Saeed, A.; Iqbal, J.; Iqbal, J. Synthesis, biological assay in vitro and molecular docking studies of new Schiff base derivatives as potential urease inhibitors. Eur. J. Med. Chem., 2011, 46(11), 5473-5479.
[194]
Cui, Y.M.; Zhu, L.; Li, Y.; Cai, Y.J.; Chen, W. Synthesis, molecular docking, and activity of Schiff-base copper (II) complex with N-n- butylsalicylaldiminate as Helicobacter pylori urease inhibitor. J. Coord. Chem., 2011, 64(4), 610-616.
[195]
Mohammed, K.; Ali, M.; Wadood, A.; Khan, M.; Arif, M.; Perveen, S.; Voelter, W. Journal of Molecular Graphics and Modelling Molecular modeling-based antioxidant arylidene barbiturates as urease inhibitors. J. Mol. Graph. Model., 2011, 30, 153-156.
[196]
Hameed, M. K. S. Design, synthesis, and urease inhibition studies of a series, 2010, 479-484.
[197]
You, Z.; Ni, L.; Shi, D.; Bai, S. European Journal of Medici-nal Chemistry Synthesis, structures, and urease inhibitory activities of three copper (II) and zinc (II) complexes with 2- .[ 2- (2-hydroxyethylamino) ethylimino ]. Eur. J. Med. Chem., 2010, 45(7), 3196-3199.
[198]
Hameed, M. K. S. Design, synthesis, and urease inhibition studies of a series, 2010, 479-484.
[199]
Ibrar, A.; Khan, I.; Abbas, N. Structurally diversified heterocycles and related privileged scaffolds as potential urease inhibitors: a brief overview. Archiv. der Pharmazie.,, 2013, 346(6), 423-446.
[200]
Khan, I.; Ali, S.; Hameed, S.; Rama, N.H.; Hussain, M.T.; Wadood, A.; Uddin, R.; Ul-Haq, Z.; Khan, A.; Ali, S.; Choudhary, M.I. Synthesis, antioxidant activities and urease inhibition of some new 1,2,4-triazole and 1,3,4-thiadiazole derivatives. Eur. J. Med. Chem., 2010, 45(11), 5200-5207.
[201]
Chen, W.; Li, Y.; Cui, Y.; Zhang, X.; Zhu, H.L.; Zeng, Q. Synthesis, molecular docking and biological evaluation of Schiff base transition metal complexes as potential urease inhibitors. Eur. J. Med. Chem., 2010, 45(10), 4473-4478.
[202]
Xiao, Z.P.; Ma, T.W.; Fu, W.C.; Peng, X.C.; Zhang, A.H.; Zhu, H.L. The synthesis, structure and activity evaluation of pyrogallol and catechol derivatives as Helicobacter pylori urease inhibitors. Eur. J. Med. Chem., 2010, 45(11), 5064-5070.
[203]
Hameed, S.; Yasin, K.A.; Akhtar, T.; Khan, K.M. Design, synthesis, and urease inhibition studies of a series of 4-amino-5-aryl-3H-1, 2, 4-triazole-3-thiones. Monatshefte für Chemie-Chemical Monthly, 2010, 141(4), 479-484.
[204]
Shrestha, R.L.S.; Adhikari, A.; Marasini, B.P.; Jha, R.N.; Choudhary, M.I. Novel inhibitors of urease from Corydalis govaniana Wall. Phytochem. Lett., 2013, 6(2), 228-231.
[205]
Ahmad, I.; Fatima, I.; Afza, N.; Malik, A.; Lodhi, M.A.; Choudhary, M.I. Urease and serine protease inhibitory alkaloids from Isatis tinctoria. J. Enzyme Inhib. Med. Chem., 2008, 23(6), 918-921.
[206]
Tan, L.; Li, C.; Chen, H.; Mo, Z.; Zhou, J.; Liu, Y.; Su, Z. Epiberberine, a natural protoberberine alkaloid, inhibits urease of Helicobacter pylori and jack bean : Susceptibility and mechanism. Eur. J. Pharm. Sci., 2017, 110, 77-86.
[207]
Modolo, L.V.; de Souza, A.X.; Horta, L.P.; Araujo, D.P.; de Fátima, Â. An overview on the potential of natural products as ureases inhibitors: A review. J. Adv. Res., 2015, 6(1), 35-44.
[208]
Osonga, F.J.; Onyango, J.O.; Mwilu, S.K.; Noah, N.M.; Schulte, J.; An, M.; Sadik, O.A. Synthesis and characterization of novel flavonoid derivatives via sequential phosphorylation of quercetin. Tetrahedron Lett., 2017, 58(15), 1474-1479.
