An Overview on Glyco-Macrocycles: Potential New Lead and their Future in Medicinal Chemistry

Page: [3386 - 3410] Pages: 25

  • * (Excluding Mailing and Handling)

Abstract

Macrocycles cover a small segment of molecules with a vast range of biological activity in the chemotherapeutic world. Primarily, the natural sources derived from macrocyclic drug candidates with a wide range of biological activities are known. Further evolutions of the medicinal chemistry towards macrocycle-based chemotherapeutics involve the functionalization of the natural product by hemisynthesis. More recently, macrocycles based on carbohydrates have evolved a considerable interest among the medicinal chemists worldwide. Carbohydrates provide an ideal scaffold to generate chiral macrocycles with well-defined pharmacophores in a decorated fashion to achieve the desired biological activity. We have given an overview on carbohydrate-derived macrocycle involving their synthesis in drug design and discovery and potential role in medicinal chemistry.

Keywords: Glyco-macrocycle, glycohybrids, glycoside, cyclic peptide, glycopeptide, glycomimetics, saponins.

[1]
Frank, A.T.; Farina, N.S.; Sawwan, N.; Wauchope, O.R.; Qi, M.; Brzostowska, E.M.; Chan, W.; Grasso, F.W.; Haberfield, P.; Greer, A. Natural macrocyclic molecules have a possible limited structural diversity. Mol. Divers., 2007, 11(3-4), 115-118.
[http://dx.doi.org/10.1007/s11030-007-9065-5] [PMID: 18027097]
[2]
Gibson, S.E.; Lecci, C. Amino acid derived macrocycles--an area driven by synthesis or application? Angew. Chem. Int. Ed. Engl., 2006, 45(9), 1364-1377.
[http://dx.doi.org/10.1002/anie.200503428] [PMID: 16444788]
[3]
Driggers, E.M.; Hale, S.P.; Lee, J.; Terrett, N.K. The exploration of macrocycles for drug discovery--an underexploited structural class. Nat. Rev. Drug Discov., 2008, 7(7), 608-624.
[http://dx.doi.org/10.1038/nrd2590] [PMID: 18591981]
[4]
Crane, E.A.; Scheidt, K.A. Prins-type macrocyclizations as an efficient ring-closing strategy in natural product synthesis. Angew. Chem. Int. Ed. Engl., 2010, 49(45), 8316-8326.
[http://dx.doi.org/10.1002/anie.201002809] [PMID: 20931580]
[5]
Madsen, C.M.; Clausen, M.H. Biologically Active Macrocyclic Compounds – from Natural Products to Diversity-Oriented Synthesis. Eur. J. Org. Chem., 2011, 2011(17), 3107-3115.
[http://dx.doi.org/10.1002/ejoc.201001715]
[6]
Maiti, K.; Jayaraman, N. Synthesis and Structure of Cyclic Trisaccharide with Expanded Glycosidic Linkages. J. Org. Chem., 2016, 81(11), 4616-4622.
[http://dx.doi.org/10.1021/acs.joc.6b00462] [PMID: 27182797]
[7]
Butler, M.S. Natural products to drugs: natural product derived compounds in clinical trials. Nat. Prod. Rep., 2005, 22(2), 162-195.
[http://dx.doi.org/10.1039/b402985m] [PMID: 15806196]
[8]
Gradillas, A.; Pérez-Castells, J. Macrocyclization by ring-closing metathesis in the total synthesis of natural products: reaction conditions and limitations. Angew. Chem. Int. Ed. Engl., 2006, 45(37), 6086-6101.
[http://dx.doi.org/10.1002/anie.200600641] [PMID: 16921569]
[9]
Parenty, A.; Moreau, X.; Campagne, J.M. Macrolactonizations in the total synthesis of natural products. Chem. Rev., 2006, 106(3), 911-939.
