Medicinal Plant Compounds for Combating the Multi-drug Resistant Pathogenic Bacteria: A Review

Page: [183 - 196] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Globally, people utilize plants as the main source of remedy to heal various ailments. Medicinal plants have been utilized to treat ailments since the invention of modern scientific systems of medicine. The common remedy of infectious diseases mainly depends on the inhibition capacity of compounds or killing potential. The issue may give a clue for the development of a novel antimicrobial agent.

Methods: Currently, microorganisms which are resistant towards antibiotics are probably a matter of serious concern for the overall well-being of health. At the moment, new therapeutic targets aside from the microorganism wall-based activities are in progress. For instance, the autoinducer molecules produced by the quorum sensing system are used to control antibiotic resistance and biofilm formation.

Results: This therapeutic target is well-studied worldwide, however, the scientific data are not updated and only current studies started to gain insight into its perspective as a target to struggle against infectious diseases. Microbial resistance against antimicrobial compounds is a topic of serious concern in recent time.

Conclusion: Hence, this paper aims to confer a current overview of the novel compounds, quorum sensing, quorum quenching, biofilm formation in the development of antibiotic resistance and an update on their importance as a potential target for natural substances.

Keywords: Antibiotics, biofilm, medicinal plant, pathogenic bacteria, quorum sensing, antibiotic resistance.

Graphical Abstract

[1]
Veeresham, C. Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res., 2012, 3(4), 200-201.
[2]
Bone, K.; Mills, S.Y. Principles and practice of phytotherapy, modern herbal medicine, 2: Principles and practice of phytotherapy; Elsevier Health Sciences, 2013.
[3]
Jamshidi-Kia, F.; Lorigooini, Z.; Amini-Khoei, H. Medicinal plants: Past history and future perspective. J. Herbmed. Pharmacol, 2018, 7(1), 1-7.
[4]
Huie, C.W. A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal. Bioanal. Chem., 2002, 373(1-2), 23-30.
[5]
Mutuku, N.; Francis, R. Chemical constituents screening and in vitro antibacterial assessment of Prunus Africana bark hydromethanolic extract. J. Nat. Sci. Res., 2014, 4(16), 85-90.
[6]
Mwale, M.; Bhebhe, E.; Chimonyo, M.; Halimani, T.E. Use of herbal plants in poultry health management in the Mushagashe small-scale commercial farming area in Zimbabwe. Int. J. Appl. Res. Vet. Med., 2005, 3(2), 163-170.
[7]
Pour, H.A.; Norouzzade, R.; Heidari, M.R.; Ogut, S.; Yaman, H.; Gokce, S. Therapeutic properties of Zingiber officinale roscoe: A review. European J. Med. Plants, 2014, 4(12), 1431.
[8]
Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; Mastinu, A. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. J. Ethnopharmacol., 2018, 227, 300-315.
[9]
Lewis, K.; Ausubel, F.M. Prospects for plant-derived antibacterials. Nat. Biotechnol., 2006, 24(12), 1504.
[10]
Adonizio, A.; Kong, K.F.; Mathee, K. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrob. Agents Chemother., 2008, 52(1), 198-203.
[11]
Romulo, A.; Zuhud, E.A.M.; Rondevaldova, J.; Kokoska, L. Screening of in vitro antimicrobial activity of plants used in traditional Indonesian medicine. Pharm. Biol., 2018, 56(1), 287-293.
[12]
Savithramma, N.; Linga, Rao. M.; Ankanna, S. Screening of medicinal plants for secondary metabolites. Middle East J. Sci. Res., 2011, 8, 643-647.
[13]
Yelin, I.; Kishony, R. Antibiotic resistance. Cell, 2018, 172(5), 1136-1136.e1.
[14]
Davies, D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov., 2003, 2(2), 114-122.
[15]
Thomson, J.M.; Bonomo, R.A. The threat of antibiotic resistance in Gram-negative pathogenic bacteria: β-lactams in peril! Curr. Opin. Microbiol., 2005, 8(5), 518-524.
[16]
Stewart, P.S.; Costerton, J.W. Antibiotic resistance of bacteria in biofilms. Lancet, 2001, 358(9276), 135-138.
[17]
Khan, F.; Khan, M.M.; Kim, Y.M. Recent progress and future perspectives of antibiofilm drugs immobilized on nanomaterials. Curr. Pharm. Biotechnol., 2018, 19(8), 631-643.
[18]
Rates, S.M. Plants as source of drugs. Toxicon, 2001, 39(5), 603-613.
[19]
Solowey, E.; Lichtenstein, M.; Sallon, S.; Paavilainen, H.; Solowey, E.; Lorberboum-Galski, H. Evaluating medicinal plants for anticancer activity. Scientif. World J., 2014, 2014, 12.
[20]
Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Aspects Med., 2006, 27(1), 1-93.
[21]
Pieroni, A.; Houlihan, L.; Ansari, N.; Hussain, B.; Aslam, S. Medicinal perceptions of vegetables traditionally consumed by South-Asian migrants living in Bradford, Northern England. J. Ethnopharmacol., 2007, 113(1), 100-110.
[22]
Ashraf, S.; Anjum, A.A.; Ahmad, A.; Firyal, S.; Sana, S.; Latif, A.A. In vitro activity of Nigella sativa against antibiotic resistant Salmonella enterica. Environ. Toxicol. Pharmacol., 2018, 58, 54-58.
