[1]
Yayayürük, A.E.; Yayayürük, O.; Koçak, C.C.; Koçak, S. Uptake characteristics of Pb(II), Cu(II) and Zn(II) by natural magnetite: Application to river samples. J. Environ. Prot. Ecol., 2017, 18(2), 433-441.
[2]
Wei, C.; Zhang, F.; Hu, Y.; Feng, C.; Wu, H. Ozonation in water treatment: The generation, basic properties of ozone and its practical application. Rev. Chem. Eng., 2016, 33, 49-89.
[3]
Pandya, M.T. Treatment of industrial wastewater using photooxidation and bioaugmentation technology. Water Sci. Technol., 2007, 56(7), 117-124.
[4]
Mitra, S. Sample Preparation Techniques in Analytical Chemistry; Wiley & Sons: New York, 2003.
[5]
Anastas, P.T. Green chemistry and the role of analytical methodology development. Crit. Rev. Anal. Chem., 1999, 29, 167-175.
[6]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998.
[7]
Keith, L.H.; Gron, L.U.; Young, J.L. Green analytical methodologies. Chem. Rev., 2007, 107, 2695-2708.
[8]
Lavilla, I.; Romero, V.; Costas, I.; Bendicho, C. Greener derivatization in analytical chemistry. Trends Analyt. Chem., 2014, 61, 1-10.
[9]
Laird, T. Green chemistry is good process chemistry. Org. Process Res. Dev., 2012, 16, 1-2.
[10]
Li, Q.; Yan, Y.N.; Wang, X.W.; Gong, B.W.; Tang, X.B.; Shi, J.J.; Xu, H.E.; Yi, W. Water as a green solvent for efficient synthesis of isocoumarins through microwave-accelerated and Rh/Cu-catalyzed C-H/O-H bond functionalization. RSC Advances, 2013, 3, 23402-23408.
[11]
Filly, A.; Fabiano-Tixier, A.S.; Louis, C.; Fernandez, X.; Chemat, F. Water as a green solvent combined with different techniques for extraction of essential oil from lavender flowers. C. R. Chim., 2016, 19, 707-717.
[12]
Pace, V.; Hoyos, P.; Castoldi, L.; De Maria, P.D.; Alcantara, A.R. 2- Methyltetrahydrofuran (2-MeTHF): A biomass-derived solvent with broad application in organic chemistry. ChemSusChem, 2012, 5, 1369-1379.
[13]
Antonucci, V.; Coleman, J.; Ferry, J.B.; Johnson, N.; Mathe, M.; Scott, J.P.; Xu, J. Toxicological assessment of 2-methyltetrahydrofuran and cyclopentyl methyl ether in support of their use in pharmaceutical chemical process development. Org. Process Res. Dev., 2011, 15, 939-941.
[14]
De Jesus, S.S.; Ferreira, G.F.; Fregolente, L.V.; Filho, R.M. Laboratory extraction of microalgal lipids using sugarcane bagasse derived green solvents. Algal Res., 2018, 35, 292-300.
[15]
De Jesus, S.S.; Ferreira, G.F.; Maciel, M.R.W.; Filho, R.M. Biodiesel purification by column chromatography and liquid-liquid extraction using green solvent. Fuel, 2019, 235, 1123-1130.
[16]
Erkey, C. Supercritical carbon dioxide extraction of metals from aqueous solutions: a review. J. Supercrit. Fluids, 2000, 17, 259-287.
[17]
Albarelli, J.Q.; Rabelo, R.B.; Santos, D.T.; Beppu, M.M.; Meireles, M.A.A. Effects of supercritical carbon dioxide on waste banana peels for heavy metal removal. J. Supercrit. Fluids, 2011, 58(3), 343-351.
[18]
Tavakoli, O.; Yoshida, H. Effective recovery of harmful metal ions from squid wastes using subcritical and supercritical water treatments. Environ. Sci. Technol., 2005, 39(7), 2357-2363.
[19]
Tobiszewski, M.; Mechlińska, A.; Namieśnik, J. Green analytical chemistry - theory and practice. Chem. Soc. Rev., 2010, 39, 2869-2878.
