[1]
Seitz, H.K.; Bataller, R.; Cortez-Pinto, H.; Gao, B.; Gual, A.; Lackner, C.; Mathurin, P.; Mueller, S.; Szabo, G.; Tsukamoto, H. Publisher correction: Alcoholic liver disease. Nat. Rev. Dis. Primers, 2018, 4(1), 16.
[2]
Schiavoni, V.S.; Silva, J.P.D.; Lizarte Neto, F.S.; Assis, M.L.C.; Tazima, M.; Carvalho, C.A.M.; Tirapelli, D.; Carlotti, C.G., Jr; Colli, B.O.; Tirapelli, L.F. Morphological and immunohisto-chemical analysis of proteins caspase 3 and xiap in rats subjected to cerebral ischemia and chronic alcoholism. Acta Cir. Bras., 2018, 33(8), 652-663.
[3]
Dguzeh, U.; Haddad, N.C.; Smith, K.T.S.; Johnson, J.O.; Doye, A.A.; Gwathmey, J.K.; Haddad, G.E. Alcoholism: A multi-systemic cellular insult to organs. Int. J. Environ. Res. Public Health, 2018, 15(6)E1083
[4]
Dal-Fabbro, R.; Marques-de-Almeida, M.; Cosme-Silva, L.; Ervolino, E.; Cintra, L.T.A.; Gomes-Filho, J.E. Chronic alcohol consumption increases inflammation and osteoclastogenesis in apical periodontitis. Int. Endod. J., 2018, 14(10), 13014.
[5]
Duggan, S.N. Negotiating the complexities of exocrine and endocrine dysfunction in chronic pancreatitis. Proc. Nutr. Soc., 2017, 76(4), 484-494.
[6]
Neuman, M.G.; French, S.W.; French, B.A.; Seitz, H.K.; Cohen, L.B.; Mueller, S.; Osna, N.A.; Kharbanda, K.K.; Seth, D.; Bautista, A.; Thompson, K.J.; McKillop, I.H.; Kirpich, I.A.; McClain, C.J.; Bataller, R.; Nanau, R.M.; Voiculescu, M.; Opris, M.; Shen, H.; Tillman, B.; Li, J.; Liu, H.; Thomes, P.G.; Ganesan, M.; Malnick, S. Alcoholic and non-alcoholic steatohepatitis. Exp. Mol. Pathol., 2014, 97(3), 492-510.
[7]
Johnson, W.D., II; Howard, R.J.; Trudell, J.R.; Harris, R.A. The tm2 6′ position of gaba(a) receptors mediates alcohol inhibition. J. Pharmacol. Exp. Ther., 2012, 340(2), 445-456.
[8]
Akinshola, B.E. Straight-chain alcohols exhibit a cutoff in potency for the inhibition of recombinant glutamate receptor subunits. Br. J. Pharmacol., 2001, 133(5), 651-658.
[9]
Zuo, Y.; Aistrup, G.L.; Marszalec, W.; Gillespie, A.; Chavez-Noriega, L.E.; Yeh, J.Z.; Narahashi, T. Dual action of n-alcohols on neuronal nicotinic acetylcholine receptors. Mol. Pharmacol., 2001, 60(4), 700-711.
[10]
Hermenegildo, C.; Morcaida, G.; Montoliu, C.; Grisolia, S.; Minana, M.D.; Felipo, V. NMDA receptor antagonists prevent acute ammonia toxicity in mice. Neurochem. Res., 1996, 21(10), 1237-1244.
[11]
Jornvall, H. The alcohol dehydrogenase system. EXS, 1994, 71, 221-229.
[12]
Hoog, J.O.; Ostberg, L.J. Mammalian alcohol dehydrogenases--a comparative investigation at gene and protein levels. Chem. Biol. Interact., 2011, 191(1-3), 2-7.
[13]
Lange, L.G.; Sytkowski, A.J.; Vallee, B.L. Human liver alcohol dehydrogenase: Purification, composition, and catalytic features. Biochemistry, 1976, 15(21), 4687-4693.