[23]
Efferth, T.; Li, P.C.; Konkimalla, V.S.; Kaina, B. From traditional Chinese medicine to rational cancer therapy. Trends Mol. Med., 2007, 13(8), 353-361.
[24]
Hussain, M.S.; Fareed, S.; Ansari, S.; Rahman, M.A.; Ahmad, I.Z.; Saeed, M. Current approaches toward production of secondary plant metabolites. J. Pharm. Bioallied Sci., 2012, 4(1), 10-20.
[25]
Harvey, A. Strategies for discovering drugs from previously unexplored natural products. Drug Discov. Today, 2000, 5(7), 294-300.
[26]
Phillipson, J.D. Phytochemistry and medicinal plants. Phytochemistry, 2001, 56(3), 237-243.
[27]
Pieters, L.; Vlietinck, A.J. Bioguided isolation of pharmacologically active plant components, still a valuable strategy for the finding of new lead compounds? J. Ethnopharmacol., 2005, 100(1-2), 57-60.
[28]
Giday, M.; Asfaw, Z.; Elmqvist, T.; Woldu, Z. An ethnobotanical study of medicinal plants used by the Zay people in Ethiopia. J. Ethnopharmacol., 2003, 85(1), 43-52.
[29]
Gautam, R.; Saklani, A.; Jachak, S.M. Indian medicinal plants as a source of antimycobacterial agents. J. Ethnopharmacol., 2007, 110(2), 200-234.
[30]
Verma, S.; Singh, S.P. Current and future status of herbal medicine. Vet. World, 2008, 2(2), 347-350.
[31]
Verpoorte, R. Exploration of nature’s chemodiversity: The role of secondary metabolites as leads in drug development. Drug Discov. Today, 1998, 3(5), 232-238.
[32]
Iqbal, E.; Salim, K.A.; Lim, L.B.L. Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of Goniothalamus velutinus (Airy Shaw) from Brunei Darussalam. J. King Saud Univ. -. Sci., 2015, 27(3), 224-232.
[33]
Hamidpour, R.; Hamidpour, S.; Hamidpour, M.; Shahlari, M.; Sohraby, M.; Shahlari, N.; Hamidpour, R. Russian olive (Elaeagnus angustifolia L.): From a variety of traditional medicinal applications to its novel roles as active antioxidant, anti-inflammatory, anti-mutagenic and analgesic agent. J. Tradit. Complement. Med., 2017, 7(1), 24-29.
[34]
Kumar, R.V.; Venkatrajireddy, G.; Bikshapathi, T.; Reddy, M.K. Antioxidant-the maximum expressed activity among 63 medicinal plants., 2012, 1(5), 1-13.
[35]
Penumala, M.; Zinka, R.B.; Shaik, J.B.; Mallepalli, S.K.R.; Vadde, R.; Amooru, D.G. Phytochemical profiling and in vitro screening for anticholinesterase, antioxidant, antiglucosidase and neuroprotective effect of three traditional medicinal plants for Alzheimer’s Disease and Diabetes Mellitus dual therapy. BMC Complement. Altern. Med., 2018, 18(1), 77.
[36]
María, R.; Shirley, M.; Xavier, C.; Jaime, S.; David, V.; Rosa, S.; Jodie, D. Preliminary phytochemical screening, total phenolic content and antibacterial activity of thirteen native species from Guayas province Ecuador. J. King Saud Univ. -. Sci., 2018, 30(4), 500-505.
[37]
He, M.; Qu, C.; Gao, O.; Hu, X.; Hong, X. Biological and pharmacological activities of amaryllidaceae alkaloids. RSC Adv., 2015, 5(21), 16562-16574.
[38]
Tamayo, C.; Richardson, M.; Diamond, S.; Skoda, I. The chemistry and biological activity of herbs used in Flor‐Essence™ herbal tonic and Essiac. Phytother. Res., 2000, 14(1), 1-14.
[39]
Faria, J.V.; Vegi, P.F.; Miguita, A.G.C.; Dos Santos, M.S.; Boechat, N.; Bernardino, A.M.R. Recently reported biological activities of pyrazole compounds. Bioorg. Med. Chem., 2017, 25(21), 5891-5903.
[40]
Edeoga, O.H.; Okwu, D.E.; Oyedemi, B. Phytochemical constituents of some Nigerian medicinal plants. Afr. J. Biotechnol., 2005, 4(7), 685-688.
[41]
Nizet, V.; Ohtake, T.; Lauth, X.; Trowbridge, J.; Rudisill, J.; Dorschner, R.A.; Pestonjamasp, V.; Piraino, J.; Huttner, K.; Gallo, R.L. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature, 2001, 414(6862), 454.
[42]
Khan, F.; Jain, S.; Oloketuyi, S.F. Bacteria and bacterial products: Foe and friends to Caenorhabditis elegans. Microbiol. Res., 2018, 215, 102-113.
[43]
Khan, M.S.A.; Zahin, M.; Hasan, S.; Husain, F.M.; Ahmad, I. Inhibition of quorum sensing regulated bacterial functions by plant essential oils with special reference to clove oil. Lett. Appl. Microbiol., 2009, 49(3), 354-360.
