Recent Synthetic Methodologies for Chalcone Synthesis (2013-2018)

Page: [184 - 192] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

An up-to-date short review of the chalcone methodologies is presented, which is the most interesting and beneficial for choosing the desired protocol to synthesize suitable derivatives of chalcones. Chalcones are fluorescent, stable compounds which contribute to the synthesis of various pharmacologically important heterocyclic structure-based derivatives. Chalcone has displayed a remarkable curative efficiency to cure several diseases. Several schemes and methodologies have been reported for employing different catalysts and reagents. The development of improved methodologies of α, β-unsaturated carbonyl compounds is still on going. In this review, synthetic methodologies and their recent modification in designing new methods with efficient, economical, eco-friendly and high yield are discussed.

Keywords: Chalcone, coupling reaction, flavone, indoline, hantzsch ester, pyrazoline.

Graphical Abstract

[1]
Jung, J-C.; Lee, Y.; Min, D.; Jung, M.; Oh, S. Practical synthesis of chalcone derivatives and their biological activities. Molecules, 2017, 22(11)E1872
[2]
Verma, S.; Srivastava, A.K.; Pandey, O.P. A review on chalcones synthesis and their biological activity. Pharmatutor, 2018, 6(2), 22-39.
[3]
Mahapatra, D.K.; Bharti, S.K. Therapeutic potential of chalcones as cardiovascular agents. Life Sci., 2016, 148, 154-172.
[4]
Matos, M.J.; Vazquez-Rodriguez, S.; Uriarte, E.; Santana, L. Potential pharmacological uses of chalcones: a patent review (from June 2011 - 2014). Expert Opin. Ther. Pat., 2015, 25(3), 351-366.
[5]
Singh, P.; Anand, A.; Kumar, V. Recent developments in biological activities of chalcones: A mini review. Eur. J. Med. Chem., 2014, 85, 758-777.
[6]
Chu, W.C.; Bai, P.Y.; Yang, Z.Q.; Cui, D.Y.; Hua, Y.G.; Yang, Y.; Yang, Q.Q.; Zhang, E.; Qin, S. Synthesis and antibacterial evaluation of novel cationic chalcone derivatives possessing broad spectrum antibacterial activity. Eur. J. Med. Chem., 2018, 143, 905-921.
[7]
Maurya, S.W.; Dev, K.; Prakash, R. Aijaz, John, A.E.; Siddiqui, I.R.; Singh, D.; Maurya, R. Design and synthesis of indolyl chalcone analogues and evaluation of their osteogenic activity. J. Pharmacol. Pharm. Res, 2018, 1(2), 006.
[8]
Leon-Gonzalez, A.; Acero, N.; Munoz-Mingarro, D.; Navarro, I.; Martin-Cordero, C. Chalcones as promising lead compounds on cancer therapy. Curr. Med. Chem., 2015, 22(30), 3407-3425.
[9]
Sharma, V.; Kumar, V.; Kumar, P. Heterocyclic chalcone analogues as potential anticancer agents. Anticancer. Agents Med. Chem., 2013, 13(3), 422-432.
[10]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[11]
Sulpizio, C.; Breibeck, J.; Rompel, A. Recent progress in synthesis and characterization of metal chalcone complexes and their potential as bioactive agents. Coord. Chem. Rev., 2018, 374, 497-524.
[12]
Gaonkar, S. U N, V. Synthesis and pharmacological properties of chalcones: a review. Res. Chem. Intermed., 2017, 43, 6043-6077.
[13]
Mahapatra, D.K.; Asati, V.; Bharti, S.K. Chalcones and their therapeutic targets for the management of diabetes: Structural and pharmacological perspectives. Eur. J. Med. Chem., 2015, 92, 839-865.
[14]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Chalcone scaffolds as anti-infective agents: Structural and molecular target perspectives. Eur. J. Med. Chem., 2015, 101, 496-524.
[15]
Silva, W.A.; Andrade, C.K.Z.; Napolitano, H.B.; Vencato, I. Lariucci.; de Castaro, M.R.; Camargo, A.J. Biological and structure-activity evaluation of chalcone derivatives against bacteria and fungi. J. Braz. Chem. Soc., 2013, 24(1), 133-144.
[16]
Cardona, F.; Rocha, J.; Silva, A.M.S.; Guieu, S.Δ. 1-pyrroline based boranyls: Synthesis, crystal structures and luminescent properties. Dyes Pigments, 2014, 111, 16-20.
[17]
Chang, M.Y.; Chen, Y.C.; Chan, C.K. One-pot synthesis of multifunctionalized cyclopropanes. Tetrahedron, 2014, 70(13), 2257-2263.
[18]
Climent, M.J.; Iborra, S.; Sabater, M.J.; Vidal, J.D. Bifunctional acid-base ionic liquid for the one-pot synthesis of fine chemicals: Thioethers, 2H-chromenes and 2H-quinoline derivatives. Appl. Catal. Gen., 2014, 481, 27-38.
[19]
Das, A.; Krishna Reddy, A.G.; Krishna, J.; Satyanarayana, G. An efficient synthesis of highly substituted indanones and chalcones promoted by superacid. RSC Advances, 2014, 4(51), 26662-26666.
[20]
Elamparuthi, E.; Sarathkumar, S.; Girija, S.; Anbazhagan, V. A facile synthesis of isoindoline and Δ1-pyrrolines from chalcone and glycine by a cascade of process involving addition, in situ decarboxylation, and cyclization. Tetrahedron Lett., 2014, 55(29), 3992-3995.
[21]
Franconetti, A. Contreras-Bernal, Lidia.; Jatunov, S.; Gomez-Guillen, M.; Angulo, M.; Parado-Gotor, R.; Cabrera-Escribano, F. Electronically tunable anion−π interactions in pyrylium complexes: experimental and theoretical studies. Phys. Chem. Chem. Phys., 2014, 16(34), 18442-18453.