[http://dx.doi.org/10.1021/cr0301402] [PMID: 16522013]
[10]
Kim, K.; Yoo, D.; Kim, Y.; Lee, B.; Shin, D.; Kim, E.K. Characteristics of sophorolipid as an antimicrobial agent. J. Microbiol. Biotechnol., 2002, 12, 235-241.
[11]
Desmond, R.T.; Magpusao, A.N.; Lorenc, C.; Alverson, J.B.; Priestley, N.; Peczuh, M.W. De novo macrolide-glycolipid macrolactone hybrids: Synthesis, structure and antibiotic activity of carbohydrate-fused macrocycles. Beilstein J. Org. Chem., 2014, 10, 2215-2221.
[http://dx.doi.org/10.3762/bjoc.10.229] [PMID: 25246980]
[12]
Tsunakawa, M.; Kotake, C.; Yamasaki, T.; Moriyama, T.; Konishi, M.; Oki, T. New antiviral antibiotics, cycloviracins B1 and B2. II. Structure determination. J. Antibiot. (Tokyo), 1992, 45(9), 1472-1480.
[http://dx.doi.org/10.7164/antibiotics.45.1472] [PMID: 1429233]
[13]
Fürstner, A. Total Syntheses and Biological Assessment of Macrocyclic Glycolipids. Eur. J. Org. Chem., 2004, 2004(5), 943-958.
[http://dx.doi.org/10.1002/ejoc.200300728]
[14]
Fürstner, A.; Jeanjean, F.; Razon, P. Total synthesis of woodrosin I. Angew. Chem. Int. Ed. Engl., 2002, 41(12), 2097-2101.
[PMID: 19746609]
[15]
Simmons, T.L.; Andrianasolo, E.; McPhail, K.; Flatt, P.; Gerwick, W.H. Marine natural products as anticancer drugs. Mol. Cancer Ther., 2005, 4(2), 333-342.
[PMID: 15713904]
[16]
Kaiser, M.; De Cian, A.; Sainlos, M.; Renner, C.; Mergny, J.L.; Teulade-Fichou, M.P. Neomycin-capped aromatic platforms: quadruplex DNA recognition and telomerase inhibition. Org. Biomol. Chem., 2006, 4(6), 1049-1057.
[http://dx.doi.org/10.1039/b516378a] [PMID: 16525549]
[17]
Miyauchi, M.; Harada, A. Construction of supramolecular polymers with alternating alpha-, beta-cyclodextrin units using conformational change induced by competitive guests. J. Am. Chem. Soc., 2004, 126(37), 11418-11419.
[http://dx.doi.org/10.1021/ja046562q] [PMID: 15366870]
[18]
Hirschberg, J.H.; Brunsveld, L.; Ramzi, A.; Vekemans, J.A.; Sijbesma, R.P.; Meijer, E.W. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. Nature, 2000, 407(6801), 167-170.
[http://dx.doi.org/10.1038/35025027] [PMID: 11001050]
[19]
Uekama, K.; Hirayama, F.; Irie, T. Cyclodextrin Drug Carrier Systems. Chem. Rev., 1998, 98(5), 2045-2076.
[http://dx.doi.org/10.1021/cr970025p] [PMID: 11848959]
[20]
Redenti, E.; Szente, L.; Szejtli, J. Drug/cyclodextrin/ hydroxy acid multicomponent systems. Properties and pharmaceutical applications. J. Pharm. Sci., 2000, 89(1), 1-8.
[http://dx.doi.org/10.1002/(SICI)1520-6017(200001)89: 1<1::AID-JPS1>3.0.CO;2-W] [PMID: 10664533]
[21]
Takahashi, K. Organic Reactions Mediated by Cyclodextrins. Chem. Rev., 1998, 98(5), 2013-2034.
[http://dx.doi.org/10.1021/cr9700235] [PMID: 11848957]
[22]
Bell, T.W.; Hext, N.M. Supramolecular optical chemosensors for organic analytes. Chem. Soc. Rev., 2004, 33(9), 589-598.