[44]
Khan, F.; Javaid, A.; Kim, Y.M. Functional diversity of quorum sensing receptors in pathogenic bacteria: Interspecies, intraspecies and interkingdom level. Curr. Drug Targets, 2019, 20(6), 655-667.
[45]
Choo, J.H.; Rukayadi, Y.; Hwang, J.K. Inhibition of bacterial quorum sensing by vanilla extract. Lett. Appl. Microbiol., 2006, 42(6), 637-641.
[46]
Fuqua, C.; Parsek, M.R.; Greenberg, E.P. Regulation of gene expression by cell-to-cell communication: Acyl-homoserine lactone quorum sensing. Annu. Rev. Genet., 2001, 35(1), 439-468.
[47]
Zhu, J.; Miller, M.B.; Vance, R.E.; Dziejman, M.; Bassler, B.L.; Mekalanos, J.J. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc. Natl. Acad. Sci. USA, 2002, 99(5), 3129-3134.
[48]
Koh, C.L.; Sam, C.K.; Yin, W.F.; Tan, L.Y.; Krishnan, T.; Chong, Y.M.; Chan, K.G. Plant-derived natural products as sources of anti-quorum sensing compounds. Sensors (Basel), 2013, 13(5), 6217-6228.
[49]
Bouyahya, A.; Dakka, N.; Et-Touys, A.; Abrini, J.; Bakri, Y. Medicinal plant products targeting quorum sensing for combating bacterial infections. Asian Pac. J. Trop. Med., 2017, 10(8), 729-743.
[50]
Drenkard, E.; Ausubel, F.M. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature, 2002, 416(6882), 740-743.
[51]
Wood, M.J.; Moellering, J.R.C. Microbial resistance: Bacteria and more. Clin. Infect. Dis, 2003, 36(Supplement_1), S2-S3.
[52]
Upadhyay, A.; Karumathil, D.P.; Upadhyaya, I.; Bhattaram, V.; Venkitanarayanan, K. Chapter 10 - Controlling bacterial antibiotic resistance using plant-Derived antimicrobials. In. Antibiotic Resistance, Kon, K.; Rai, M., Eds. Academic Press: 2016; pp 205- 226.
[53]
Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA, 2015, 112(18), 5649-5654.
[54]
Cormican, M.G.; Jones, R.N. Emerging resistance to antimicrobial agents in gram-positive bacteria. Enterococci, staphylococci and nonpneumococcal streptococci. Drugs, 1996, 51(Suppl. 1), 6-12.
[55]
Wang, H.M.; Chen, C.Y.; Chen, H.A.; Huang, W.C.; Lin, W.R.; Chen, T.C.; Lin, C.Y.; Chien, H.J.; Lu, P.L.; Lin, C.M. Zingiber officinale (ginger) compounds have tetracycline‐resistance modifying effects against clinical extensively drug‐resistant Acinetobacter baumannii. Phytother. Res., 2010, 24(12), 1825-1830.
[56]
Khan, F.; Oloketuyi, S.F. A future perspective on neurodegenerative diseases: Nasopharyngeal and gut microbiota. J. Appl. Microbiol., 2017, 122(2), 306-320.
[57]
Hall, R.D. Plant metabolomics: From holistic hope, to hype, to hot topic. New Phytol., 2006, 169(3), 453-468.
[58]
Johny, A.K.; Hoagland, T.; Venkitanarayanan, K. Effect of subinhibitory concentrations of plant-derived molecules in increasing the sensitivity of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 to antibiotics. Foodborne Pathog. Dis., 2010, 7(10), 1165-1170.
[59]
Jacoby, G.A.; Archer, G.L. New mechanisms of bacterial resistance to antimicrobial agents. N. Engl. J. Med., 1991, 324(9), 601-612.
[60]
Lin, J.; Zhou, D.; Steitz, T.A.; Polikanov, Y.S.; Gagnon, M.G. Ribosome-targeting antibiotics: Modes of action, mechanisms of resistance, and implications for drug design. Annu. Rev. Biochem., 2018, 87, 451-478.
[61]
Stavri, M.; Piddock, L.J.; Gibbons, S. Bacterial efflux pump inhibitors from natural sources. J. Antimicrob. Chemother., 2007, 59(6), 1247-1260.
[62]
Ash, R.J.; Mauck, B.; Morgan, M. Antibiotic resistance of gram-negative bacteria in rivers, United States. Emerg. Infect. Dis., 2002, 8(7), 713-716.
[63]
Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents, 2010, 35(4), 322-332.
[64]
Gallert, C.; Fund, K.; Winter, J. Antibiotic resistance of bacteria in raw and biologically treated sewage and in groundwater below leaking sewers. Appl. Microbiol. Biotechnol., 2005, 69(1), 106-112.
[65]
Barrett, J.F. MRSA: Status and prospects for therapy? An evaluation of key papers on the topic of MRSA and antibiotic resistance. Expert Opin. Ther. Targets, 2004, 8(6), 515-519.
[66]
Zhang, Y.; Ma, Q.; Su, B.; Chen, R.; Lin, J.; Lin, Z.; Wang, D.; Yu, Y. A study on the role that quorum sensing play in antibiotic-resistant plasmid conjugative transfer in Escherichia coli. Ecotoxicology, 2018, 27(2), 209-216.
