[1]
Brett, C.M.A. Electrochemistry. Principles, Methods and Applications; Oxford University Press, 1993.
[2]
Vire, J.C.; Kauffmann, J-M. Trends in electrochemistry in drug analysis. Curr. Top. Electrochem., 1994.
[3]
Greef, R.; Peat, R.; Peter, L.M.; Pletcher, D.; Robinson, J. Instrumental Methods in Electrochemistry; Ellis Horwood: England, 1990.
[4]
Hart, J.P. Electroanalysis of Biologically Important Compounds; Ellis Horwood, 1990.
[5]
Kurbanoglu, S.; Bozal-Palabiyik, B.; Gumustas, M.; Uslu, B.; Ozkan, S.A.S.A. Investigation of voltammetric behavior and electroanalytical determination of anticancer epirubicin via glassy carbon electrode using differential pulse and square wave voltammetry techniques. Rev. Roum. Chim., 2015, 60(5–6), 491-499.
[18]
Goyal, R.; Bishnoi, S. Surface modification in electroanalysis: past, present and future. Indian J. Chem. A, 2012, 51, 205-225.
[20]
Edwards, G.A.; Bergren, A.J.; Porter, M.D. Chemically Modified Electrodes; Elsevier B.V., 2007.
[22]
Cheemalapati, S. Chemically modified electrodes-metal nanoparticles. J Clin Bioanal Chem, 2018, 2(1), 2017-2018.
[23]
IUPAC. Isotopomer; IUPAC Compendium of Chemical Terminology, 2014, p. 336.
[24]
Alkire, R.C.; Kolb, D.M.; Lipkowski, J.; Ross, P.N. Chemically Modified Electrodes; Alkire, R.C.; Kolb, D.M.; Lipkowski, J; Ross, P.N., Ed.; Wiley-VCH Pub, 2011, Vol. 11, .
[34]
Barsan, M.M.; Ghica, M.E.; Brett, C.M.A. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review. Analytica Chimica Acta; Elsevier B.V., 2015, pp. 1-23.
[38]
Information, G.; Studies, D. Ion Exchange Polymers; Meyler’s Side Effects of Drugs, 2016, pp. 307-310.
[51]
Kumar, N.; Kumbhat, S. Essentials. Nanoscience and Nanotechnology; John Wiley & Sons, Inc., 2016, Vol. 8, .
[55]
Siqueira, J.R.; Oliveira, O.N. Carbon-based nanomaterials. Nanostructures; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2016, pp. 233-249.
[56]
Fecht, H.; Brühne, K.; Gluche, P. Carbon-Based Nanomaterials and Hybrids, 2014.
[57]
Jadon, N.; Jain, R.; Sharma, S.; Singh, K. Recent Trends in Electrochemical Sensors for Multianalyte Detection – A Review. Talanta; Elsevier, 2016, pp. 894-916.
[58]
Neto, A.H.C.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys., 2009, 81, 109.
[60]
Dang, X.; Hu, H.; Wang, S.; Hu, S. Nanomaterials-Based Electrochemical Sensors for Nitric Oxide; Microchimica Acta, 2014, pp. 455-467.
[66]
Jorio, A.; Dresselhaus, G.; Dresselhaus, M.S. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications; Jorio, A.; Dresselhaus, G.; Dresselhaus, M.S., Eds.; Springer, 2007, Vol. 111, .
[74]
Terzyk, A.P.; Gauden, P.A.; Furmaniak, S.; Werengoxska-Ciecwiers, K.; Kowalczyk, P.; Wisniewski, M. Carbon Nanohorns; Carbon Nanomaterials Sourcebook, 2012, pp. 75-114.
[80]
Luo, X.; Morrin, A.; Killard, A.J.; Smyth, M.R. Application of
Nanoparticles in Electrochemical Sensors and Biosensors.Electroanalysis; Wiley-Blackwell, 2006, pp. 1February. 319-326.
[82]
Yang, C.; Denno, M. E.; Pyakurel, P.; Venton, B. J. HHS Public Access., 2016, 17-37.
[86]
Rowland, C.E.; Brown, C.W.; Delehanty, J.B.; Medintz, I.L. Nanomaterial-Based Sensors for the Detection of Biological Threat Agents. Materials Today; Elsevier Ltd., 2016, pp. 464-477.
[87]
Bimberg, D.; Grundmann, M.; Ledentsov, N.N. Quantum Dot Heterostructures; John Wiley & Sons, 1999.
[89]
Alagiri, M.; Rameshkumar, P.; Pandikumar, A. Gold nanorod-based electrochemical sensing of small biomolecules: a review. Microchimica Acta. Microchimica Acta, 2017, 3069-3092.
[96]
Asyraf, M.; Anwar, M.; Sheng, L.M.; Danquah, M.K. Recent Development of Nanomaterial-Doped Conductive Polymers; JOM; Springer: US, 2017, pp. 2515-2523.
[98]
Grancarić, A.M.; Jerković, I.; Koncar, V.; Cochrane, C.; Kelly, F.M.; Soulat, D.; Legrand, X. Conductive Polymers for Smart Textile Applications; , 2018, Vol. 48, .
[109]
Fouladgar, M. Electrocatalytic measurement of trace amount of captopril using multiwall carbon nanotubes as a sensor and ferrocene as a mediator. Int. J. Electrochem. Sci., 2011, 6(3), 705-716.
[151]
Meng, X.; Xu, Z.; Wang, M.; Yin, H.; Ai, S. Electrochemical behavior of Antipyrine at a Bi 2 S 3 modified glassy carbon electrode and its determination in pharmaceutical formulations. Anal. Methods, 2012, 16.
[157]
Mashhadizadeh, M.H.; Afshar, E. Electrochimica Acta Electrochemical Investigation of Clozapine at TiO 2 Nanoparticles Modified Carbon Paste Electrode and Simultaneous Adsorptive Voltammetric Determination of Two Antipsychotic Drugs; Elsevier, 2015, pp. 2015-2017.
[175]
Norouzi, P.; Dousty, F.; Ganjali, M.R.; Daneshgar, P. Dysprosium nanowire modified carbon paste electrode for the simultaneous determination of naproxen and paracetamol: application in pharmaceutical formulation and biological fluid. Int. J. Electrochem. Sci., 2009, 4, 1373-1386.
[183]
Norouzi, P.; Ghaheri, N. β-Cyclodextrine modified carbon paste electrode as a selective sensor for determination of piroxicam using flow injection cyclic voltammerty analytical & bioanalytical electrochemistry. Anal. Bioanal. Electrochem. Anal. Bioanal. Electrochem, 2011, 3(1), 87-101.
[198]
Thiagarajan, S.; Rajkumar, M.; Chen, S. Nano TiO2 -PEDOT film for the simultaneous detection of ascorbic acid and diclofenac. Int. J. Electrochem. Sci., 2012, 7, 2109-2122.