[20]
Ventura, S.P.; Marques, C.S.; Rosatella, A.A.; Afonso, C.A.; Gonçalves, F.; Coutinh, J.A. Toxicity assessment of various ionic liquid families towards Vibrio fischeri marine bacteria. Ecotoxicol. Environ. Saf., 2012, 76, 62-68.
[21]
Farré, M.; Pérez, S.; Gonçalves, C.; Alpendurada, M.F.; Barceló, D. Green analytical chemistry in the determination of organic pollutants in the aquatic environment. Trends Analyt. Chem., 2010, 29, 1347-1362.
[22]
Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices. Trends Analyt. Chem., 2013, 50, 78-84.
[23]
Vilkner, T.; Janasek, D.; Manz, A. Micro total analysis systems. Recent developments. Anal. Chem., 2004, 76, 3373-3386.
[24]
Pujol-Vila, F.; Giménez-Gómez, P.; Santamaria, N.; Antúnez, B.; Vigués, N.; González, M.D.; Jiménez-Jorquera, C.; Mas, J.; Sacristán, J.; Muñoz-Berbel, X. Portable and miniaturized optofluidic analysis system with ambient light correction for fast in situ determination of environmental pollution. Sens. Actuators B,; , 2016, 222, pp. 55-62.
[25]
Pena-Pereira, F. From Conventional to Miniaturized Analytical Systems. In: Miniaturization Sample Prep; Pena-Pereira, F. Ed.; De Gruyter Open: Berlin, 2014.
[26]
Abdul-Majeed, W.S.; Parada, J.H.L.; Zimmerman, W.B. Optimization of a miniaturized DBD plasma chip for mercury detection in water samples. Anal. Bioanal. Chem., 2011, 401, 2713-2722.
[27]
Yu, Y.L.; Du, Z.; Chen, M.L.; Wang, J.H. A miniature lab-on-valve atomic fluorescence spectrometer integrating a dielectric barrier discharge atomizer demonstrated for arsenic analysis. J. Anal. At. Spectrom., 2008, 23, 493-499.
[28]
Armenta, S.; Garrigues, S.; de la Guardia, M. Determination of iprodione in agrochemicals by infrared and Raman spectrometry. Anal. Bioanal. Chem., 2007, 387(8), 2887-2894.
[29]
Vidigal, S.S.M.P.; Rangel, A.O.S.S. A reagentless flow injection system for the quantification of ethanol in beverages based on the schlieren effect measurement. Microchem. J., 2015, 121, 107-111.
[30]
Beyki, M.H.; Alijani, H.; Fazli, Y. Solvent free synthesized MnFe2O4@polyamid resin as a novel green nanohybrid for fast removing Congo red. J. Mol. Liq., 2016, 216, 6-11.
[31]
Hajslova, J.; Cajka, T.; Vaclavik, L. Challenging applications offered by direct analysis in real time (DART) in food-quality and safety analysis. Trends Analyt. Chem., 2011, 30(2), 204-218.
[32]
Gross, J.H. Direct analysis in real time-a critical review on DART-MS. Anal. Bioanal. Chem., 2014, 406(1), 63-80.
[33]
Gómez-Ríos, G.A.; Gionfriddo, E.; Poole, J.; Pawliszyn, J. Ultrafast screening and quantitation of pesticides in food and environmental matrices by Solid-Phase Microextraction-Transmission Mode (SPME-TM) and Direct Analysis in Real Time (DART). Anal. Chem., 2017, 89(13), 7240-7248.
[34]
Jamroz, P.; Pohl, P.; Zyrnicki, W. An analytical performance of atmospheric pressure glow discharge generated in contact with flowing small size liquid cathode. J. Anal. At. Spectrom., 2012, 27, 1032-1037.
[35]
Pohl, P.; Jamroz, P.; Swiderski, K.; Dzimitrowicz, A.; Lesniewicz, A. Critical evaluation of recent achievements in low power glow discharge generated at atmospheric pressure between a flowing liquid cathode and a metallic anode for element analysis by optical emissionspectrometry. Trends Analyt. Chem., 2017, 88, 119-133.
[36]
Li, Y.; Zheng, C.; Ma, Q.; Wu, L.; Hu, C.; Hou, X. Sample matrix-assisted photo-induced chemical vapor generation: A reagent free green analytical method for ultrasensitive detection of mercury in wine or liquor samples. J. Anal. At. Spectrom., 2006, 21, 82-85.