[67]
Staub, H. Psoriasis and its social problems. Z. Krankenpfl., 1972, 65(9), 323-326.
[68]
Santamaria, J.; Lopez, L.; Soto, C.Y. Detection and diversity evaluation of tetracycline resistance genes in grassland-based production systems in Colombia, South america. Front. Microbiol., 2011, 2, 252.
[69]
Connell, S.R.; Tracz, D.M.; Nierhaus, K.H.; Taylor, D.E. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob. Agents Chemother., 2003, 47(12), 3675-3681.
[70]
Li, X.Z.; Livermore, D.M.; Nikaido, H. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: Resistance to tetracycline, chloramphenicol, and norfloxacin. Antimicrob. Agents Chemother., 1994, 38(8), 1732-1741.
[71]
Thaker, M.; Spanogiannopoulos, P.; Wright, G.D. The tetracycline resistome. Cell. Mol. Life Sci., 2010, 67(3), 419-431.
[72]
Leski, T.A.; Bangura, U.; Jimmy, D.H.; Ansumana, R.; Lizewski, S.E.; Stenger, D.A.; Taitt, C.R.; Vora, G.J. Multidrug-resistant tet(X)-containing hospital isolates in Sierra Leone. Int. J. Antimicrob. Agents, 2013, 42(1), 83-86.
[73]
Forsberg, K.J.; Patel, S.; Wencewicz, T.A.; Dantas, G. The tetracycline destructases: A novel family of tetracycline-inactivating enzymes. Chem. Biol., 2015, 22(7), 888-897.
[74]
Park, J.; Gasparrini, A.J.; Reck, M.R.; Symister, C.T.; Elliott, J.L.; Vogel, J.P.; Wencewicz, T.A.; Dantas, G.; Tolia, N.H. Plasticity, dynamics, and inhibition of emerging tetracycline resistance enzymes. Nat. Chem. Biol., 2017, 13(7), 730.
[75]
Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc., 2018, 81(1), 7-11.
[76]
Neu, T.; Lawrence, J. Extracellular polymeric substances in microbial biofilms; Elsevier: San Diego, 2009, pp. 735-758.
[77]
Bueno, J. Anti-biofilm drug susceptibility testing methods: Looking for new strategies against resistance mechanism J. Microbial Biochem. Technol., 2011, s3, 1-9.
[78]
Chen, L.; Wen, Y.M. The role of bacterial biofilm in persistent infections and control strategies. Int. J. Oral Sci., 2011, 3(2), 66-73.
[79]
Tan, S.Y.; Chew, S.C.; Tan, S.Y.; Givskov, M.; Yang, L. Emerging frontiers in detection and control of bacterial biofilms. Curr. Opin. Biotechnol., 2014, 26, 1-6.
[80]
Fruci, M.; Poole, K. Bacterial stress responses as determinants of antimicrobial resistance. In. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria, 2016, pp 115-136.
[81]
Khameneh, B.; Diab, R.; Ghazvini, K.; Fazly Bazzaz, B.S. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb. Pathog., 2016, 95, 32-42.
[82]
Donlan, R.M. Biofilms and device-associated infections. Emerg. Infect. Dis., 2001, 7(2), 277-281.
[83]
Hobley, L.; Harkins, C.; MacPhee, C.E.; Stanley-Wall, N.R. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol. Rev., 2015, 39(5), 649-669.
[84]
Walters, M.C., III; Roe, F.; Bugnicourt, A.; Franklin, M.J.; Stewart, P.S. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob. Agents Chemother., 2003, 47(1), 317-323.
[85]
Livermore, D.M. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare? Clin. Infect. Dis., 2002, 34(5), 634-640.
[86]
Breidenstein, E.B.; de la Fuente-Núñez, C.; Hancock, R.E. Pseudomonas aeruginosa:, All roads lead to resistance. 2011, 19(8), 419-426.
[87]
Stewart, P.S. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol., 2002, 292(2), 107-113.
[88]
Donlan, R.M. Role of biofilms in antimicrobial resistance. ASAIO J., 2000, 46(6), S47-S52.
[89]
Defoirdt, T.; Boon, N.; Sorgeloos, P.; Verstraete, W.; Bossier, P. Quorum sensing and quorum quenching in Vibrio harveyi: Lessons learned from in vivo work. ISME J., 2008, 2(1), 19-26.
[90]
Kalia, V.C. Quorum sensing inhibitors: An overview. Biotechnol. Adv., 2013, 31(2), 224-245.
[91]
Kjelleberg, S.; Molin, S. Is there a role for quorum sensing signals in bacterial biofilms? Curr. Opin. Microbiol., 2002, 5(3), 254-258.
[92]
Antunes, L.C.; Ferreira, R.B.; Buckner, M.M.; Finlay, B.B. Quorum sensing in bacterial virulence. Microbiology, 2010, 156(Pt 8), 2271-2282.
[93]
Whitehead, N.A.; Barnard, A.M.; Slater, H.; Simpson, N.J.; Salmond, G.P. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev., 2001, 25(4), 365-404.
[94]
Nackerdien, Z.E.; Keynan, A.; Bassler, B.L.; Lederberg, J.; Thaler, D.S. Quorum sensing influences Vibrio harveyi growth rates in a manner not fully accounted for by the marker effect of bioluminescence. PLoS One, 2008, 3(2), e1671.
