[22]
Kawata, K.; Hatano, A.; Yugi, K.; Kubota, H.; Sano, T.; Fujii, M.; Tomizawa, Y; Kokaji, T.; Tanaka, K. Y.; Uda, S.; Suzuki, Y.; Matsumoto, M.; Nakayama, K. I.; Saitoh, K.; Kato, K.; Ueno, A.; Ohishi, M.; Hirayama, A.; Soga, T.; Kuroda, S. Trans-omic analysis
reveals selective responses to induced and basal insulin across
signaling, transcriptional, and metabolic networks, iScience, 2018, 7, 212-229.
[25]
Hongwu, M.; An-Ping, Z. Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms, 2003, 19(2), 270-277.
[69]
Faller, D.; Voss, H. U.; Timmer, J.; Hobohm, U. A new approach for normalization of DNA-microarray data 2001, 14(2), 207-223.
[70]
Murakami, K. Kojima, T. Sakaki, Y, ‘Detection of tissue specific genes by putative regulatory motifs in human promoter sequences’. Genome Inform., 2003, 14, 408-409.
[73]
Sterelny, K.; Griffiths, P.E. Sex and Death: An introduction to philosophy of bio science and its conceptual foundations series; University Of Chicago Press, 1999.
[75]
Hernaez, M.; Gevaert, O. Comparison of single gene and module-based methods for modeling gene regulatory networks, 2018.
[82]
Kauffman, S.A. The origins of order: self-organization and selection in evolution., 1993.
[85]
Gao, Z.; Chen, X. Tamer Başar. Controllability of Conjunctive
Boolean Networks With Application to Gene Regulation. 2017, 770-781.
[93]
Perrin, B-E.; Ralaivola, L.; Mazurie, A.; Bottani, S.; Mallet, J.; d’Alche-Buc, F. Gene network inference using dynamic Bayesian networks., 2003, 19(2), 138-148.
[104]
Alberts, B.; Johnson, A.; Lewis, J.; Ra, M.; Roberts, K.; Walter, P. Molecular biology of the cell, 4th ed; Garland Science, 2002.
[105]
Milner, R. Communicating and Mobile Systems: the π-Calculus., 1999.
[113]
Ando, S. Iba, H., ‘Inference of gene regulatory model by genetic algorithms’, Evolutionary computation, 2001. Proceedings of the 2001 Congress on, 2001.
[115]
Ando, S.; Iba, H. The matrix modeling of gene regulatory networks-Reverse engineering by genetic algorithms Proc. Atlantic Symp. Computational Biology, and Genome Information Systems and Technology, 2001.
[117]
Keedwell, E.; Narayanan, A. Discovering gene regulatory networks
with a neural- genetic hybrid. IEEE/ACM Transac. Comput. Biol.
Bioinform, 2005, 231-243.
[119]
Bower, J.M.; Bolouri, H. Computational modeling of genetic and biochemical. Networks, 2001.
[128]
Di Bernado, D.; Gardner, D.S.; Collins, J.J. Robust identification of large genetic networks Pacific Symposium on Biocomputing, 2004.
[129]
de Hoon, M.J.L. Inferring gene regulatory networks from timeordered gene expression data of Bacillus Subtilis using differential equations. Pac. Symp. Biocomput., 2003, 8, 17-28.
[134]
Pan, H.; Liu, L. Fuzzy Bayesian networks-A general formalism for representation, inference and learning with hybrid Bayesian networks. IJPRAI, 2000, 14(7), 941-962.
[135]
Fogelberg, C. Belief propagation in fuzzy Bayesian networks: A worked example. Proc. 2008 Comlab. Student Conference October;, 2008.
[136]
Fogelberg, C. Belief propagation in fuzzy bayesian networks. In:
Hatzilygeroudis, I. (ed.) 1st Int’l workshop on combinations of intelligent
methods and applications (CIMA) at ECAI, 2008.
[144]
Alberts, B.; Johnson, A.; Lewis, J.; Ra, M.; Roberts, K.; Walter, P. Molecular biology of the cell, 4th ed; , 2002.
[145]
Milner, R. Communicating and Mobile Systems: the π-Calculus; Cambridge University Press: New York, NY, USA, 1999.