[22]
Kaswan, P.; Pericherla, K. Rajnikant, Kumar, A. Synthesis of 3-aroylimidazo[1,2-a]pyridines via CuCl2 catalyzed tandem dual carbon-nitrogen bonding. Tetrahedron, 2014, 70(45), 8539-8544.
[23]
Kaur, A.; Singh, B.; Vyas, B.; Silakari, O. Synthesis and biological activity of 4-aryl-3-benzoyl-5-phenylspiro[pyrrolidine-2.3′-indolin]-2′-one derivatives as novel potent inhibitors of advanced glycation end product. Eur. J. Med. Chem., 2014, 79, 282-289.
[24]
Loibl, A.; de Krom, I.; Pidko, E.A.; Weber, M.; Wiecko, J.; Müller, C. Tuning the electronic effects of aromatic phosphorus heterocycles: an unprecedented phosphinine with significant P(π)-donor properties. Chem. Commun. , 2014, 50(64), 8842-8844.
[25]
Zhu, Y.; Li, C.; Zhang, J.; She, M.; Sun, W.; Wan, K.; Wang, Y.; Yin, B.; Liu, P.; Li, J. A facile FeCl3/I2-catalyzed aerobic oxidative coupling reaction: synthesis of tetrasubstituted imidazoles from amidines and chalcones. Org. Lett., 2015, 17(15), 3872-3875.
[26]
Amin, K.M.; Barsoum, F.F.; Awadallah, F.M.; Mohamed, N.E. Identification of new potent phthalazine derivatives with VEGFR-2 and EGFR kinase inhibitory activity. Eur. J. Med. Chem., 2016, 123, 191-201.
[27]
Venkateshwarlu, K.; Chakradar Rao, G.; Reddy, V.M.; Narasimha Reddy, Y. Synthesis and in vitro and in vivo antitumor/anticancer activity of novel o-Mannich bases of 4,6-diaryl-3,4-dihydropyrimidine-2(1H)-ones. J. Iran. Chem. Soc., 2014, 11(6), 1619-1627.
[28]
Xu, Z.; Guo, J.; Yang, Y.; Zhang, M.; Ba, M.; Li, Z.; Cao, Y.; He, R.; Yu, M.; Zhou, H.; Li, X.; Huang, X. Guo, Ying.; Guo, C. 2,4,5-Trisubstituted thiazole derivatives as HIV-1 NNRTIs effective on both wild-type and mutant HIV-1 reverse transcriptase: Optimization of the substitution of positions 4 and 5. Eur. J. Med. Chem., 2016, 123, 309-316.
[29]
Kalmode, H.P.; Vadagaonkar, K.S.; Murugan, K.; Chaskar, A.C. A multicomponent pathway-inspired regioselective synthesis of 2,3,4-trisubstituted 1H-pyrroles via [3+2] cycloaddition reaction. New J. Chem., 2015, 39(6), 4631-4639.
[30]
Srivastava, R.; Sarmah, B.; Satpati, B. Nanocrystalline ZSM-5 based bi-functional catalyst for two step and three step tandem reactions. RSC Advances, 2015, 5(33), 25998-26006.
[31]
Zhang, X.; Kang, J.; Niu, P.; Wu, J.; Yu, W.; Chang, J. I2-mediated oxidative C-N bond formation for metal-free one-pot synthesis of Di-, Tri-, and Tetrasubstituted pyrazoles from α,β-unsaturated aldehydes/ketones and hydrazines. J. Org. Chem., 2014, 79(21), 10170-10178.
[32]
Zhang, X.; Wang, Z.; Xu, K.; Feng, Y.; Zhao, W.; Xu, X.; Yan, Y.; Yi, W. HOTf-catalyzed sustainable one-pot synthesis of benzene and pyridine derivatives under solvent-free conditions. Green Chem., 2016, 18(8), 2313-2316.
[33]
Munirajasekhar, D.; Himaja, M.; Mali, S.V. A facile and efficient synthesis of 2-(5-(4-Substituted phenyl)-4, 5-dihydro-3-phenylpyrazol-1-yl)-6-substituted benzothiazoles and their biological studies: a facile and efficient synthesis of 2-(5-(4-Substituted phenyl)-4, 5-dihydro-3-phenyl pyrazol-1-yl)-6-substitutedbenzothiazoles and their biological studies. J. Heterocycl. Chem., 2014, 51(2), 459-465.
[34]
Fesenko, A.A.; Solovyev, P.A.; Shutalev, A.D. Practical synthesis of β -isothiocyanato ketones from chalcones. Synth. Commun., 2016, 46(8), 678-684.
[35]
Gürdere, M.B.; Emeç, A.C.; Aslan, O.N.; Budak, Y.; Ceylan, M. Triethylamin-mediated addition of 2-aminoethanethiol hydrochloride to chalcones: synthesis of 3-(2-aminoethylthio)-1-(aryl)-3-(thiophen-2-yl) propan-1-ones and 5,7-diaryl-2,3,6, 7-tetrahydro-1,4-thiazepines. Synth. Commun., 2016, 46(6), 536-545.
[36]
Chandrasekhar, B.; Ahn, S.; Ryu, J-S. Synthesis of 4-Isoxazolines through gold(I)-catalyzed cyclization of propargylic N –hydroxylamines. J. Org. Chem., 2016, 81(15), 6740-6749.
[37]
Kakati, D.; Barua, N.C. Total synthesis and assignment of the absolute stereochemistry of xanthoangelol J: development of a highly efficient method for Claisen-Schmidt condensation. Tetrahedron, 2014, 70(3), 637-642.