[209]
Yu, X.D.; Zheng, R.B.; Xie, J.H.; Su, J.Y.; Huang, X.Q.; Wang, Y.H.; Zheng, Y.F.; Mo, Z.Z.; Wu, X.L.; Wu, D.W.; Liang, Y.E.; Zeng, H.F.; Su, Z.R.; Huang, P. Biological evaluation and molecular docking of baicalin and scutellarin as Helicobacter pylori urease inhibitors. J. Ethnopharmacol., 2015, 162, 69-78.
[210]
Wu, D.W.; Yu, X.D.; Xie, J.H.; Su, Z.Q.; Su, J.Y.; Tan, L.R.; Huang, X.Q.; Chen, J.N.; Su, Z.R. Inactivation of jack bean urease by scutellarin: elucidation of inhibitory efficacy, kinetics and mechanism. Fitoterapia, 2013, 91, 60-67.
[211]
Ahmad, M.; Muhammad, N.; Ahmad, M.; Arif Lodhi, M.; Jehan, N.; Khan, Z.; Ranjit, R.; Shaheen, F.; Choudhary, M.I. Urease inhibitor from Datisca cannabina linn. J. Enzyme Inhib. Med. Chem., 2008, 23(3), 386-390.
[212]
Nile, S.H.; Nile, A.S.; Keum, Y.S.; Sharma, K. Utilization of quercetin and quercetin glycosides from onion (Allium cepa L.) solid waste as an antioxidant, urease and xanthine oxidase inhibitors. Food Chem., 2017, 235, 119-126.
[213]
Perveen, S.; El-Shafae, A.M.; Al-Taweel, A.; Fawzy, G.A.; Malik, A.; Afza, N.; Latif, M.; Iqbal, L. Antioxidant and urease inhibitory C-glycosylflavonoids from Celtis africana. J. Asian Nat. Prod. Res., 2011, 13(9), 799-804.
[214]
Ngan, L.T.; Moon, J.K.; Shibamoto, T.; Ahn, Y.J. Growth-inhibiting, bactericidal, and urease inhibitory effects of Paeonia lactiflora root constituents and related compounds on antibiotic-susceptible and-resistant strains of Helicobacter pylori. J. Agric. Food Chem., 2012, 60(36), 9062-9073.
[215]
Shabana, S.; Kawai, A.; Kai, K.; Akiyama, K.; Hayashi, H. Inhibitory activity against urease of quercetin glycosides isolated from Allium cepa and Psidium guajava. Biosci. Biotechnol. Biochem., 2010, 74(4), 878-880.
[216]
Ayaz, M.; Lodhi, M.A.; Riaz, M.; Ul-haq, A.; Malik, A.; Choudhary, M.I. Novel urease inhibitors from Daphne oleoids. J. Enzyme Inhib. Med. Chem., 2006, 21(5), 527-529.
[217]
Sadat, A.; Uddin, G.; Alam, M.; Ahmad, A.; Siddiqui, B.S. Structure activity relationship of bergenin, p-hydroxybenzoyl bergenin, 11-O-galloylbergenin as potent antioxidant and urease inhibitor isolated from Bergenia ligulata. Nat. Prod. Res., 2015, 29, 2291-2294.
[218]
Arfan, M.; Amin, H.; Khan, I.; Shah, M.R.; Shah, H.; Khan, A.Z.; Shahidullah, A. Molecular simulations of bergenin as a new urease inhibitor. Med. Chem. Res., 2012, 21(9), 2454-2457.
[219]
Jadhav, S.G.; Meshram, R.J.; Gond, D.S.; Gacche, R.N. Inhibition of growth of Helicobacter pylori and its urease by coumarin derivatives: molecular docking analysis. J. Pharm. Res., 2013, 7, 705-711.
[220]
Raza, H.; Abbas, Q.; Hassan, M.; Eo, S.; Kim, D.; Phull, A.R.; Seo, S. Isolation, characterization, and in silico, in vitro and in vivo antiulcer studies of isoimperatorin crystallized from Ostericum koreanum. Pharm. Biol., 2017, 55, 218-226.
[221]
Ahmad, I.; Chaudhary, B.A.; Ashraf, M.; Uzair, M.; Janbaz, K.H. Vernonione, a newurease inhibitory carvotacetone derivative from Vernonia cinerascens. J. Chem. Soc. Pak., 2012, 34(3), 639-642.
[222]
Fahey, J.W.; Stephenson, K.K.; Wade, K.L.; Talalay, P. Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates. Biochem. Biophys. Res. Commun., 2013, 435(1), 1-7.