[95]
Bhardwaj, A.K.; Vinothkumar, K.; Rajpara, N. Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance. Rec. Pat. Antiinfect. Drug Discov., 2013, 8(1), 68-83.
[96]
Zohar, B-A.; Kolodkin-Gal, I. Quorum sensing in Escherichia coli: Interkingdom, inter- and intraspecies dialogues, and a suicide-inducing peptide.In Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight; Kalia, V.C., Ed.; Springer India: New Delhi, 2015, pp. 85-99.
[97]
Bassler, B.L. How bacteria talk to each other: regulation of gene expression by quorum sensing., 1999, 2(6), 582-587.
[98]
Papenfort, K.; Bassler, B.L. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol., 2016, 14(9), 576.
[99]
Darch, S.E.; West, S.A.; Winzer, K.; Diggle, S.P. Density-dependent fitness benefits in quorum-sensing bacterial populations. Proc. Natl. Acad. Sci. USA, 2012, 109(21), 8259-8263.
[100]
Novick, R.P.; Geisinger, E. Quorum sensing in staphylococci. Annu. Rev. Genet., 2008, 42(1), 541-564.
[101]
Anand, R.; Rai, N.; Thattai, M. Interactions among quorum sensing inhibitors. PLoS One, 2013, 8(4), e62254.
[102]
Lupp, C.; Urbanowski, M.; Greenberg, E.P.; Ruby, E.G. The Vibrio fischeri quorum‐sensing systems ain and lux sequentially induce luminescence gene expression and are important for persistence in the squid host. Mol. Microbiol., 2003, 50(1), 319-331.
[103]
Egland, K.A.; Greenberg, E. Quorum sensing in Vibrio fischeri: elements of the luxI promoter. Mol. Microbiol., 1999, 31(4), 1197-1204.
[104]
Miller, M.B.; Bassler, B.L. Quorum sensing in bacteria. Annu. Rev. Microbiol., 2001, 55(1), 165-199.
[105]
Waters, C.M.; Bassler, B.L. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol., 2005, 21, 319-346.
[106]
Hammer, B.K.; Bassler, B.L. Regulatory small RNAs circumvent the conventional quorum sensing pathway in pandemic Vibrio cholerae. Proc. Natl. Acad. Sci. USA, 2007, 104(27), 11145-11149.
[107]
Nazzaro, F.; Fratianni, F.; Coppola, R. Quorum sensing and phytochemicals. Int. J. Mol. Sci., 2013, 14(6), 12607-12619.
[108]
Zhang, L.H.; Dong, Y.H. Quorum sensing and signal interference: diverse implications. Mol. Microbiol., 2004, 53(6), 1563-1571.
[109]
Grandclément, C.; Tannières, M.; Moréra, S.; Dessaux, Y.; Faure, D. Quorum quenching: Role in nature and applied developments 2015, 40(1), 86-116.
[110]
Kalia, V.C.; Purohit, H.J. Quenching the quorum sensing system: potential antibacterial drug targets. Crit. Rev. Microbiol., 2011, 37(2), 121-140.
[111]
Redfield, R.J. Is quorum sensing a side effect of diffusion sensing?, 2002, 10(8), 365-370.
[112]
Sio, C.F.; Otten, L.G.; Cool, R.H.; Diggle, S.P.; Braun, P.G.; Bos, R.; Daykin, M.; Cámara, M.; Williams, P.; Quax, W.J. Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect. Immun., 2006, 74(3), 1673-1682.
[113]
Tang, K.; Zhang, X.H. Quorum quenching agents: Resources for antivirulence therapy. Mar. Drugs, 2014, 12(6), 3245-3282.
[114]
Dong, Y.H.; Wang, L.Y.; Zhang, L.H. Quorum-quenching microbial infections: Mechanisms and implications. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2007, 362(1483), 1201-1211.
[115]
Amara, N.; Krom, B.P.; Kaufmann, G.F.; Meijler, M.M. Macromolecular inhibition of quorum sensing: Enzymes, antibodies, and beyond. Chem. Rev., 2011, 111(1), 195-208.
[116]
Bzdrenga, J.; Daude, D.; Remy, B.; Jacquet, P.; Plener, L.; Elias, M.; Chabriere, E. Biotechnological applications of quorum quenching enzymes Chem. Biol. Interact, 2017, 267(SI), 104-115.
[117]
Newman, K.L.; Chatterjee, S.; Ho, K.A.; Lindow, S.E. Virulence of plant pathogenic bacteria attenuated by degradation of fatty acid cell-to-cell signaling factors. Mol. Plant Microbe Interact., 2008, 21(3), 326-334.
[118]
Dembitsky, V.M.; Al Quntar, A.A.A.; Srebnik, M. Natural and synthetic small boron-containing molecules as potential inhibitors of bacterial and fungal quorum sensing. Chem. Rev., 2010, 111(1), 209-237.
[119]
Sibanda, T.; Okoh, A. The challenges of overcoming antibiotic resistance: Plant extracts as potential sources of antimicrobial and resistance modifying agents. Afr. J. Biotechnol., 2007, 6(25)
[120]
Ahmad, I.; Aqil, F.; Owais, M. Modern phytomedicine: Turning medicinal plants into drugs; John Wiley & Sons, 2006.
