Assessment of Hepatoprotective and Antiulcer Activity of Launaea aspleniifolia Hook in Laboratory Animals

Page: [703 - 712] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Launaea aspleniifolia Hook (Family Asteraceae) is used traditionally in medicine in Indian system for the treatment of leucoderma. This study was conducted to evaluate the hepatoprotective and antiulcer effects using the methanolic extract of Launaea aspleniifolia Hook (MELA).

Methods: The MELA in the dose of 200 and 400 mg/kg body weight (b.w.) was administered orally, daily for 7 days to prevent the acetaminophen-induced hepatotoxicity and peptic ulcer. In order to determine the antioxidant enzymes activity, various enzymatic parameters including alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBL), direct bilirubin (DBL), alkaline phosphatase (ALP), total protein (TP), albumin (ALB), high density lipoproteins (HDL), random glucose test (RBS), serum creatinine levels (SCL) and direct bilirubin (DBL) were determined. Further, the histopathology of tissue and various gastric secretion parameters like free acidity, total acidity ulcer score, % ulcer inhibition, gastric volume, pH, Na+ and K+ and histopathology were determined in PLinduced ulcer model.

Result: MELA showed dose-dependent hepatoprotective and ulcer protective effect in acetaminopheninduced hepatotoxicity and antiulcer activity. Furthermore, tissue antioxidant parameter such as reduced Malondialdehyde (MDA), histopathology was also investigated. MELA was more potent in controlling all the serological parameter of liver like ALT, AST, TBL, DBL, ALP, HDL, RBS, SCL, TP and ALB in a dose-dependent manner (P<0.05) induced by Acetaminophen. Apart from this, antiulcer activity MELA was confirmed by the low level of ulcer index along with the reduction of free acidity, total acidity ulcer score, % ulcer inhibition, gastric volume, Na+ and an increase K+, pH of gastric content in a dose-dependent manner (P<0.05) induced PL model.

Conclusion: The results indicated a significant dose-dependent effect of MELA from injuries induced in liver and stomach. These protective effects of MELA can be examined in various other toxicities as alone and in combinations.

Keywords: Acetaminophen, flavonoids, pylorus ligation, biochemical parameters, MDA, rheumatism.