[37]
Sturgeon, R.E. Photochemical vapor generation: A radical approach to analyte introduction for atomic spectrometry. J. Anal. At. Spectrom., 2017, 32, 2319-2340.
[38]
Gredilla, A.; de Vallejuelo, S.F.O.; Elejoste, N.; de Diego, A.; Madariaga, J.M. Non-destructive spectroscopy combined with chemometrics as a tool for green chemical analysis of environmental samples: A review. Trends Analyt. Chem., 2016, 76, 30-39.
[39]
Becerra-Herrera, M.; Miranda, V.; Arismendi, D.; Richter, P. Chemometric optimization of the extraction and derivatization of parabens for their determination in water samples by rotating-disk sorptive extraction and gas chromatography mass spectrometry. Talanta, 2018, 176, 551-557.
[40]
Fernández, E.; Vidal, L.; Canals, A. Zeolite/iron oxide composite as sorbent for magnetic solid-phase extraction of benzene, toluene, ethylbenzene and xylenes from water samples prior to gas chromatography-mass spectrometry. J. Chromatogr. A, 2016, 1458, 18-24.
[41]
Zare-Dorabei, R.; Ferdowsi, S.M.; Barzin, A.; Tadjarodi, A. Highly efficient simultaneous ultrasonic-assisted adsorption of Pb(II), Cd(II), Ni(II) and Cu (II) ions from aqueous solutions by graphene oxide modified with 2,20 -dipyridylamine: Central composite design optimization. Ultrason. Sonochem., 2016, 32, 265-276.
[42]
Zhang, J.; Wei, Y.; Li, H.; Zeng, E.Y.; You, J. Application of Box-Behnken design to optimize multi-sorbent solid phase extraction for trace neonicotinoids in water containing high level of matrix substances. Talanta, 2017, 170, 392-398.
[43]
Armenta, S.; Garrigues, S.; de la Guardia, M. Green analytical chemistry. Trends Analyt. Chem., 2008, 27(6), 497-511.
[44]
Melchert, W.R.; Reis, B.F.; Rocha, F.R.P. Green chemistry and the evolution of flow analysis. A review. Anal. Chim. Acta, 2012, 714, 8- 19.
[46]
Jaikrajang, N.; Kruanetr, S.; Harding, D.J.; Rattanakit, P. A simple flow injection spectrophotometric procedure for iron(III) determination using Phyllanthus emblica Linn. as a natural reagent. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2018, 204, 726-734.
[47]
Silva, S.G.; Nóbrega, J.A.; Rocha, F.R.P. Exploiting Mn(III)/EDTA complex in a flow system with solenoid micro-pumps coupled to long pathlength spectrophotometry for fast manganese determination. Microchem. J., 2011, 98, 109-114.
[48]
Teixeira, L.S.G.; Rocha, F.R.P. Green analytical procedure for sensitive and selective determination of iron in water samples by flow-injection solid-phase spectrophotometry. Talanta, 2007, 71, 1507-1511.
[49]
Escudero, L.B.; Olsina, R.A.; Wuilloud, R.G. Polymer-supported ionic liquid solid phase extraction for trace inorganic and organic mercury determination in water samples by flow injection-cold vapor atomic absorption spectrometry. Talanta, 2013, 116, 133-140.
[50]
Praveen, R.S.; Daniel, S.; Rao, T.P.; Sampath, S.; Rao, K.S. Flow injection on-line solid phase extractive preconcentration of palladium(II) in dust and rock samples using exfoliated graphite packed microcolumns and determination by flame atomic absorption spectrometry. Talanta, 2006, 70, 437-443.
[51]
Batista, A.D.; Rocha, F.R.P. A green flow-injection procedure for fluorimetric determination of bisphenol A in tap waters based on the inclusion complex with β-cyclodextrin. Intern.. J. Environ. Anal. Chem., 2013, 93(13), 1402-1412.
[52]
Grand, M.; Oliveira, H.M.; Ruzicka, J.; Measures, C. Determination of dissolved zinc in seawater using micro-Sequential Injection lab-on-valve with fluorescence detection. Analyst , 2011, 136, 2747-2755.