[PMID: 15592624]
[23]
Coteron, J.M.; Vicent, C.; Bosso, C.; Penades, S. Glycophanes, cyclodextrin-cyclophane hybrid receptors for apolar binding in aqueous solutions. A stereoselective carbohydrate-carbohydrate interaction in water. J. Am. Chem. Soc., 1993, 115(22), 10066-10076.
[http://dx.doi.org/10.1021/ja00075a023]
[24]
Morales, J.C.; Zurita, D.; Penadés, S. Carbohydrate-Carbohydrate Interactions in Water with Glycophanes as Model Systems. J. Org. Chem., 1998, 63(25), 9212-9222.
[http://dx.doi.org/10.1021/jo9807823]
[25]
Muthana, S.; Yu, H.; Cao, H.; Cheng, J.; Chen, X. Chemoenzymatic synthesis of a new class of macrocyclic oligosaccharides. J. Org. Chem., 2009, 74(8), 2928-2936.
[http://dx.doi.org/10.1021/jo8027856] [PMID: 19296596]
[26]
Furukawa, J-I.; Sakairi, N. Synthetic Studies on Resin Glycosides. Trends Glycosci. Glycotechnol., 2001, 13(69), 1-10.
[http://dx.doi.org/10.4052/tigg.13.1]
[27]
Pereda-Miranda, R.; Rosas-Ramírez, D.; Castañeda-Gómez, J. Resin glycosides from the morning glory family. Fortschr. Chem. Org. Naturst., 2010, 92, 77-153.
[http://dx.doi.org/10.1007/978-3-211-99661-4_2] [PMID: 20198465]
[28]
Pouységu, L.; Deffieux, D.; Malik, G.; Natangelo, A.; Quideau, S. Synthesis of ellagitannin natural products. Nat. Prod. Rep., 2011, 28(5), 853-874.
[http://dx.doi.org/10.1039/c0np00058b] [PMID: 21321753]
[29]
Fang, Z.; Song, Y.; Zhan, P.; Zhang, Q.; Liu, X. Conformational restriction: an effective tactic in ‘follow-on’-based drug discovery. Future Med. Chem., 2014, 6(8), 885-901.
[http://dx.doi.org/10.4155/fmc.14.50] [PMID: 24962281]
[30]
Iqbal, E.S.; Hartman, M.C.T. Shaping molecular diversity. Nat. Chem., 2018, 10(7), 692-694.
[http://dx.doi.org/10.1038/s41557-018-0095-7] [PMID: 29930271]
[31]
Bastida, A.; Hidalgo, A.; Chiara, J.L.; Torrado, M.; Corzana, F.; Pérez-Cañadillas, J.M.; Groves, P.; Garcia-Junceda, E.; Gonzalez, C.; Jimenez-Barbero, J.; Asensio, J.L. Exploring the use of conformationally locked aminoglycosides as a new strategy to overcome bacterial resistance. J. Am. Chem. Soc., 2006, 128(1), 100-116.
[http://dx.doi.org/10.1021/ja0543144] [PMID: 16390137]
[32]
Marsault, E.; Peterson, M.L. Macrocycles are great cycles: applications, opportunities, and challenges of synthetic macrocycles in drug discovery. J. Med. Chem., 2011, 54(7), 1961-2004.
[http://dx.doi.org/10.1021/jm1012374] [PMID: 21381769]
[33]
Mallinson, J.; Collins, I. Macrocycles in new drug discovery. Future Med. Chem., 2012, 4(11), 1409-1438.
[http://dx.doi.org/10.4155/fmc.12.93] [PMID: 22857532]
[34]
Yu, X.; Sun, D. Macrocyclic drugs and synthetic methodologies toward macrocycles. Molecules, 2013, 18(6), 6230-6268.
[http://dx.doi.org/10.3390/molecules18066230] [PMID: 23708234]
[35]
Giordanetto, F.; Kihlberg, J. Macrocyclic drugs and clinical candidates: what can medicinal chemists learn from their properties? J. Med. Chem., 2014, 57(2), 278-295.