[121]
Li, Y-H.; Tian, X. Quorum sensing and bacterial social interactions in biofilms. Sensors (Basel), 2012, 12(3), 2519-2538.
[122]
Rasmussen, T.B.; Givskov, M. Quorum-sensing inhibitors as anti-pathogenic drugs. Int. J. Med. Microbiol., 2006, 296(2-3), 149-161.
[123]
Prabhadevi, V.; Sahaya, S.S.; Johnson, M.; Venkatramani, B.; Janakiraman, N. Phytochemical studies on Allamanda cathartica L. using GC-MS. Asian Pac. J. Trop. Biomed., 2012, 2(2)(Suppl.), S550-S554.
[124]
Kadhim, M.J.; Sosa, A.A.; Hameed, I.H. Evaluation of anti-bacterial activity and bioactive chemical analysis of Ocimum basilicum using Fourier transform infrared (FT-IR) and gas chromatography-mass spectrometry (GC-MS) techniques. J. Pharmacog. Phytother., 2016, 8(6), 127-146.
[125]
Siti Mahirah, Y.; Rabeta, M.; Antora, R. Effects of different drying methods on the proximate composition and antioxidant activities of Ocimum basilicum leaves. Food Res., 2018, 2(5), 421-428.
[126]
Masika, P.J.; Sultana, N.; Afolayan, A.J.; Houghton, P.J. Isolation of two antibacterial compounds from the bark of Salix capensis. S. Afr. J. Bot., 2005, 71(3), 441-443.
[127]
Silva, E.M.; Barros, C.M.; Santos, C.M.; Barros, A.S.; Domingues, M.R.; Silva, A.M. Characterization of 2,3-diarylxanthones by electrospray mass spectrometry: Gas-phase chemistry versus known antioxidant activity properties. Rapid Commun. Mass Spectrom., 2016, 30(20), 2228-2236.
[128]
Masika, P.J.; Sultana, N.; Afolayan, A.J. Antibacterial activity of two flavonoids isolated from Schotia latifolia. Pharm. Biol., 2004, 42(2), 105-108.
[129]
Kilari, E.K.; Putta, S. Biological and phytopharmacological descriptions of Litchi Chinensis. Pharmacogn. Rev., 2016, 10(19), 60-65.
[130]
Borges, A.; Abreu, A.C.; Ferreira, C.; Saavedra, M.J.; Simoes, L.C.; Simoes, M. Antibacterial activity and mode of action of selected glucosinolate hydrolysis products against bacterial pathogens. J. Food Sci. Technol., 2015, 52(8), 4737-4748.
[131]
Zdunska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol. Physiol., 2018, 31(6), 332-336.
[132]
LaLonde, R.T.; Bu, L.; Henwood, A.; Fiumano, J.; Zhang, L. Bromine-, chlorine-, and mixed halogen-substituted 4-methyl-2(5H)-furanones: Synthesis and mutagenic effects of halogen and hydroxyl group replacements. Chem. Res. Toxicol., 1997, 10(12), 1427-1436.
[133]
Li, L.; Seeram, N.P. Maple syrup phytochemicals include lignans, coumarins, a stilbene, and other previously unreported antioxidant phenolic compounds. J. Agric. Food Chem., 2010, 58(22), 11673-11679.
[134]
Ohene-Agyei, T.; Mowla, R.; Rahman, T.; Venter, H. Phytochemicals increase the antibacterial activity of antibiotics by acting on a drug efflux pump. MicrobiologyOpen, 2014, 3(6), 885-896.
[135]
Shukla, S.; Wu, C.P.; Nandigama, K.; Ambudkar, S.V. The naphthoquinones, vitamin K3 and its structural analogue plumbagin, are substrates of the multidrug resistance linked ATP binding cassette drug transporter ABCG2. Mol. Cancer Ther., 2007, 6(12 Pt 1), 3279-3286.
[136]
Castro, F.A.; Mariani, D.; Panek, A.D.; Eleutherio, E.C.; Pereira, M.D. Cytotoxicity mechanism of two naphthoquinones (menadione and plumbagin) in Saccharomyces cerevisiae. PLoS One, 2008, 3(12), e3999.
[137]
Makhafola, T.J.; Elgorashi, E.E.; McGaw, L.J.; Awouafack, M.D.; Verschaeve, L.; Eloff, J.N.J.B.C.; Medicine, A. Isolation and characterization of the compounds responsible for the antimutagenic activity of Combretum microphyllum (Combretaceae) leaf extracts. BMC Complement. Altern. Med., 2017, 17(1), 446.
[138]
Manna, P.; Sinha, M.; Sil, P.C. Protection of arsenic-induced hepatic disorder by arjunolic acid. Basic Clin. Pharmacol. Toxicol., 2007, 101(5), 333-338.
[139]
Ghosh, J.; Sil, P.C. Arjunolic acid: A new multifunctional therapeutic promise of alternative medicine. Biochimie, 2013, 95(6), 1098-1109.
[140]
Rabe, T.; Mullholland, D.; van Staden, J. Isolation and identification of antibacterial compounds from Vernonia colorata leaves. J. Ethnopharmacol., 2002, 80(1), 91-94.