[53]
Del Río, V.; Larrechi, M.S.; Callao, M.P. Determination of sulphate in water and biodiesel samples by a sequential injection analysis-Multivariate curve resolution method. Anal. Chim. Acta, 2010, 676, 28-33.
[54]
Araujo, A.R.T.S.; Lucia, M.; Saraiva, M.F.S.; Lima, J.L.F.C.; Gracias, M.; Korn, A. Flow methodology for methanol determination in biodiesel exploiting membrane-based extraction. Anal. Chim. Acta, 2008, 613, 177-183.
[55]
Ayala, A.; Leal, L.O.; Ferrer, L.; Cerdà, V. Multiparametric automated system for sulfate, nitrite and nitrate monitoring in drinking water and wastewater based on sequential injection analysis. Microchem. J., 2012, 100, 55-60.
[56]
Fan, J.; Sun, Y.; Wang, J.; Fan, M. An organic-reagent-free method for determination of chromium(VI) in steel alloys, sewage sludge and wastewater. Anal. Chim. Acta, 2009, 640, 58-62.
[57]
Borges, S.S.; Reis, B.F. An environmental friendly procedure for photometric determination of hypochlorite in tap water employing a miniaturized multicommuted flow analysis setup. J. Autom. Methods Manag. Chem., 2011, 2011, 463286-463292.
[58]
Ródenas-Torralba, E.; Reis, B.F.; Morales-Rubio, A.; de la Guardia, M. An environmentally friendly multicommutated alternative to the reference method for anionic surfactant determination in water. Talanta, 2005, 66(3), 591-599.
[59]
Manera, M.; Miró, M.; Estela, J.M.; Cerdà, V. Multi-syringe flow injection solid-phase extraction system for on-line simultaneous spectrophotometric determination of nitro-substituted phenol isomers. Anal. Chim. Acta, 2007, 582, 41-49.
[60]
Serra, A.M.; Estela, J.M.; Cerdà, V. An MSFIA system for mercury speciation based on an anion-exchange membrane. Talanta, 2009, 78, 790-794.
[61]
Semenova, N.V.; Leal, L.O.; Forteza, R.; Cerda, V. Antimony determination and speciation by multisyringe flow injection analysis with hydride generation-atomic fluorescence detection. Anal. Chim. Acta, 2005, 530, 113-120.
[62]
Wierucka, M.; Biziuk, M. Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples. Trends Analyt. Chem., 2014, 59, 50-58.
[63]
Souza-Silva, E.A.; Jiang, R.; Rodríguez-Lafuente, A.; Gionfriddo, E.; Pawliszyn, J. A critical review of the state of the art of solid-phase microextraction of complex matrices I. Environmental analysis. Trends Analyt. Chem., 2015, 71, 224-235.
[64]
Spietelun, A.; Marcinkowski, L.; de la Guardia, M.; Namieśnik, J. Green aspects, developments and perspectives of liquid phase microextraction techniques. Talanta, 2014, 119, 34-45.
[65]
Zeng, C.; Hu, Y.; Luo, J. Ionic liquid-based hollow fiber supported liquid membrane extraction combined with thermospray flame furnace AAS for the determination of cadmium. Microchim. Acta, 2012, 177, 53-58.
[66]
Soylak, M.; Khan, M.; Yilmaz, E. Switchable solvent based liquid phase microextraction of uranium in environmental samples: a green approach. Anal. Methods, 2016, 8, 979-986.
[67]
Farahani, Hadi.; Shokouhi, M.; Rahimi-Nasrabadi, M.; Zare-Dorabei, R. Green chemistry approach to analysis of formic acid and acetic acid in aquatic environment by headspace water-based liquid-phase microextraction and high-performance liquid chromatography. Toxicol. Environ. Chem., 2016, 98(7), 714-726.
[68]
Aydin, F.; Yilmaz, E.; Soylak, M. A simple and novel deep eutectic solvent based ultrasound-assisted emulsification liquid phase microextraction method for malachite green in farmed and ornamental aquarium fish water samples. Microchem. J., 2017, 132, 280-285.
[69]
Rodriguez-Lafuente, A.; Piri-Moghadam, H.; Lord, H.L.; Obal, T.; Pawliszyn, J. Inter-laboratory validation of automated SPME-GC/MS for determination of pesticides in surface and ground water samples: sensitive and green alternative to liquid-liquid extraction. Water Qual. Res. J. Canada, 2016, 51, 331-343.