[14]
Hoshino, T.; Ishiguro, I.; Ohta, Y. Rabbit liver alcohol dehydrogenase: Purification and properties. J. Biochem., 1985, 97(4), 1163-1172.
[15]
Dafeldecker, W.P.; Meadow, P.E.; Pares, X.; Vallee, B.L. Simian liver alcohol dehydrogenase: Isolation and characterization of isoenzymes from Macaca mulatta. Biochemistry, 1981, 20(23), 6729-6734.
[16]
McCall, K.A.; Huang, C.; Fierke, C.A. Function and mechanism of zinc metalloenzymes. J. Nutr, 2000. 130(5S Suppl), 1437S-1446S.
[17]
Kollock, R.; Frank, H.; Seidel, A.; Meinl, W.; Glatt, H. Oxidation of alcohols and reduction of aldehydes derived from methyl- and dimethylpyrenes by cDNA-expressed human alcohol dehydrogenases. Toxicology, 2008, 245(1-2), 65-75.
[18]
Jelski, W.; Szmitkowski, M. Alcohol dehydrogenase (adh) and aldehyde dehydrogenase (aldh) in the cancer diseases. Clin. Chim. Acta, 2008, 395(1-2), 1-5.
[19]
Cea, G.; Wilson, L.; Bolivar, J.; Markovits, A.; Illanes, A. Effect of chain length on the activity of free and immobilized alcohol dehydrogenase towards aliphatic alcohols. Enzyme Microb. Technol., 2009, 44, 135-138.
[20]
Moosavi-Movahedi, F.; Saboury, A.A.; Alijanvand, H.H.; Bohlooli, M.; Salami, M.; Moosavi-Movahedi, A.A. Thermal inactivation and conformational lock studies on horse liver alcohol dehydrogenase: Structural mechanism. Int. J. Biol. Macromol., 2013, 58, 66-72.
[21]
Lamed, R.; Zeikus, J.G. Ethanol production by thermophilic bacteria: Relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J. Bacteriol., 1980, 144(2), 569-578.
[22]
Hess, M.; Antranikian, G. Archaeal alcohol dehydrogenase active at increased temperatures and in the presence of organic solvents. Appl. Microbiol. Biotechnol., 2008, 77(5), 1003-1013.
[23]
Nie, Y.; Xu, Y.; Mu, X.Q.; Wang, H.Y.; Yang, M.; Xiao, R. Purification, characterization, gene cloning, and expression of a novel alcohol dehydrogenase with anti-prelog stereospecificity from Candida parapsilosis. Appl. Environ. Microbiol., 2007, 73(11), 3759-3764.
[24]
Liu, X.; Dong, Y.; Zhang, J.; Zhang, A.; Wang, L.; Feng, L. Two novel metal-independent long-chain alkyl alcohol dehydrogenases from Geobacillus thermodenitrificans ng80-2. Microbiology, 2009, 155(Pt 6), 2078-2085.
[25]
Ying, X.; Wang, Y.; Xiong, B.; Wu, T.; Xie, L.; Yu, M.; Wang, Z. Characterization of an allylic/benzyl alcohol dehydrogenase from yokenella sp. Strain wzy002, an organism potentially useful for the synthesis of alpha,beta-unsaturated alcohols from allylic aldehydes and ketones. Appl. Environ. Microbiol., 2014, 80(8), 2399-2409.
[26]
Felder, M.R.; Watson, G.; Huff, M.O.; Ceci, J.D. Mechanism of induction of mouse kidney alcohol dehydrogenase by androgen. Androgen-induced stimulation of transcription of the adh-1 gene. J. Biol. Chem., 1988, 263(28), 14531-14537.