[38]
Ngo, D.; Kalala, M.; Hogan, V.; Manchanayakage, R. One-pot synthesis of chalcone epoxides—A green chemistry strategy. Tetrahedron Lett., 2014, 55(32), 4496-4500.
[39]
Kupcewicz, B.; Jarzęcki, A.A.; Małecka, M.; Krajewska, U.; Rozalski, M. Cytotoxic activity of substituted chalcones in terms of molecular electronic properties. Bioorg. Med. Chem. Lett., 2014, 24(17), 4260-4265.
[40]
Leow, P.C.; Bahety, P.; Boon, C.P.; Lee, C.Y.; Tan, K.L.; Yang, T.; Ee, P.L. Functionalized curcumin analogs as potent modulators of the Wnt/β-catenin signaling pathway. Eur. J. Med. Chem., 2014, 71, 67-80.
[41]
Ballesteros, J.F.; Sanz, M.J.; Ubeda, A.; Miranda, M.A.; Iborra, S.; Payá, M.; Alcaraz, M.J. Synthesis and pharmacological evaluation of 2′-hydroxychalcones and flavones as inhibitors of inflammatory mediators generation. J. Med. Chem., 1995, 38(14), 2794-2797.
[42]
Subramanian, P.; Creed, D.; Griffin, A.C.; Hoyle, C.E.; Venkataram, K. The mechanism of Photo-Fries fragmentation of aryl cinnamates in polymer films and in solution. J. Photochem. Photobiol. Chem., 1991, 61(3), 317-327.
[43]
Aïssa, C. Mechanistic manifold and new developments of the julia-kocienski reaction. Eur. J. Org. Chem., 2009, 2009(12), 1831-1844.
[44]
Kumar, A.; Sharma, S.; Tripathi, V.D.; Srivastava, S. Synthesis of chalcones and flavanones using Julia-Kocienski olefination. Tetrahedron, 2010, 66(48), 9445-9449.
[45]
Chan, P.W.H.; Kamijo, S.; Yamamoto, Y. Lewis acid catalyzed reaction of aromatic vinyl halides with aromatic aldehydes: a novel aldol-type condensation mimic. Synlett, 2001, 2001, 0910-0913.
[46]
Downey, C.W.; Glist, H.M.; Takashima, A.; Bottum, S.R.; Dixon, G.J. Chalcone and cinnamate synthesis via one-pot enol silane formation-Mukaiyama aldol reactions of ketones and acetate esters. Tetrahedron Lett., 2018, 59(32), 3080-3083.
[47]
Ananthnag, G.S.; Adhikari, A.; Balakrishna, M.S. Iron-catalyzed aerobic oxidative aromatization of 1,3,5-trisubstituted pyrazolines. Catal. Commun., 2014, 43, 240-243.
[48]
Zhang, Z.; Wang, Y.; Wang, M.; Lu, J.; Zhang, C.; Li, L.; Jianga, J.; Wang, F. The cascade synthesis of α,β-unsaturated ketones via oxidative C-C coupling of ketones and primary alcohols over a ceria catalyst. Catal. Sci. Technol., 2016, 6(6), 1693-1700.
[49]
Sharma, R.; Kumar, K.; Chouhan, M.; Grover, V.; Nair, V.A. Lithium hydroxide mediated synthesis of 3,4-disubstituted pyrroles. RSC Advances, 2013, 3(34), 14521-14527.
[50]
Passalacqua, T.G.; Dutra, L.A.; de Almeida, L.; Velásquez, A.M.; Torres, F.A.; Yamasaki, P.R.; dos Santos, M.B.; Regasini, L.O.; Michels, P.A.; Bolzani Vda, S.; Graminha, M.A. Synthesis and evaluation of novel prenylated chalcone derivatives as anti-leishmanial and anti-trypanosomal compounds. Bioorg. Med. Chem. Lett., 2015, 25(16), 3342-3345.
[51]
Yang, W.; Miao, T.; Li, P.; Wang, L. Regioselective synthesis of triazoles via base-promoted oxidative cycloaddition of chalcones with azides in aqueous solution. RSC Adv, 5(116), 95833-95839.
[52]
Zammit, R.; Pappova, M.; Zammit, E.; Gabarretta, J.; Magri, D.C. 1,3,5-Triarylpyrazolines — pH-driven off-on-off molecular logic devices based on a ‘receptor1-fluorophore-spacer-receptor2’ format with internal charge transfer (ICT) and photoinduced electron transfer (PET) mechanisms. Can. J. Chem., 2015, 93(2), 199-206.
[53]
Sie, C.Z.W.; Ngaini, Z.; Suhaili, N.; Madiahlagan, E. Synthesis of kojic ester derivatives as potential antibacterial agent. J. Chem., 2018, 2018, 1-7.
[54]
Vashishtha, M.; Mishra, M.; Shah, D.O. Study on catalytic property of NaOH-cationic surfactant solutions for efficient, green and selective synthesis of flavanone. J. Mol. Liq., 2015, 210, 151-159.
[55]
Abegão, L.M.G.; Fonseca, R.D.; Santos, F.A.; Souza, G.B.; B.S., Barreiros A.L.; Barreiros, M.L.; Alencar, M.A.R.C.; Mendonça, C.R.; Silva, D.L.; De Boni, L.; Rodrigues Jr, J.J. Second- and third-order nonlinear optical properties of unsubstituted and mono-substituted chalcones. Chem. Phys. Lett., 2016, 648, 91-96.
[56]
George, R.F.; Fouad, M.A.; Gomaa, I.E.O. Synthesis and cytotoxic activities of some pyrazoline derivatives bearing phenyl pyridazine core as new apoptosis inducers. Eur. J. Med. Chem., 2016, 112, 48-59.