[70]
Hsin-Pin, H.; Ren-Jye, L.; Maw-Rong, L. Purge-assisted headspace solid-phase microextraction combined with gas chromatography-mass spectrometry for determination of chlorophenols in aqueous samples. J. Chromatogr. A, 2008, 1213, 245-248.
[71]
Ma, K.; Zhang, J.N.; Zhao, M.; He, Y.J. Accurate analysis of trace earthy-musty odorants in water by headspace solid phase microextraction gas chromatography-mass spectrometry. J. Sep. Sci., 2012, 35(12), 1494-1501.
[72]
Benanou, D.; Acobas, F.; de Roubin, M.R. Optimization of stir bar sorptive extraction applied to the determination of odorous compounds in drinking water. Water Sci. Technol., 2004, 49(9), 161-170.
[73]
Neng, N.R.; Santalla, R.P.; Nogueira, J.M.F. Determination of tributyltin in environmental water matrices using stir bar sorptive extraction with in-situ derivatisation and large volume injection-gas chromatography-mass spectrometry. Talanta, 2014, 126, 8-11.
[74]
Camino-Sánchez, F.J.; Zafra-Gómez, A.; Pérez-Trujillo, J.P.; Conde-González, J.E.; Marques, J.C.; Vílchez, J.L. Validation of a GC-MS/MS method for simultaneous determination of 86 persistent organic pollutants in marine sediments by pressurized liquid extraction followed by stir bar sorptive extraction. Chemosphere, 2011, 84, 869-881.
[75]
Cortada, C.; Vidal, L.; Tejada, S.; Romo, A.; Canals, A. Determination of organochlorine pesticides in complex matrices by single-drop microextraction coupled to gas chromatography-mass spectrometry. Anal. Chim. Acta, 2009, 638, 29-35.
[76]
Senra-Ferreiro, S.; Pena-Pereira, F.; Lavilla, I.; Bendicho, C. Griess micro-assay for the determination of nitrite by combining fibre optics-based cuvetteless UV-Vis micro-spectrophotometry with liquid-phase microextraction. Anal. Chim. Acta, 2010, 668, 195-200.
[77]
Bruzzoniti, M.C.; Checchini, L.; De Carlo, R.M.; Orlandini, S.; Rivoira, L.; Del Bubba, M. QuEChERS sample preparation for the determination of pesticides and other organic residues in environmental matrices: A critical review. Anal. Bioanal. Chem., 2014, 406, 4089-4116.
[78]
Bragança, I.; Plácido, A.; Paíga, P.; Domingues, V.F.; Delerue-Matos, C. QuEChERS: A new sample preparation approach for the determination of ibuprofen and its metabolites in soils. Sci. Total Environ., 2012, 433, 281-289.
[79]
Brondi, S.H.G.; de Macedo, A.N.; Vicente, G.H.L.; Nogueira, A.R.A. Evaluation of the QuEChERS method and gas chromatography-mass spectrometry for the analysis pesticide residues in water and sediment. Bull. Environ. Contam. Toxicol., 2011, 86, 18-22.
[80]
Ncube, S.; Tavengwa, N.; Soqaka, A.; Cukrowska, E.; Chimuka, L. Development of a single format membrane assisted solvent extraction-molecularly imprinted polymer technique for extraction of polycyclic aromatic hydrocarbons in wastewater followed by gas chromatography mass spectrometry determination. J. Chromatogr. A, 2018, 1569, 36-43.
[81]
Díaz-Álvarez, M.; Barahona, F.; Turiel, E.; Martín-Esteban, A. Supported liquid membrane-protected molecularly imprinted beads for micro-solid phase extraction of sulfonamides in environmental waters. J. Chromatogr. A, 2014, 1357, 158-164.
[82]
Speltini, A.; Sturini, M.; Maraschi, F.; Viti, S.; Sbarbada, D.; Profumo, A. Fluoroquinolone residues in compost by green enhanced microwave-assisted extraction followed by ultra-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A, 2015, 1410, 44-50.
[83]
Vega-Morales, T.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Determination of various estradiol mimicking-compounds in sewage sludge by the combination of microwave-assisted extraction and LC-MS/MS. Talanta, 2011, 85, 1825-1834.