[141]
Stafford, G.I.; Jager, A.K.; van Staden, J. Effect of storage on the chemical composition and biological activity of several popular South African medicinal plants. J. Ethnopharmacol., 2005, 97(1), 107-115.
[142]
Ndhlala, A.R.; Amoo, S.O.; Ncube, B.; Moyo, M.; Nair, J.J.; Van Staden, J. 16 - Antibacterial, antifungal, and antiviral activities of African medicinal plants.In Medicinal Plant Research in Africa; Kuete, V., Ed.; Elsevier: Oxford, 2013, pp. 621-659.
[143]
Chukwujekwu, J.C.; Lategan, C.A.; Smith, P.J.; Van Heerden, F.R.; Van Staden, J. Antiplasmodial and cytotoxic activity of isolated sesquiterpene lactones from the acetone leaf extract of Vernonia colorata. S. Afr. J. Bot., 2009, 75(1), 176-179.
[144]
Merghni, A.; Noumi, E.; Hadded, O.; Dridi, N.; Panwar, H.; Ceylan, O.; Mastouri, M.; Snoussi, M. Assessment of the antibiofilm and antiquorum sensing activities of Eucalyptus globulus essential oil and its main component 1,8-cineole against methicillin-resistant Staphylococcus aureus strains. Microb. Pathog., 2018, 118, 74-80.
[145]
McLean, R.J.; Pierson, L.S., III; Fuqua, C. A simple screening protocol for the identification of quorum signal antagonists. J. Microbiol. Methods, 2004, 58(3), 351-360.
[146]
Sampietro, D.A.; Gomez, A.D.A.; Jimenez, C.M.; Lizarraga, E.F.; Ibatayev, Z.A.; Suleimen, Y.M.; Catalán, C.A. Chemical composition and antifungal activity of essential oils from medicinal plants of Kazakhstan. Nat. Prod. Res., 2017, 31(12), 1464-1467.
[147]
Carranza, M.G.; Sevigny, M.B.; Banerjee, D.; Fox-Cubley, L. Antibacterial activity of native California medicinal plant extracts isolated from Rhamnus californica and Umbellularia californica. Ann. Clin. Microbiol. Antimicrob., 2015, 14, 29.
[148]
Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev., 2018, 1-32.
[149]
Lu, M-C.; Chiu, H-F.; Lin, C-P.; Shen, Y-C.; Venkatakrishnan, K.; Wang, C-K. Anti-Helicobacter pylori effect of various extracts of ixeris chinensis on inflammatory markers in human gastric epithelial AGS cells. J. Herb. Med., 2018, 11, 60-70.
[150]
Sun, L.P.; Gao, L.X.; Ma, W.P.; Nan, F.J.; Li, J.; Piao, H.R. Synthesis and biological evaluation of 2,4,6-trihydroxychalcone derivatives as novel protein tyrosine phosphatase 1B inhibitors. Chem. Biol. Drug Des., 2012, 80(4), 584-590.
[151]
Anagnostopoulou, M.A.; Kefalas, P.; Papageorgiou, V.P.; Assimopoulou, A.N.; Boskou, D. Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). Food Chem., 2006, 94(1), 19-25.
[152]
Srivastava, J.; Chandra, H.; Nautiyal, A.R.; Kalra, S.J. Antimicrobial resistance (AMR) and plant-derived antimicrobials (PDAms) as an alternative drug line to control infections. 3 Biotech, 2014, 4(5), 451-460.
[153]
Martino, E.; Ramaiola, I.; Urbano, M.; Bracco, F.; Collina, S.J.J.O.C.A. Microwave-assisted extraction of coumarin and related compounds from Melilotus officinalis (L.) Pallas as an alternative to Soxhlet and ultrasound-assisted extraction. J. Chromatogr. A, 2006, 1125(2), 147-151.
[154]
Akhtar, M.S.; Hossain, M.A.; Said, S.A. Isolation and characterization of antimicrobial compound from the stem-bark of the traditionally used medicinal plant Adenium obesum. J. Tradit. Complement. Med., 2017, 7(3), 296-300.
[155]
Salem, M.Z.M.; Ali, H.M.; El-Shanhorey, N.A.; Abdel-Megeed, A. Evaluation of extracts and essential oil from Callistemon viminalis leaves: Antibacterial and antioxidant activities, total phenolic and flavonoid contents. Asian Pac. J. Trop. Med., 2013, 6(10), 785-791.
[156]
Paredes, A.; Leyton, Y.; Riquelme, C.; Morales, G. A plant from the altiplano of Northern Chile Senecio nutans, inhibits the Vibrio cholerae pathogen. Springerplus, 2016, 5(1), 1788.
[157]
Naz, R.; Ayub, H.; Nawaz, S.; Islam, Z.U.; Yasmin, T.; Bano, A.; Wakeel, A.; Zia, S.; Roberts, T.H. Antimicrobial activity, toxicity and anti-inflammatory potential of methanolic extracts of four ethnomedicinal plant species from Punjab, Pakistan. BMC Complement. Altern. Med., 2017, 17(1), 302.
[158]
Ahmad, A.; Tandon, S.; Xuan, T.D.; Nooreen, Z. A review on phytoconstituents and biological activities of Cuscuta species. Biomed. Pharmacother., 2017, 92, 772-795.