[57]
Senthilkumar, G.; Neelakandan, K.; Manikandan, H. An efficient simple one-pot synthesis, characterization and structural studies of some 1,2,3,5-tetraarylpentane-1,5-diones. J. Mol. Struct., 2014, 1058, 1-8.
[58]
Miyahara, Y.; Ito, Y.N. AlCl3-mediated aldol cyclocondensation of 1,6- and 1,7-diones to cyclopentene and cyclohexene derivatives. J. Org. Chem., 2014, 79(15), 6801-6807.
[59]
Ritter, M.; Martins, R.M.; Rosa, S.A.; Malavolta, J.L.; Lund, G.R.; Flores, A.F.C.; Pereira, C.M.P. Green synthesis of chalcones and microbiological evaluation. J. Braz. Chem. Soc., 2015, 26(6), 1201-1210.
[60]
Liu, F.; Yang, J.F.; Liu, H.; Wei, W.Z.; Ma, Y.M. Facile microwave-assisted synthesis of 1, 3, 5-trisubstituted pyrazoline derivatives incorporating sulfonyl moiety. J. Chin. Chem. Soc. , 2016, 63(3), 254-260.
[61]
Ramana, M.M.V.A.N.; Betkar, R.; Ranade, P.; Mundhe, B. CsOH/γ-Al2O3: a heterogeneous reusable basic catalyst for one-pot synthesis of 2-amino-4,6-diaryl pyrimidines. New J. Chem., 2016, 40(3), 2541-2546.
[62]
Rafiee, E.; Rahimi, F. A green approach to the synthesis of chalcones via Claisen-Schmidt condensation reaction using cesium salts of 12-tungstophosphoric acid as a reusable nanocatalyst, Monatshefte Für Chem. -. Chem. Mon., 2013, 144(3), 361-367.
[63]
Rafiee, E.; Rahimi, F. Synthesis of biologically active chalcon analogues via Claisen-Schmidt Condensation in solvent-free conditions: supported mixed addenda heteropoly acid as a heterogeneous catalyst. J. Chil. Chem. Soc., 2013, 58(3), 1926-1929.
[64]
Sathiyamoorthi, K.; Mala, V.; Sakthinathan, S.P.; Kamalakkannan, D.; Suresh, R.; Vanangamudi, G.; Thirunarayanan, G. solvent-free synthesis, spectral correlations and antimicrobial activities of some aryl E-2-propen-1-ones. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 112, 245-256.
[65]
Sinhamahapatra, A.; Pal, P.; Tarafdar, A.; Bajaj, H.C.; Panda, A.B. Mesoporous Borated Zirconia: A solid acid-base bifunctional catalyst. ChemCatChem, 2013, 5(1), 331-338.
[66]
Sultan, A.; Raza, A.; Abbas, M.; Khan, K.; Tahir, M.; Saari, N. Evaluation of silica-H2SO4 as an efficient heterogeneous catalyst for the synthesis of chalcones. Molecules, 2013, 18(12), 10081-10094.
[67]
Kocyigit, U.M.; Budak, Y.; Gürdere, M.B.; Ertürk, F.; Yencilek, B.; Taslimi, P.; Gülçin, İ.; Ceylan, M. Synthesis of chalcone-imide derivatives and investigation of their anticancer and antimicrobial activities, carbonic anhydrase and acetylcholinesterase enzymes inhibition profiles. Arch. Physiol. Biochem., 2018, 124(1), 61-68.
[68]
Andrade, J.T.; Santos, F.R.S.; Lima, W.G.; Sousa, C.D.F.; Oliveira, L.S.F.M.; Ribeiro, R.I.M.A.; Gomes, A.J.P.S.; Araújo, M.G.F.; Villar, J.A.F.P.; Ferreira, J.M.S. Design, synthesis, biological activity and structure-activity relationship studies of chalcone derivatives as potential anti-candida agents. J. Antibiot. (Tokyo), 2018, 71(8), 702-712.
[69]
Arulkumaran, R.; Vijayakumar, S.; Sakthinathan, S.P.; Kamalakkannan, D.; Ranganathan, K.; Suresh, R.; Sundararajan, R.; Vanangamudi, G.; Thirunarayanan, G. Preheated Fly-Ash catalyzed aldol condensation: efficient synthesis of chalcones and antimicrobial activities of some 3-thienyl chalcones. J. Chil. Chem. Soc., 2013, 58(2), 1684-1690.
[70]
Khaligh, N.G.; Mihankhah, T. Aldol condensations of a variety of different aldehydes and ketones under ultrasonic irradiation using poly(N-vinylimidazole) as a new heterogeneous base catalyst under solvent-free conditions in a liquid-solid system. Chin. J. Catal., 2013, 34(12), 2167-2173.
[71]
Lahyani, A.; Chtourou, M.; Frikha, M.H.; Trabelsi, M. Amberlyst-15 and Amberlite-200C: efficient catalysts for aldol and cross-aldol condensation under ultrasound irradiation. Ultrason. Sonochem., 2013, 20(5), 1296-1301.
[72]
Patil, A.B.; Bhanage, B.M. Novel and green approach for the nanocrystalline magnesium oxide synthesis and its catalytic performance in Claisen–Schmidt Condensation. Catal. Commun., 2013, 36, 79-83.
[73]
Islam, S.M.; Roy, A.S.; Dey, R.C.; Paul, S. Graphene based material as a base catalyst for solvent free aldol condensation and knoevenagel reaction at room temperature. J. Mol. Catal. Chem., 2014, 394, 66-73.
[74]
Perin, G.; Mesquita, K.; Calheiro, T.P.; Silva, M.S.; Lenardão, E.J.; Alves, D.; Jacob, R.G. Synthesis of β-aryl-β-sulfanyl ketones by a sequential one-pot reaction using KF/Al2O3 in glycerol. Synth. Commun., 2014, 44(1), 49-58.