[27]
Panisello-Rosello, A.; Lopez, A.; Folch-Puy, E.; Carbonell, T.; Rolo, A.; Palmeira, C.; Adam, R.; Net, M.; Rosello-Catafau, J. Role of aldehyde dehydrogenase 2 in ischemia reperfusion injury: An update. World J. Gastroenterol., 2018, 24(27), 2984-2994.
[28]
Gao, N.; Li, J.; Li, M.R.; Qi, B.; Wang, Z.; Wang, G.J.; Gao, J.; Qiao, H.L. Higher activity of alcohol dehydrogenase is correlated with hepatic fibrogenesis. J. Pharmacol. Exp. Ther., 2018, 18(118)249425
[29]
Ledesma, J.C.; Balino, P.; Aragon, C.M.G. Reduction in central H2O2 levels prevents voluntary ethanol intake in mice: A role for the brain catalase H2O2 system in alcohol binge drinking. Alcoholism, 2014, 38(1), 60-67.
[30]
Raducan, A.; Cantemir, A.R.; Puiu, M.; Oancea, D. Kinetics of hydrogen peroxide decomposition by catalase: Hydroxylic solvent effects. Bioprocess Biosyst. Eng., 2012, 35(9), 1523-1530.
[31]
Schad, A.; Fahimi, H.D.; Volkl, A.; Baumgart, E. Expression of catalase mRNA and protein in adult rat brain: Detection by nonradioactive in situ hybridization with signal amplification by catalyzed reporter deposition (ish-card) and immunohistochemistry (ihc)/immunofluorescence (if). J. Histochem. Cytochem., 2003, 51(6), 751-760.
[32]
Aspberg, A.; Soderback, M.; Tottmar, O. Increase in catalase activity in developing rat-brain cell reaggegation cultures in the presence of ethanol. Biochem. Pharmacol., 1993, 46(10), 1873-1876.
[33]
Lieber, C.S.; DeCarli, L.M. Hepatic microsomal ethanol-oxidizing system. In vitro characteristics and adaptive properties in vivo. J. Biol. Chem., 1970, 245(10), 2505-2512.
[34]
Carter, E.A.; Isselbacher, K.J. The role of microsomes in the hepatic metabolism of ethanol. Ann. N. Y. Acad. Sci., 1971, 179, 282-294.
[35]
McGehee, R.E., Jr; Ronis, M.J.; Cowherd, R.M.; Ingelman-Sundberg, M.; Badger, T.M. Characterization of cytochrome p450 2e1 induction in a rat hepatoma fgc-4 cell model by ethanol. Biochem. Pharmacol., 1994, 48(9), 1823-1833.
[36]
Guo, Y.M.; Wang, Q.; Liu, Y.Z.; Chen, H.M.; Qi, Z.; Guo, Q.H. Genetic polymorphisms in cytochrome p4502e1, alcohol and aldehyde dehydrogenases and the risk of esophageal squamous cell carcinoma in gansu chinese males. World J. Gastroenterol., 2008, 14(9), 1444-1449.
[37]
Cichoz-Lach, H.; Celinki, K.; Woicierowski, J.; Slomka, M.; Lis, E. Genetic polymorphism of alcohol-metabolizing enzyme and alcohol dependence in polish men. Braz. J. Med. Biol. Res., 2010, 43(3), 257-261.
[38]
Orlicky, D.J.; Roede, J.R.; Bales, E.; Greenwood, C.; Greenberg, A.; Petersen, D.; McManaman, J.L. Chronic ethanol consumption in mice alters hepatocyte lipid droplet properties. Alcohol. Clin. Exp. Res., 2011, 35(6), 1020-1033.
[39]
Lu, Y.; Cederbaum, A.I. Cytochrome p450s and alcoholic liver disease. Curr. Pharm. Des., 2018, 24(14), 1502-1517.
[40]
Chen, X.; Ward, S.C.; Cederbaum, A.I.; Xiong, H.; Lu, Y. Alcoholic fatty liver is enhanced in CYP2A5 knockout mice: The role of the PPARα-FGF21 axis. Toxicology, 2017, 379, 12-21.