[159]
Alvin, A.; Miller, K.I.; Neilan, B.A. Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiologic. Res., 2014, 169(7-8), 483-495.
[160]
Ariga, T.; Seki, T. Antithrombotic and anticancer effects of garlic-derived sulfur compounds: A review. Biofactors, 2006, 26(2), 93-103.
[161]
Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sanchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiologic. Res., 2017, 196, 44-68.
[162]
Mastelic, J.; Jerkovic, I.; Blažević, I.; Poljak-Blaži, M.; Borović, S.; Ivancić-Baće, I.; Smrecki, V.; Žarković, N.; Brcić-Kostic, K.; Vikić-Topić, D.; Muller, N. Comparative study on the antioxidant and biological activities of carvacrol, thymol, and eugenol derivatives. J. Agric. Food Chem., 2008, 56(11), 3989-3996.
[163]
Botelho, M.A.; Nogueira, N.A.; Bastos, G.M.; Fonseca, S.G.; Lemos, T.L.; Matos, F.J.; Montenegro, D.; Heukelbach, J.; Rao, V.S.; Brito, G.A. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Braz. J. Med. Biol. Res., 2007, 40(3), 349-356.
[164]
Ntie-Kang, F.; Onguene, P.A.; Lifongo, L.L.; Ndom, J.C.; Sippl, W.; Mbaze, L.M. The potential of anti-malarial compounds derived from African medicinal plants, part II: A pharmacological evaluation of non-alkaloids and non-terpenoids. Malar. J., 2014, 13, 81.
[165]
Moshi, M.; Joseph, C.; Innocent, E.; Nkunya, M. In vitro antibacterial and antifungal activities of extracts and compounds from Uvaria scheffleri. Pharm. Biol., 2004, 42(4-5), 269-273.
[166]
Subramani, R.; Narayanasamy, M.; Feussner, K.D. Plant-derived antimicrobials to fight against multi-drug-resistant human pathogens. 3 Biotech, 2017, 7(3), 172..
[167]
Lee, S-G.; Lee, E-J.; Park, W-D.; Kim, J-B.; Kim, E-O.; Choi, S-W. Anti-inflammatory and anti-osteoarthritis effects of fermented Achyranthes japonica Nakai. J. Ethnopharmacol., 2012, 142(3), 634-641.
[168]
Gonçalves, M.D.; Bortoleti, B.; Tomiotto-Pellissier, F.; Miranda-Sapla, M.M.; Assolini, J.P.; Carloto, A.C.M.; Carvalho, P.; Tudisco, E.T.; Urbano, A.; Ambrósio, S.R.J.F. Dehydroabietic acid isolated from Pinus elliottii exerts in vitro antileishmanial action by pro-oxidant effect, inducing ROS production in promastigote and downregulating Nrf2/ferritin expression in amastigote forms of Leishmania amazonensis. Fitoterapia, 2018, 128, 224-232.
[169]
Swamy, M.K.; Sinniah, U.R. A Comprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin Benth: An aromatic medicinal plant of industrial importance. Molecules, 2015, 20(5), 8521-8547.
[170]
Li, Y-C.; Liang, H-C.; Chen, H-M.; Tan, L-R.; Yi, Y-Y.; Qin, Z.; Zhang, W-M.; Wu, D-W.; Li, C-W.; Lin, R-F. Anti-Candida albicans activity and pharmacokinetics of pogostone isolated from Pogostemonis herba. Phytomedicine, 2012, 20(1), 77-83.
[171]
Proestos, C.; Chorianopoulos, N.; Nychas, G-J.; Komaitis, M. RP-HPLC analysis of the phenolic compounds of plant extracts. Investigation of their antioxidant capacity and antimicrobial activity. J. Agric. Food Chem., 2005, 53(4), 1190-1195.
[172]
Rojas, A.; Hernandez, L.; Pereda-Miranda, R.; Mata, R. Screening for antimicrobial activity of crude drug extracts and pure natural products from Mexican medicinal plants. J. Ethnopharmacol., 1992, 35(3), 275-283.
[173]
Song, X.; Xia, Y-X.; He, Z-D.; Zhang, H-J. A Review of natural products with anti-biofilm activity. Curr. Org. Chem., 2018, 22(8), 789-817.
[174]
Prabu, G.; Gnanamani, A.; Sadulla, S. Guaijaverin-a plant flavonoid as potential antiplaque agent against Streptococcus mutans. J. Appl. Microbiol., 2006, 101(2), 487-495.
[175]
Righi, G.; Antonioletti, R.; Silvestri, I.P.; D’Antona, N.; Lambusta, D.; Bovicelli, P. Convergent synthesis of mosloflavone, negletein and baicalein from crysin. Tetrahedron, 2010, 66(6), 1294-1298.
[176]
Ali, B.H.; Blunden, G.; Tanira, M.O.; Nemmar, A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem. Toxicol., 2008, 4(2), 409-420.
[177]
Kim, H-S.; Park, H-D. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14. PLoS One, 2013, 8(9), e76106-e76106.
[178]
Kumar, L.; Chhibber, S.; Harjai, K. Zingerone inhibit biofilm formation and improve antibiofilm efficacy of ciprofloxacin against Pseudomonas aeruginosa PAO1. Fitoterapia, 2013, 90, 73-78.