[75]
Rahmani, S.; Amoozadeh, A.; Kolvari, E. Nano titania-supported sulfonic acid: an efficient and reusable catalyst for a range of organic reactions under solvent free conditions. Catal. Commun., 2014, 56, 184-188.
[76]
Rocchi, D.; González, J.; Menéndez, J. Montmorillonite clay-promoted, solvent-free cross-aldol condensations under focused microwave irradiation. Molecules, 2014, 19(12), 7317-7326.
[77]
Schneider, E.M.; Raso, R.A.; Hofer, C.J.; Zeltner, M.; Stettler, R.D.; Hess, S.C.; Grass, R.N.; Stark, W.J. Magnetic superbasic proton sponges are readily removed and permit direct product isolation. J. Org. Chem., 2014, 79(22), 10908-10915.
[78]
Cardellini, F.; Germani, R.; Cardinali, G.; Corte, L.; Roscini, L.; Spreti, N.; Tiecco, M. Room temperature deep eutectic solvents of (1S)-(+)-10-camphorsulfonic acid and sulfobetaines: hydrogen bond-based mixtures with low ionicity and structure-dependent toxicity. RSC Advances, 2015, 5(40), 31772-31786.
[79]
Tiecco, M.; Germani, R.; Cardellini, F. Carbon–Carbon bond formation in acid deep eutectic solvent: chalcones synthesis via Claisen–Schmidt reaction. RSC Advances, 2016, 6(49), 43740-43747.
[80]
Mitrev, Y.; Mehandzhiyski, A.; Batovska, D.; Liese, A.; Galunsky, B. Original enzyme-catalyzed synthesis of chalcones: utilization of hydrolase promiscuity. J. Serb. Chem. Soc., 2016, 81(11), 1231-1237.
[81]
Wu, S.; Ma, X.; Ran, J.; Zhang, Y.; Qin, F.; Liu, Y. Application of basic isoreticular nanoporous metal–organic framework: IRMOF-3 as a suitable and efficient catalyst for the synthesis of chalcone. RSC Advances, 2015, 5(19), 14221-14227.
[82]
Tamuly, C.; Saikia, I.; Hazarika, M.; Bordoloi, M.; Hussain, N.; Das, M.R.; Deka, K. Bio-Derived ZnO nanoflower: a highly efficient catalyst for the synthesis of chalcone derivatives. RSC Advances, 2015, 5(12), 8604-8608.
[83]
Yang, S.; Huang, P.; Peng, L.; Cao, C.; Zhu, Y.; Wei, F.; Sun, Y.; Song, W. Hierarchical flowerlike magnesium oxide hollow spheres with extremely high surface area for adsorption and catalysis. J. Mater. Chem. A ., 2016, 4(2), 400-406.
[84]
Jadhav, A.H.; Lim, A.C.; Thorat, G.M.; Jadhav, H.S.; Seo, J.G. Green solvent ionic liquids: structural directing pioneers for microwave-assisted synthesis of controlled MgO nanostructures. RSC Advances, 2016, 6(38), 31675-31686.
[85]
Sazegar, M.R.; Mahmoudian, S.; Mahmoudi, A.; Triwahyono, S.; Jalil, A.A.; Mukti, R.R.; Nazirah Kamarudin, N.H.; Ghoreishi, M.K. Catalyzed Claisen–Schmidt reaction by protonated aluminate mesoporous silica nanomaterial focused on the (E)-chalcone synthesis as a biologically active compound. RSC Advances, 2016, 6(13), 11023-11031.
[86]
Aryan, R.; Mir, N.; Beyzaei, H.; Kharade, A. Design and synthesis of novel natural clinoptilolite-MnFe2O4 nanocomposites and their catalytic application in the facile and efficient synthesis of chalcone derivatives through Claisen-Schmidt Reaction. Res. Chem. Intermed., 2018, 44(7), 4245-4258.
[87]
Semenok, D.; Kletskov, A.; Dikusar, E.; Potkin, V.; Lukin, O. Efficient synthesis of chalcone-4′-sulfonyl chlorides and fluorides. Tetrahedron Lett., 2018, 59(4), 372-374.
[88]
Sultana, F.; Reddy Bonam, S.; Reddy, V.G.; Nayak, V.L.; Akunuri, R.; Rani Routhu, S.; Alarifi, A.; Halmuthur, M.S.K.; Kamal, A. Synthesis of benzo[d]Imidazo[2,1-b]thiazole-chalcone conjugates as microtubule targeting and apoptosis inducing agents. Bioorg. Chem., 2018, 76, 1-12.
[89]
Yadav, P.; Lal, K.; Kumar, L.; Kumar, A.; Kumar, A.; Paul, A.K.; Kumar, R. Synthesis, crystal structure and antimicrobial potential of some fluorinated chalcone-1,2,3-triazole conjugates. Eur. J. Med. Chem., 2018, 155, 263-274.
[90]
Anwar, C.; Prasetyo, Y.D.; Matsjeh, S.; Haryadi, W.; Sholikhah, E.N.; Nendrowati, N. Synthesis of chalcone derivatives and their in vitro anticancer test against breast (T47D) and colon (WiDr) cancer cell line. Indones. J. Chem, 2018, 18(1), 102-107.
[91]
Sabater, S.; Mata, J.A.; Peris, E. Synthesis of heterodimetallic iridium-palladium complexes containing two axes of chirality: study of sequential catalytic properties. Eur. J. Inorg. Chem., 2013, 2013(27), 4764-4769.