[41]
Leung, T.M.; Lu, Y. Alcoholic liver disease: From CYP2E1 to CYP2A5. Curr. Mol. Pharmacol., 2017, 10(3), 172-178.
[42]
Barnett, S.D.; Buxton, I.L.O. The role of s-nitrosoglutathione reductase (gsnor) in human disease and therapy. Crit. Rev. Biochem. Mol. Biol., 2017, 52(3), 340-354.
[43]
Ticha, T.; Lochman, J.; Cincalova, L.; Luhova, L.; Petrivalsky, M. Redox regulation of plant s-nitrosoglutathione reductase activity through post-translational modifications of cysteine residues. Biochem. Biophys. Res. Commun., 2017, 494(1-2), 27-33.
[44]
Ken, C.F.; Huang, C.Y.; Wen, L.; Huang, J.K.; Lin, C.T. Modulation of nitrosative stress via glutathione-dependent formaldehyde dehydrogenase and s-nitrosoglutathione reductase. Int. J. Mol. Sci., 2014, 15(8), 14166-14179.
[45]
Orywal, K.; Jelski, W.; Werel, T.; Szmitkowski, M. The activity of class i-iv alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in bladder cancer cells. Cancer Invest., 2018, 36(1), 66-72.
[46]
Liesivuori, J.; Savolainen, H. Methanol and formic acid toxicity: Biochemical mechanisms. Pharmacol. Toxicol., 1991, 69(3), 157-163.
[47]
Young, A.; Gardiner, D.; Brosnan, M.E.; Brosnan, J.T.; Mailloux, R.J. Physiological levels of formate activate mitochondrial superoxide/hydrogen peroxide release from mouse liver mitochondria. FEBS J., 2017, 591(16), 2426-2438.
[48]
Jones, A.W. Elimination half-life of methanol during hangover. Pharmacol. Toxicol., 1987, 60(3), 217-220.
[49]
Bouchard, M.; Brunet, R.C.; Droz, P.O.; Carrier, G. A biologically based dynamic model for predicting the disposition of methanol and its metabolites in animals and humans. Toxicol. Sci., 2001, 64(2), 169-184.
[50]
Moon, C.S. Estimations of the lethal and exposure doses for representative methanol symptoms in humans. Ann. Occup. Environ. Med, 2017. 29(44), 017-0197.
[51]
McMartin, K.; Jacobsen, D.; Hovda, K.E. Antidotes for poisoning by alcohols that form toxic metabolites. Br. J. Clin. Pharmacol., 2016, 81(3), 505-515.
[52]
McCoy, H.G.; Cipolle, R.J.; Ehlers, S.M.; Sawchuk, R.J.; Zaske, D.E. Severe methanol poisoning. Application of a pharmacokinetic model for ethanol therapy and hemodialysis. Am. J. Med., 1979, 67(5), 804-807.
[53]
Palatnick, W.; Redman, L.W.; Sitar, D.S.; Tenenbein, M. Methanol half-life during ethanol administration: Implications for management of methanol poisoning. Ann. Emerg. Med., 1995, 26(2), 202-207.
[54]
Haffner, H.T.; Banger, M.; Graw, M.; Besserer, K.; Brink, T. The kinetics of methanol elimination in alcoholics and the influence of ethanol. Forensic Sci. Int., 1997, 89(1-2), 129-136.
[55]
Jones, A.W. Pharmacokinetics of ethanol - issues of forensic importance. Forensic Sci. Rev., 2011, 23(2), 91-136.
[56]
McMartin, K.E.; Sebastian, C.S.; Dies, D.; Jacobsen, D. Kinetics and metabolism of fomepizole in healthy humans. Clin. Toxicol. (Phila.), 2012, 50(5), 375-383.
[57]
Hovda, K.E.; Andersson, K.S.; Urdal, P.; Jacobsen, D. Methanol and formate kinetics during treatment with fomepizole. Clin. Toxicol. (Phila.), 2005, 43(4), 221-227.