[223]
Kot, M.; Zaborska, W. Inhibition of jack bean urease by tetrachloro-o-benzoquinone and tetrachloro-p-benzoquinone. J. Enzyme Inhib. Med. Chem., 2006, 21(5), 537-542.
[224]
Muhammad, N.; Saeed, M.; Khan, A.; Adhikari, A.; Wadood, A.; Khan, K.M.; De Feo, V. A new urease inhibitor from Viola betonicifolia. Molecules, 2014, 19(10), 16770-16778.
[225]
Juszkiewicz, A.; Zaborska, A.; Aptas, ´.A.; Olech, Z. A study of the inhibition of jack bean urease by garlic extract. Food Chem., 2004, 85(4), 553-558.
[226]
Cavallito, C.J.; Bailey, J.H. Allicin, the antibacterial principle of Allium sativum. I. Isolation, physical properties and anti-bacterial action. J. Am. Chem. Soc., 1944, 66(11), 1950-1951.
[227]
Ankri, S.; Mirelman, D. Antimicrobial properties of allicin from garlic. Microbes Infect., 1999, 1(2), 125-129.
[228]
Derakhshan, S.; Sattari, M.; Bigdeli, M. Effect of subinhibitory concentrations of cumin (Cuminum cyminum L.) seed essential oil and alcoholic extract on the morphology, capsule expression and urease activity of Klebsiella pneumoniae. Int. J. Antimicrob. Agents, 2008, 32(5), 432-436.
[229]
Khan, M.A.; Khan, H.; Tariq, S.A.; Pervez, S. Urease inhibito-ry activity of aerial parts of Artemisia scoparia: exploration in an in vitro study. Ulcers, 2014, 18(4), 736-735.
[230]
Nabati, F.; Mojab, F.; Habibi-rezaei, M.; Bagherzadeh, K.; Amanlou, M.; Yousefi, B. Large scale screening of commonly used Iranian traditional medicinal plants against urease activity. Daru, 2012, 20(1), 72.
[231]
Matsubara, S.; Shibata, H.; Ishikawa, F.; Yokokura, T.; Takahashi, M.; Sugimura, T.; Wakabayashi, K. Suppression of Helicobacter pylori-induced gastritis by green tea extract in Mongolian gerbils. Biochem. Biophys. Res. Commun., 2003, 310(3), 715-719.
[232]
Biglar, M.; Soltani, K.; Nabati, F.; Bazl, R. A preliminary in-vestigation of the jack-bean urease inhibition by randomly selected traditionally used herbal medicine. Iran. J. Pharm. Res., 2012, 11, 831-837.
[233]
Lateef, M.; Iqbal, L.; Fatima, N.; Siddiqui, K.; Afza, N.; Zia-ul-Haq, M.; Ahmad, M. Evaluation of antioxidant and urease inhibition activities of roots of Glycyrrhiza glabra. Pak. J. Pharm. Sci., 2012, 25(1), 99-102.
[234]
Amin, M.; Anwar, F.; Naz, F.; Mehmood, T.; Saari, N. Anti-Helicobacter pylori and urease inhibition activities of some traditional medicinal plants. Molecules, 2013, 18(2), 2135-2149.
[235]
Lin, Y.T.; Kwon, Y.I.; Labbe, R.G.; Shetty, K. Inhibition of Helicobacter pylori and associated urease by oregano and cranberry phytochemical synergies. Appl. Environ. Microbiol., 2005, 71(12), 8558-8564.
[236]
Adeniyi, B.A.; Onwubuche, B.C.; Anyiam, F.M.; Ekundayo, O.; Mahady, G.B. Anti-Helicobacter pylori activities of Eucalyptus grandis: effects on susceptibility, urease activity and cell surface hydrophobicity. Pharm. Biol., 2009, 47(1), 13-17.
[237]
Khan, T.; Ahmad, M.; Nisar, M.; Ahmad, M.; Lodhi, M.A.; Choudhary, M.I. Enzyme inhibition and radical scavenging activities of aerial parts of Paeonia emodi Wall (Paeoniaceae). J. Enzyme Inhib. Med. Chem., 2005, 20(3), 245-249.
[238]
Khan, R.; Quradha, M.M.; Saif, A.Q.; Ali, J.; Rauf, A.; Khan, A. Comparative urease enzyme inhibition profile of leaves and stems of Rumex nervosus vahl. Nat. Prod. Res., 2014, 28(24), 2355-2357.
[239]
Laghari, A.H.; Memon, S.; Nelofar, A.; Khan, K.M.; Yasmin, A.; Syed, M.N.; Aman, A. A new flavanenol with urease-inhibition activity isolated from roots of manna plant camelthorn (Alhagi maurorum). J. Mol. Struct., 2010, 965(1-3), 65-67.