[92]
Marion, N.; Carlqvist, P.; Gealageas, R.; de Frémont, P.; Maseras, F.; Nolan, S.P. [(NHC)AuI]-catalyzed formation of conjugated enones and enals: an experimental and computational study. Chem. – Eur. J, 2007, 13(22), 6437-6451.
[93]
Yoshizawa, K.; Shioiri, T. Siloxyallenes revisited. a useful functional intermediate for the synthesis of (Z)-β-branched morita–baylis–hillman type adducts and (Z)-chalcones. Tetrahedron, 2007, 63(27), 6259-6286.
[94]
Migliorese, K.G.; Tanaka, Y.; Miller, S.I. Skipped Diynes. V. Secondary diethynyl carbinols. base-catalyzed ynol to enol rearrangements and ultraviolet spectra and conjugation. J. Org. Chem., 1974, 39(6), 739-747.
[95]
Cho, C.S.; Lee, N.Y.; Kim, T-J.; Shim, S.C. Consecutive isomerization and cyclization of 3-(2-aminophenyl)-1-arylprop-2-yn-1-ols leading to 2-arylquinolines in the presence of potassium hydroxide. J. Heterocycl. Chem., 2004, 41(3), 409-411.
[96]
Wang, D.; Zhang, Y.; Harris, A.; Gautam, L.N.S.; Chen, Y.; Shi, X. Triazole-gold-promoted, effective synthesis of enones from propargylic esters and alcohols: a catalyst offering chemoselectivity, acidity and ligand economy. Adv. Synth. Catal., 2011, 353(14-15), 2584-2588.
[97]
Mattia, E.; Porta, A.; Merlini, V.; Zanoni, G.; Vidari, G. One-pot consecutive reactions based on the synthesis of conjugated enones by the re-catalysed Meyer–Schuster Rearrangement. Chem. – Eur. J, 2012, 18(38), 11894-11898.
[98]
Yang, Y.; Shen, Y.; Wang, X.; Zhang, Y.; Wang, D.; Shi, X. Triazole acetyl gold(III) catalyzed meyer–schuster rearrangement of propargyl alcohols. Tetrahedron Lett., 2016, 57(21), 2280-2282.
[99]
Yi, W.; Chen, W.; Liu, F-X.; Zhong, Y.; Wu, D.; Zhou, Z.; Gao, H. Rh(III)-Catalyzed and solvent-controlled chemoselective synthesis of chalcone and benzofuran frameworks via synergistic dual directing groups enabled regioselective C–H functionalization: A combined experimental and computational study. ACS Catal., 2018, 8(10), 9508-9519.
[100]
Lee, K.; Hae Kim, Y. A Facile deamination of aziridines using N2O4 under very mild conditions. Synth. Commun., 1999, 29(7), 1241-1248.
[101]
Samimi, H.A.; Shams, Z.; Momeni, A.R. Deamination of cis and trans-aziridines using diethyl thiourea and iodine. J. Iran. Chem. Soc, 2012, 9(5), 705-708.
[102]
Samimi, H.A.; Kiyani, H.; Shams, Z. Stereo-controlled deamination of ketoaziridines using Ph3P/I2. J. Chem. Res., 2013, 37(5), 282-284.
[103]
Samimi, H.A.; Entezami, S. C-C Bond cleavage of keto-aziridines; synthesis of oxazoles via regio-controlled ring expansion. J. Chem. Res., 2013, 37(12), 745-747.
[104]
Samimi, H.A.; Salehi, E.; Dadvar, F. N-bromosuccinimide/cerium ammonium nitrate: an efficient reagent for stereo-controlled deamination of ketoaziridines. J. Chem. Res., 2014, 38(12), 731-733.
[105]
Samimi, H.A.; Mohammadi, S. New one-pot approach to regio-synthesis of substituted 2-aminothiazoles from the corresponding keto-aziridines. J. Iran. Chem. Soc., 2014, 11(1), 69-73.
[106]
Yoo, B-W.; Kim, J-H.; Yang, M-H. A facile and efficient method for the debromination of vic-dibromides to alkenes with BiCl3 /indium system. Bull. Korean Chem. Soc., 2010, 31(4), 791-792.
[107]
Yoo, B-W.; Kim, S-H.; Kim, J-H. A mild, efficient, and selective debromination of vic-dibromides to alkenes with Cp2TiCl2/Ga system. Bull. Korean Chem. Soc., 2010, 31(10), 2757-2758.
[108]
Yoo, B-W.; Kim, S-H.; Min, G-H. Efficient and selective debromination of vic-dibromides to alkenes using CoCl2·6H2 O /indium system. Bull. Korean Chem. Soc., 2012, 33(1), 27-28.
[109]
Yoo, B.W.; Kim, S.H.; Park, Y.K. Facile and efficient method for the debromination of vic-dibromides to alkenes with BiCl3/Ga system. Synth. Commun., 2012, 42(11), 1632-1636.
[110]
Yoo, B.W.; Lee, S.J.; Park, Y.K.; Choi, J.Y.; Ahn, Y.S. Efficient and selective debromination of vic-dibromides to alkenes with NbCl5 /indium system. Bull. Korean Chem. Soc., 2013, 34(7), 1951-1952.
[111]
Chen, W.; Tao, H.; Huang, W.; Wang, G.; Li, S.; Cheng, X.; Li, G. Hantzsch ester as a photosensitizer for the visible-light-induced debromination of vicinal dibromo compounds. Chem. - Eur. J, 2016, 22(28), 9546-9550.
[112]
Tanaka, S.; Kon, Y.; Nakashima, T.; Sato, K. Chemoselective hydrogen peroxide oxidation of allylic and benzylic alcohols under mild reaction conditions catalyzed by simple iron-picolinate complexes. RSC Advances, 2014, 4(71), 37674-37678.