[84]
Trenholm, R.A.; Vanderford, B.J.; Snyder, S.A. On-line solid phase extraction LC-MS/MS analysis of pharmaceutical indicators in water: A green alternative to conventional methods. Talanta, 2009, 79, 1425-1432.
[85]
Mellina, F.M.A.; Santos, D.R.; de Oliveira, M.A.L.; Matos, R.C.; Matos, M.A.C. Box-Behnken design applied to optimize the ultrasound-assisted extraction of petroleum biomarkers in river sediment samples using green analytical chemistry. Anal. Methods, 2017, 9, 5859-5867.
[86]
Canosa, P.; Pérez-Palacios, D.; Garrido-López, A.; Tena, M.T.; Rodríguez, I.; Rubí, E.; Cela, R. Pressurized liquid extraction with in-cell clean-up followed by gas chromatography-tandem mass spectrometry for the selective determination of parabens and triclosan in indoor dust. J. Chromatogr. A, 2007, 1161, 105-112.
[87]
Ojeda, C.B.; Rojas, F.S.; Pavón, J.M.C. Preconcentration of Cadmium in environmental samples by cloud point extraction and determination by FAAS. Am. J. Anal. Chem., 2010, 1, 127-134.
[88]
Gouda, A.A. Cloud point extraction, preconcentration and spectrophotometric determination of trace amount of manganese(II) in water and food samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2014, 131, 138-144.
[89]
Amezcua-Allieri, M.A.; Ávila-Chávez, M.A.; Trejo, A.; Meléndez-Estrada, J. Removal of polycyclic aromatic hydrocarbons from soil: A comparison between bioremoval and supercritical fluids extraction. Chemosphere, 2012, 86, 985-993.
[90]
Gonçalves, C.; Carvalho, J.J.; Azenha, M.A.; Alpendurada, M.F. Optimization of supercritical fluid extraction of pesticide residues in soil by means of central composite design and analysis by gas chromatography-tandem mass spectrometry. J. Chromatogr. A, 2006, 1110, 6-14.
[91]
Armenta, S.; Garrigues, S.; de la Guardia, M. The role of green extraction techniques in green analytical chemistry. Trends Analyt. Chem., 2015, 71, 2-8.
[92]
Han, D.; Row, K.H. Trends in liquid-phase microextraction, and its application to environmental and biological samples. Microchim. Acta, 2012, 176, 1-22.
[93]
Namieśnik, J.; Spietelun, A.; Marcinkowski, L. Green Sample Preparation Techniques for Chromatographic Determination of Small Organic Compounds. Int. J. Chem. Eng. Appl., 2015, 6(3), 215-219.
[94]
Lacroix, C.; Le Cuff, N.; Receveur, J.; Moraga, D.; Auffret, M.; Guyomarch, J. Development of an innovative and “green” stir bar sorptive extraction-thermal desorption-gas chromatography-tandem mass spectrometry method for quantification of polycyclic aromatic hydrocarbons in marine biota. J. Chromatogr. A, 2014, 1349, 1-10.
[95]
Pawliszyn, J. Solid Phase Microextraction: Theory and Practice; Wiley-VCH: New York, 1997.
[96]
Li, P.; Zhang, X.Q.; Chen, Y.J.; Lian, H.Z.; Hu, X. A sequential solid phase microextraction system coupled with inductively coupled plasma mass spectrometry for speciation of inorganic arsenic. Anal. Methods, 2014, 6, 4205-4211.
[97]
Zhao, L.; Zhu, Q.; Mao, L.; Chen, Y.; Lian, H.; Hu, X. Preparation of thiol- and amine-bifunctionalized hybrid monolithic column via “one-pot” and applications in speciation of inorganic arsenic. Talanta, 2019, 192, 339-346.
[98]
Tobiszewski, M.; Mechlinska, A.; Zygmunt, B.; Namiesnik, J. Green analytical chemistry in sample preparation for determination of trace organic pollutants. Trends Analyt. Chem., 2009, 28, 943-951.
[99]
Jakubowska, N.; Polkowska, Z.; Namieśnik, J.; Przyjazny, A. Analytical applications of membrane extraction for biomedical and environmental liquid sample preparation. Crit. Rev. Anal. Chem., 2005, 35, 217-235.