[58]
Maskell, K.F.; Beckett, S.; Cumpston, K.L. Methanol kinetics in chronic kidney disease after fomepizole: A case report. Am. J. Ther., 2016, 23(6), e1949-e1951.
[59]
Hall, T.L. Fomepizole in the treatment of ethylene glycol poisoning. CJEM, 2002, 4(3), 199-204.
[60]
De Brabander, N.; Wojciechowski, M.; De Decker, K.; De Weerdt, A.; Jorens, P.G. Fomepizole as a therapeutic strategy in paediatric methanol poisoning. A case report and review of the literature. Eur. J. Pediatr., 2005, 164(3), 158-161.
[61]
Hovda, K.E.; Jacobsen, D. Expert opinion: Fomepizole may ameliorate the need for hemodialysis in methanol poisoning. Hum. Exp. Toxicol., 2008, 27(7), 539-546.
[62]
Zabrodskii, P.F.; Maslyakov, V.V.; Gromov, M.S. Effect of 4-methylpyrazole on immune response, function of th1 and th2 lymphocytes, and cytokine concentration in rat blood after acute methanol poisoning. Eksp. Klin. Farmakol., 2016, 79(3), 37-40.
[63]
Zakharov, S.; Pelclova, D.; Navratil, T.; Belacek, J.; Komarc, M.; Eddleston, M.; Hovda, K.E. Fomepizole versus ethanol in the treatment of acute methanol poisoning: Comparison of clinical effectiveness in a mass poisoning outbreak. Clin. Toxicol. (Phila.), 2015, 53(8), 797-806.
[64]
Zakharov, S.; Pelclova, D.; Urban, P.; Navratil, T.; Diblik, P.; Kuthan, P.; Hubacek, J.A.; Miovsky, M.; Klempir, J.; Vaneckova, M.; Seidl, Z.; Pilin, A.; Fenclova, Z.; Petrik, V.; Kotikova, K.; Nurieva, O.; Ridzon, P.; Rulisek, J.; Komarc, M.; Hovda, K.E. Czech mass methanol outbreak 2012: Epidemiology, challenges and clinical features. Clin. Toxicol. (Phila.), 2014, 52(10), 1013-1024.
[65]
Zakharov, S.; Navratil, T.; Pelclova, D. Fomepizole in the treatment of acute methanol poisonings: Experience from the czech mass methanol outbreak 2012-2013. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2014, 158(4), 641-649.
[66]
Zakharov, S.; Pelclova, D.; Diblik, P.; Urban, P.; Kuthan, P.; Nurieva, O.; Kotikova, K.; Navratil, T.; Komarc, M.; Belacek, J.; Seidl, Z.; Vaneckova, M.; Hubacek, J.A.; Bezdicek, O.; Klempir, J.; Yurchenko, M.; Ruzicka, E.; Miovsky, M.; Janikova, B.; Hovda, K.E. Long-term visual damage after acute methanol poisonings: Longitudinal cross-sectional study in 50 patients. Clin. Toxicol. (Phila.), 2015, 53(9), 884-892.
[67]
Zakharov, S.; Pelclova, D.; Navratil, T.; Belacek, J.; Kurcova, I.; Komzak, O.; Salek, T.; Latta, J.; Turek, R.; Bocek, R.; Kucera, C.; Hubacek, J.A.; Fenclova, Z.; Petrik, V.; Cermak, M.; Hovda, K.E. Intermittent hemodialysis is superior to continuous veno-venous hemodialysis/hemodiafiltration to eliminate methanol and formate during treatment for methanol poisoning. Kidney Int., 2014, 86(1), 199-207.
[68]
Paasma, R.; Hovda, K.E.; Hassanian-Moghaddam, H.; Brahmi, N.; Afshari, R.; Sandvik, L.; Jacobsen, D. Risk factors related to poor outcome after methanol poisoning and the relation between outcome and antidotes - a multicenter study. Clin. Toxicol., 2012, 50(9), 823-831.