Graphical Abstract

[1]
Galappatthy, P.; Dawson, A.H. Paracetamol overdose: relevance of recent evidence for managing patients in Sri Lanka. Ceylon Med. J., 2015, 60(3), 77-81.
[http://dx.doi.org/10.4038/cmj.v60i3.8184] [PMID: 26520858]
[2]
Nakae, D.; Yamamoto, K.; Yoshiji, H.; Kinugasa, T.; Maruyama, H.; Farber, J.L.; Konishi, Y. Liposome-encapsulated superoxide dismutase prevents liver necrosis induced by acetaminophen. Am. J. Pathol., 1990, 136(4), 787-795.
[PMID: 2158237]
[3]
Mazaleuskaya, L.L.; Sangkuhl, K.; Thorn, C.F.; FitzGerald, G.A.; Altman, R.B.; Klein, T.E. PharmGKB summary: pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenet. Genomics, 2015, 25(8), 416-426.
[http://dx.doi.org/10.1097/FPC.0000000000000150] [PMID: 26049587]
[4]
Shay, H.; Komarov, S.A.; Fels, S.S.; Meranze, D.; Gruenstein, M.; Siplet, H. A simple method for the uniform production of gastric ulceration in the rat. Gastroenterology, 1945, 5, 53.
[5]
Khare, S.; Asad, M.; Dhamanigi, S.S.; Prasad, V.S. Antiulcer activity of cod liver oil in rats. Indian J. Pharmacol., 2008, 40(5), 209-214.
[http://dx.doi.org/10.4103/0253-7613.44152] [PMID: 20040959]
[6]
Choudhary, M.K.; Bodakhe, S.H.; Gupta, S.K. Assessment of the antiulcer potential of Moringa oleifera root-bark extract in rats. J. Acupunct. Meridian Stud., 2013, 6(4), 214-220.
[http://dx.doi.org/10.1016/j.jams.2013.07.003] [PMID: 23972244]
[7]
Zhang, S.L.; Li, H.; He, X.; Zhang, R.Q.; Sun, Y.H.; Zhang, C.F.; Wang, C.Z.; Yuan, C.S. Alkaloids from Mahonia bealei posses anti-H+/K+-ATPase and anti-gastrin effects on pyloric ligation-induced gastric ulcer in rats. Phytomedicine, 2014, 21(11), 1356-1363.
[http://dx.doi.org/10.1016/j.phymed.2014.07.007] [PMID: 25172799]
[8]
Rawat, P.; Saroj, L.M.; Kumar, A.; Singh, T.D.; Tewari, S.K.; Pal, M. Phytochemicals and Cytotoxicity of Launaea procumbens on Human Cancer Cell Lines. Pharmacogn. Mag., 2016, 12(4)(Suppl. 4), S431-S435.
[PMID: 27761070]
[9]
Parekh, J.; Chanda, S. Screening of aqueous and alcoholic extracts of some Indian medicinal plants for antibacterial activity. Indian J. Pharm. Sci., 2006, 68(6), 835-838.
[http://dx.doi.org/10.4103/0250-474X.31032]
[10]
Zellagui, A.; Gherraf, N.; Ladjel, S.; Hameurlaine, S. Chemical composition and antibacterial activity of the essential oils from Launaea resedifolia L. Org. Med. Chem. Lett., 2012, 2(1), 2.
[http://dx.doi.org/10.1186/2191-2858-2-2] [PMID: 22373506]
[11]
Khan, R.A.; Khan, M.R.; Sahreen, S. Evaluation of Launaea procumbens use in renal disorders: a rat model. J. Ethnopharmacol., 2010, 128(2), 452-461.
[http://dx.doi.org/10.1016/j.jep.2010.01.026] [PMID: 20096342]
[12]
Qureshi, R.; Raza Bhatti, G. Ethnobotany of plants used by the Thari people of Nara Desert, Pakistan. Fitoterapia, 2008, 79(6), 468-473.
[http://dx.doi.org/10.1016/j.fitote.2008.03.010] [PMID: 18538950]
[13]
Patel, N.S.; Jain, D.K.; Nagar, H.; Patel, A.; Chanel, H.S. Evaluation of Analgesic and Antipyretic Activity of Tridax Procumbens Leaves Extract. RGUHS J. Pharm. Sci., 2011, 1(3), 226-231.
[http://dx.doi.org/10.5530/rjps.2011.3.9]
[14]
Miya, M.F.; Islam, Z.; Shahriyar, S.; Khan, M.R.H.; Reza, M.S. Anti-fungal potential of tridhara (Tridax procumbens) leaves. Asian J. Med. Biol. Res., 2015, 1(3), 686-689.
[http://dx.doi.org/10.3329/ajmbr.v1i3.26497]
[15]
Da Costa, F.B.; Terfloth, L.; Gasteiger, J. Sesquiterpene lactone-based classification of three Asteraceae tribes: a study based on self-organizing neural networks applied to chemosystematics. Phytochemistry, 2005, 66(3), 345-353.
[http://dx.doi.org/10.1016/j.phytochem.2004.12.006] [PMID: 15680991]
[16]
Khan, R.A.; Khan, M.R.; Ahmed, M.; Sahreen, S.; Shah, N.A.; Shah, M.S.; Bokhari, J.; Rashid, U.; Ahmad, B.; Jan, S. Hepatoprotection with a chloroform extract of Launaea procumbens against CCl4-induced injuries in rats. BMC Complement. Altern. Med., 2012, 12(12), 114.
[http://dx.doi.org/10.1186/1472-6882-12-114] [PMID: 22862950]
[17]
Saranya, P.; Geetha, A.; Selvamathy, S.M. A biochemical study on the gastroprotective effect of andrographolide in rats induced with gastric ulcer. Indian J. Pharm. Sci., 2011, 73(5), 550-557.
[http://dx.doi.org/10.4103/0250-474X.99012] [PMID: 22923868]
[18]
Senthil, K.A.; Murugan, A. Antiulcer, wound healing and hepatoprotective activities of the seaweeds Gracilaria crassa, Turbinaria ornata and Laurencia papillosa from the southeast coast of India. Braz. J. Pharm. Sci., 2013, 49(4), 669-678.
[http://dx.doi.org/10.1590/S1984-82502013000400006]
[19]
Sahoo, S.K.; Sahoo, H.B.; Priyadarshini, D.; Soundarya, G.; Kumar, C.K.; Rani, K.U. Antiulcer Activity of Ethanolic Extract of Salvadora indica (W.) Leaves on Albino Rats. J. Clin. Diagn. Res., 2016, 10(9), FF07-FF10.
[http://dx.doi.org/10.7860/JCDR/2016/20384.8470] [PMID: 27790462]
[20]
Ganguly, A.K.; Bhatnagar, O.P. Effect of bilateral adrenalectomy on production of restraint ulcers in the stomach of albino rats. Can. J. Physiol. Pharmacol., 1973, 51(10), 748-750.
[http://dx.doi.org/10.1139/y73-113] [PMID: 4753287]
[21]
Gu, J.; Cui, H.; Behr, M.; Zhang, L.; Zhang, Q.Y.; Yang, W.; Hinson, J.A.; Ding, X. In vivo mechanisms of tissue-selective drug toxicity: effects of liver-specific knockout of the NADPH-cytochrome P450 reductase gene on acetaminophen toxicity in kidney, lung, and nasal mucosa. Mol. Pharmacol., 2005, 67(3), 623-630.
[http://dx.doi.org/10.1124/mol.104.007898] [PMID: 15550675]
[22]
Williams, C.D.; Koerner, M.R.; Lampe, J.N.; Farhood, A.; Jaeschke, H. Mouse strain-dependent caspase activation during acetaminophen hepatotoxicity does not result in apoptosis or modulation of inflammation. Toxicol. Appl. Pharmacol., 2011, 257(3), 449-458.
[http://dx.doi.org/10.1016/j.taap.2011.10.006] [PMID: 22023962]
[23]
Bessems, J.G.; Vermeulen, N.P. Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit. Rev. Toxicol., 2001, 31(1), 55-138.
[http://dx.doi.org/10.1080/20014091111677] [PMID: 11215692]
[24]
Sahreen, S.; Khan, M.R.; Khan, R.A. Hepatoprotective effects of methanol extract of Carissa opaca leaves on CCl4-induced damage in rat. BMC Complement. Altern. Med., 2011, 11(11), 48.
[http://dx.doi.org/10.1186/1472-6882-11-48] [PMID: 21699742]
[25]
Lajter, I.; Hohmann, J.; Vasas, A. Biologically active secondary metabolites from Asteraceae and Polygonaceae species. University of Szeged; Faculty of Pharmacy: Szeged, Hungary, 2015, pp. 37-38.
[26]
Koukoui, O.; Agbangnan, P.; Boucherie, S.; Yovo, M.; Nusse, O.; Combettes, L.; Sohounhloué, D. Phytochemical Study and Evaluation of Cytotoxicity, Antioxidant and Hypolipidemic Properties of Launaea taraxacifolia Leaves Extracts on Cell Lines HepG2 and PLB985. Am. J. Plant Sci., 2015, 6(4), 1768-1779.
[http://dx.doi.org/10.4236/ajps.2015.611177]