[113]
Lauber, M.B.; Stahl, S.S. Efficient aerobic oxidation of secondary alcohols at ambient temperature with an ABNO/NOx catalyst system. ACS Catal., 2013, 3(11), 2612-2616.
[114]
Moriyama, K.; Takemura, M.; Togo, H. Selective oxidation of alcohols with alkali metal bromides as bromide catalysts: experimental study of the reaction mechanism. J. Org. Chem., 2014, 79(13), 6094-6104.
[115]
Salvo, A.M.P.; Campisciano, V.; Beejapur, H.A.; Giacalone, F.; Gruttadauria, M. A simple procedure for the oxidation of alcohols using [bis(acetoxy)iodo]benzene and a catalytic amount of bromide ions in ethyl acetate. Synlett, 2015, 26(09), 1179-1184.
[116]
Trillo, P.; Pastor, I.M. Iron-based imidazolium salts as versatile catalysts for the synthesis of quinolines and 2- and 4-allylanilines by allylic substitution of alcohols. Adv. Synth. Catal., 2016, 358(18), 2929-2939.
[117]
Dai, W.; Lv, Y.; Wang, L.; Shang, S.; Chen, B.; Li, G.; Gao, S. Highly efficient oxidation of alcohols catalyzed by a porphyrin-inspired manganese complex. Chem. Commun. , 2015, 51(56), 11268-11271.
[118]
Vadakkekara, R.; Biswas, A.K.; Sahoo, T.; Pal, P.; Ganguly, B.; Ghosh, S.C.; Panda, A.B. Visible-light-induced efficient selective oxidation of nonactivated alcohols over 001-faceted TiO2 with molecular oxygen. Chem. Asian J., 2016, 11(21), 3084-3089.
[119]
Wusiman, A.; Lu, C-D. Selective oxidation of benzylic, allylic and propargylic alcohols using dirhodium(II) tetraamidinate as catalyst and aqueous tert-butyl hydroperoxide as oxidant: dirhodium(II)-catalyzed selective oxidation of activated alcohols. Appl. Organomet. Chem., 2015, 29(4), 254-258.
[120]
Karimi, B.; Vahdati, S.; Vali, H. Synergistic catalysis within TEMPO-functionalized periodic mesoporous organosilica with bridge imidazolium groups in the aerobic oxidation of alcohols. RSC Advances, 2016, 6(68), 63717-63723.
[121]
El-Batta, A.; Jiang, C.; Zhao, W.; Anness, R.; Cooksy, A.L.; Bergdahl, M. Wittig Reactions in water media employing stabilized ylides with aldehydes. synthesis of α,β-unsaturated esters from mixing aldehydes, α-bromoesters, and Ph3P in Aqueous NaHCO3. J. Org. Chem., 2007, 72(14), 5244-5259.
[122]
Fumagalli, T.; Sello, G.; Orsini, F. One-pot, fluoride-promoted Wittig Reaction. Synth. Commun., 2009, 39(12), 2178-2195.
[123]
Leung, P.S-W.; Teng, Y.; Toy, P.H. Rasta Resin-PPh3 and its use in chromatography-free wittig reactions. Synlett, 2010, 13, 1997-2001.
[124]
Teng, Y.; Lu, J.; Toy, P.H. Rasta Resin-PPh3-NBniPr2 and its use in one-pot Wittig reaction cascades. Chem. Asian J., 2012, 7(2), 351-359.
[125]
Leung, P.S-W.; Teng, Y.; Toy, P.H. Chromatography-free wittig reactions using a bifunctional polymeric reagent. Org. Lett., 2010, 12(21), 4996-4999.
[126]
Rommel, S.; Belger, C.; Begouin, J-M.; Plietker, B. Dual [Fe+Phosphine] catalysis: application in catalytic wittig olefination. ChemCatChem, 2015, 7(8), 1292-1301.
[127]
O’Brien, C.J.; Nixon, Z.S.; Holohan, A.J.; Kunkel, S.R.; Tellez, J.L.; Doonan, B.J.; Coyle, E.E.; Lavigne, F.; Kang, L.J.; Przeworski, K.C.; Part, I. The development of the catalytic wittig reaction. Chem. - Eur. J., 2013, 19(45), 15281-15289.
[128]
Liu, D-N.; Tian, S-K. Stereoselective synthesis of polysubstituted alkenes through a phosphine-mediated three-component system of aldehydes, α-halo carbonyl compounds, and terminal alkenes. Chem. - Eur.J., 2009, 15(18), 4538-4542.
[129]
Braun, R.U.; Ansorge, M.; Müller, T.J.J. Coupling–isomerization synthesis of chalcones. Chem. - Eur. J., 2006, 12(35), 9081-9094.
[130]
Shang, Y.; Jie, X.; Zhou, J.; Hu, P.; Huang, S.; Su, W. Pd-Catalyzed C-H olefination of (hetero)arenes by using saturated ketones as an olefin source. Angew. Chem. Int. Ed., 2013, 52(4), 1299-1303.
[131]
Guo, T.; Jiang, Q.; Yu, L.; Yu, Z. Synthesis of chalcones via domino dehydrochlorination/Pd(OAc)2-catalyzed Heck Reaction. Chin. J. Catal., 2015, 36(1), 78-85.
[132]
Wang, J.; Liu, C.; Yuan, J.; Lei, A. Copper-catalyzed oxidative coupling of alkenes with aldehydes: direct access to α,β-unsaturated ketones. Angew. Chem. Int. Ed., 2013, 52(8), 2256-2259.
[133]
Vellakkaran, M.; Andappan, M.M.S.; Nagaiah, K. Oxygen as single oxidant for two steps: base-free one-pot Pd(II)-catalyzed alcohol oxidation & arylation to halogen-intact β-aryl α,β-enones. RSC Advances, 2014, 4(85), 45490-45494.