[69]
El-Bakary, A.A.; El-Dakrory, S.A.; Attalla, S.M.; Hasanein, N.A.; Malek, H.A. Ranitidine as an alcohol dehydrogenase inhibitor in acute methanol toxicity in rats. Hum. Exp. Toxicol., 2010, 29(2), 93-101.
[70]
Svensson, S.; Hoog, J.O.; Schneider, G.; Sandalova, T. Crystal structures of mouse class ii alcohol dehydrogenase reveal determinants of substrate specificity and catalytic efficiency. J. Mol. Biol., 2000, 302(2), 441-453.
[71]
Plapp, B.V.; Savarimuthu, B.R.; Ferraro, D.J.; Rubach, J.K.; Brown, E.N.; Ramaswamy, S. Horse liver alcohol dehydrogenase: Zinc coordination and catalysis. Biochemistry, 2017, 56(28), 3632-3646.
[72]
Langeland, B.T.; Morris, D.L.; McKinley-McKee, J.S. Metal binding properties of thiols; complexes with horse liver alcohol dehydrogenase. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 1999, 123(2), 155-162.
[73]
Plapp, B.V.; Berst, K.B. Specificity of human alcohol dehydrogenase 1c*2 (gamma2gamma2) for steroids and simulation of the uncompetitive inhibition of ethanol metabolism. Chem. Biol. Interact., 2003, 144, 183-193.
[74]
Tsai, C.S. Multifunctionality of liver alcohol dehydrogenase: Kinetic and mechanistic studies of esterase reaction. Arch. Biochem. Biophys., 1982, 213(2), 635-642.
[75]
Soyka, M.; Muller, C.A. Pharmacotherapy of alcoholism - an update on approved and off-label medications. Expert Opin. Pharmacother., 2017, 18(12), 1187-1199.
[76]
Koh, H.K.; Seo, S.Y.; Kim, J.H.; Kim, H.J.; Chie, E.K.; Kim, S.K.; Kim, I.H. Disulfiram, a re-positioned aldehyde dehydrogenase inhibitor, enhances radiosensitivity of human glioblastoma cells in vitro. Cancer Res. Treat., 2018, 13(249), 249.
[77]
Grzybowski, A.; Zulsdorff, M.; Wilhelm, H.; Tonagel, F. Toxic optic neuropathies: An updated review. Acta Ophthalmol., 2015, 93(5), 402-410.
[78]
Verly, W.G.; Kinney, J.M.; Du Vigneaud, V. Effect of folic acid and leucovorin on synthesis of the labile methyl group from methanol in the rat. J. Biol. Chem., 1952, 196(1), 19-23.
[79]
Fatterpaker, P.; Marfatia, U.; Sreenivasan, A. A sparing effect of formate or methanol on the impairment of creatine metabolism in folic acid deficiency. Nature, 1952, 170(4334), 894-895.
[80]
Black, K.A.; Eells, J.T.; Noker, P.E.; Hawtrey, C.A.; Tephly, T.R. Role of hepatic tetrahydrofolate in the species difference in methanol toxicity. Proc. Natl. Acad. Aci. USA, 1985, 82(11), 3854-3858.
[81]
Cook, R.J.; Champion, K.M.; Giometti, C.S. Methanol toxicity and formate oxidation in NEUT2 mice. Arch. Biochem. Biophys., 2001, 393(2), 192-198.
[82]
Noker, P.E.; Eells, J.T.; Tephly, T.R. Methanol toxicity: Treatment with folic acid and 5-formyl tetrahydrofolic acid. Alcohol. Clin. Exp. Res., 1980, 4(4), 378-383.
[84]
Barceloux, D.G.; Bond, G.R.; Krenzelok, E.P.; Cooper, H.; Vale, J.A. American academy of clinical toxicology practice guidelines on the treatment of methanol poisoning. J. Toxicol. Clin. Toxicol., 2002, 40(4), 415-446.