[100]
Wang, H.; Ding, J.; Ren, N. Recent advances in microwave-assisted extraction of trace organic pollutants from food and environmental samples. Trends Anal. Chem., 2016, 75, 197- 208.
[101]
Flores, E. M. M. Microwave-Assisted Sample Preparation for Trace Element Determination, Elsevier: Newnes, 2014.
[102]
Albero, B.; Sanchez-Brunete, C.; Garcia-Valcarcel, A.I.; Perez, R.A.; Tadeo, J.L. Ultrasound-assisted extraction of emerging contaminants from environmental samples. Trends Analyt. Chem., 2015, 71, 110-118.
[103]
Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem., 2017, 34, 540-560.
[104]
Stanisz, E.; Werner, J.; Matusiewicz, H. Mercury species determination by task specific ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction combined with cold vapour generation atomic absorption spectrometry. Microchem. J., 2013, 110, 28-35.
[105]
Bentlin, F.R.S.; Duarte, F.A.; Dressler, V.L.; Pozebon, D. Arsenic determination in marine sediment using ultrasound for sample preparation. Anal. Sci., 2007, 23, 1097-1101.
[106]
Rocha, A.D.; Batista, F.R.P.; Rocha, G.L.; Donati, J.A.N. Greening sample preparation in inorganic analysis. Trends Analyt. Chem., 2013, 45, 79-92.
[107]
Samaddar, P.; Sen, K. Cloud point extraction: A sustainable method of elemental preconcentration and speciation. J. Ind. Eng. Chem., 2014, 20, 1209-1219.
[108]
Sánchez-Camargo, A.D.P.; Parada-Alonso, F.; Ibáñez, E.; Cifuentes, A. Recent applications of on-line supercritical fluid extraction coupled to advanced analytical techniques for compounds extraction and identification. J. Sep. Sci., 2018, 1, 1-15.
[109]
Herranz, S.; Ramo’n-Azco’n, J.; Benito-Pen˜a, E.; Marazuela, M.D.; Marco, M.P.; Moreno-Bondi, M.C. Preparation of antibodies and development of a sensitive immunoassay with fluorescence detection for triazine herbicides. Anal. Bioanal. Chem., 2008, 391, 1801-1812.
[110]
Kochana, J.; Gala, A.; Parczewski, A.; Adamski, J. Titania sol-gel-derived tyrosinase-based amperometric biosensor for determination of phenolic compounds in water samples. Examination of interference effects. Anal. Bioanal. Chem., 2008, 391, 1275-1281.
[111]
Welch, C.J.; Wu, N.; Biba, M.; Hartman, R.; Brkovic, T.; Gong, X.; Helmy, R.; Schafer, W.; Cuff, J.; Pirzada, Z.; Zhou, L. Greening analytical chromatography. Trends Analyt. Chem., 2010, 29(7), 667-680.
[112]
Płotka, J.; Tobiszewski, M.; Sulej, A.M.; Kupska, M.; Górecki, T.; Namieśnik, J. Green chromatography. J. Chromatogr. A, 2013, 1307, 1-20.
[113]
Pérez, R.L.; Escandar, G.M. Experimental and chemometric strategies for the development of Green Analytical Chemistry (GAC) spectroscopic methods for the determination of organic pollutants in natural waters. Sustain. Chem. Pharm, 2016, 4, 1-12.
[114]
Li, J.; Zhu, J.J. Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst , 2013, 138, 2506-2515.
[115]
Freeman, R.; Willner, I. Optical molecular sensing with semiconductor quantum dots (QDs). Chem. Soc. Rev., 2012, 41, 4067-4085.
[116]
Costas-Mora, I.; Romero, V.; Lavilla, I.; Bendicho, C. An overview of recent advances in the application of quantum dots as luminescent probes to inorganic-trace analysis. Trends Analyt. Chem., 2014, 57, 64-72.
[117]
Liu, L.; Shan, D.; Zhoua, X.; Shi, H.; Song, B.; Falke, F.; Leinse, A.; Heideman, R. TriPleX™ waveguide-based fluorescence biosensor for multichannel environmental contaminants detection. Biosens. Bioelectron., 2018, 106, 117-121.