[134]
Yamakawa, T.; Kinoshita, H.; Miura, K. Synthetic utility of tribenzyltin hydride and its derivatives as easily accessible, removable, and decomposable organotin reagents. J. Organomet. Chem., 2013, 724, 129-134.
[135]
Unoh, Y.; Hirano, K.; Satoh, T.; Miura, M. Palladium-catalyzed decarboxylative arylation of benzoylacrylic acids toward the synthesis of chalcones. J. Org. Chem., 2013, 78(10), 5096-5102.
[136]
Li, X.; Zou, G. Acylative suzuki coupling of amides: acyl-nitrogen activation via synergy of independently modifiable activating groups. Chem. Commun. , 2015, 51(24), 5089-5092.
[137]
Škoch, K.; Císařová, I.; Štěpnička, P. Synthesis of a polar phosphinoferrocene amidosulfonate ligand and its application in Pd-catalyzed cross-coupling reactions of aromatic boronic acids and acyl chlorides in an aqueous medium. Organometallics, 2016, 35(19), 3378-3387.
[138]
Wu, H.; Li, Y.; Cui, M.; Jian, J.; Zeng, Z. Suzuki coupling of amides via palladium-catalyzed C-N cleavage of N-acylsaccharins. Adv. Synth. Catal., 2016, 358(23), 3876-3880.
[139]
Ogiwara, Y.; Maegawa, Y.; Sakino, D.; Sakai, N. Palladium-catalyzed coupling of benzoyl halides with aryltrifluorosilanes leading to diaryl ketones. Chem. Lett., 2016, 45(7), 790-792.
[140]
Zaranek, M.; Skrodzki, M.; Szudkowska-Frątczak, J.; Dodot, M.; Kownacki, I.; Orwat, B.; Pawluć, P. Iridium-catalysed desilylative acylation of 1-alkenylsilanes. J. Mol. Catal. Chem., 2017, 426, 75-78.
[141]
Jiang, Q.; Jia, J.; Xu, B.; Zhao, A.; Guo, C-C. Iron-facilitated oxidative radical decarboxylative cross-coupling between α-oxocarboxylic acids and acrylic acids: an approach to α,β-unsaturated carbonyls. J. Org. Chem., 2015, 80(7), 3586-3596.
[142]
Zhang, N.; Yang, D.; Wei, W.; Yuan, L.; Nie, F.; Tian, L.; Wang, H. Silver-catalyzed double-decarboxylative cross-coupling of α-keto acids with cinnamic acids in water: a strategy for the preparation of chalcones. J. Org. Chem., 2015, 80(6), 3258-3263.
[143]
Zhang, L.; Wang, A.; Wang, W.; Huang, Y.; Liu, X.; Miao, S.; Liu, J.; Zhang, T. Co–N–C Catalyst for C–C coupling reactions: on the catalytic performance and active sites. ACS Catal., 2015, 5(11), 6563-6572.
[144]
Liu, X.; Ding, R-S.; He, L.; Liu, Y-M.; Cao, Y.; He, H-Y.; Fan, K-N. C-C cross-coupling of primary and secondary benzylic alcohols using supported gold-based bimetallic catalysts. ChemSusChem, 2013, 6(4), 604-608.
[145]
Shyam, P.K.; Lee, C.; Jang, H-Y. Copper-catalyzed oxidative olefination of thiols using sulfones and phosphorous ylides: copper-catalyzed oxidative olefination of thiols. Bull. Korean Chem. Soc., 2015, 36(7), 1824-1827.
[146]
Zhang, Y-G.; Xu, J-K.; Li, X-M.; Tian, S-K. Oxidative olefination of secondary amines with carbon nucleophiles: oxidative olefination of secondary amines. Eur. J. Org. Chem., 2013, 2013(18), 3648-3652.
[147]
Wei, Y.; Tang, J.; Cong, X.; Zeng, X. Practical metal-free synthesis of chalcone derivatives via a tandem cross-dehydrogenative-coupling/elimination reaction. Green Chem., 2013, 15(11), 3165-3169.
[148]
Masuyama, Y.; Takamura, W.; Suzuki, N. Tin(II) chloride mediated coupling reactions between alkynes and aldehydes: coupling reactions between alkynes and aldehydes. Eur. J. Org. Chem., 2013, 2013(35), 8033-8038.
[149]
Mameda, N.; Peraka, S.; Kodumuri, S.; Chevella, D.; Banothu, R.; Amrutham, V.; Nama, N. Synthesis of α,β-unsaturated ketones from alkynes and aldehydes over Hβ Zeolite under solvent-free conditions. RSC Advances, 2016, 6(63), 58137-58141.
[150]
Murai, K.; Tateishi, K.; Saito, A. Barluenga’s Reagent with HBF4 as an efficient catalyst for alkyne-carbonyl metathesis of unactivated alkynes. Org. Biomol. Chem., 2016, 14(44), 10352-10356.
[151]
Jie, X.; Shang, Y.; Zhang, X.; Su, W. Cu-catalyzed sequential dehydrogenation–conjugate addition for β-functionalization of saturated ketones: scope and mechanism. J. Am. Chem. Soc., 2016, 138(17), 5623-5633.
[152]
Sakamoto, Y.; Amaya, T.; Suzuki, T.; Hirao, T. Palladium(II)-catalyzed dehydroboration via generation of boron enolates. Chem. - Eur. J.,, 2016, 22(52), 18686-18689.
[153]
Pathe, G.K.; Ahmed, N. Mild and efficient reductive deoxygenation of epoxides to olefins with tin(II) chloride/sodium iodide as a novel reagent. Synthesis, 2015, 47(22), 3542-3552.