[http://dx.doi.org/10.1021/jm400887j] [PMID: 24044773]
[36]
Hirschmann, R.; Nicolaou, K.C.; Pietranico, S.; Leahy, E.M.; Salvino, J.; Arison, B.; Cichy, M.A.; Spoors, P.G.; Shakespeare, W.C. De novo design and synthesis of somatostatin non-peptide peptidomimetics utilizing. beta.-D-glucose as a novel scaffolding. J. Am. Chem. Soc., 1993, 115(26), 12550-12568.
[http://dx.doi.org/10.1021/ja00079a039]
[37]
Opatz, T.; Kallus, C.; Wunberg, T.; Schmidt, W.; Henke, S.; Kunz, H. D-glucose as a multivalent chiral scaffold for combinatorial chemistry. Carbohydr. Res., 2002, 337(21-23), 2089-2110.
[http://dx.doi.org/10.1016/S0008-6215(02)00301-4] [PMID: 12433474]
[38]
Schweizer, F.; Hindsgaul, O. Combinatorial synthesis of carbohydrates. Curr. Opin. Chem. Biol., 1999, 3(3), 291-298.
[http://dx.doi.org/10.1016/S1367-5931(99)80045-3] [PMID: 10359718]
[39]
Bols, M. Carbohydrate Building Blocks; John Wiley & Sons: New York, 1996.
[40]
Le, G.T.; Abbenante, G.; Becker, B.; Grathwohl, M.; Halliday, J.; Tometzki, G.; Zuegg, J.; Meutermans, W. Molecular diversity through sugar scaffolds. Drug Discov. Today, 2003, 8(15), 701-709.
[http://dx.doi.org/10.1016/S1359-6446(03)02751-X] [PMID: 12927513]
[41]
Meutermans, W.; Le, G.T.; Becker, B. Carbohydrates as scaffolds in drug discovery. ChemMedChem, 2006, 1(11), 1164-1194.
[http://dx.doi.org/10.1002/cmdc.200600150] [PMID: 16983718]
[42]
Kim, Y.K.; Arai, M.A.; Arai, T.; Lamenzo, J.O.; Dean, E.F., III; Patterson, N.; Clemons, P.A.; Schreiber, S.L. Relationship of stereochemical and skeletal diversity of small molecules to cellular measurement space. J. Am. Chem. Soc., 2004, 126(45), 14740-14745.
[http://dx.doi.org/10.1021/ja048170p] [PMID: 15535697]
[43]
Wessjohann, L.A.; Ruijter, E.; Garcia-Rivera, D.; Brandt, W. What can a chemist learn from nature’s macrocycles?--a brief, conceptual view. Mol. Divers., 2005, 9(1-3), 171-186.
[http://dx.doi.org/10.1007/s11030-005-1314-x] [PMID: 15789564]
[44]
Wagner, H. 1973.The chemistry of the resin glycosides of the Convolvulaceae family In: Bendz G, Santesson J (eds) 25th Nobel Symp, Vol XI. Academic press, London New York pp. 235-240
[45]
Pereda-Miranda, R.; Bah, M. Biodynamic constituents in the Mexican morning glories: purgative remedies transcending boundaries. Curr. Top. Med. Chem., 2003, 3(2), 111-131.
[http://dx.doi.org/10.2174/1568026033392534] [PMID: 12570768]
[46]
Pereda-Miranda, R.; Mata, R.; Anaya, A.L.; Wickramaratne, D.B.; Pezzuto, J.M.; Kinghorn, A.D.; Tricolorin, A. Tricolorin A, major phytogrowth inhibitor from Ipomoea tricolor. J. Nat. Prod., 1993, 56(4), 571-582.
[http://dx.doi.org/10.1021/np50094a018] [PMID: 8496705]
[47]
Morsomme, P.; Boutry, M. The plant plasma membrane H(+)-ATPase: structure, function and regulation. Biochim. Biophys. Acta, 2000, 1465(1-2), 1-16.
[http://dx.doi.org/10.1016/S0005-2736(00)00128-0] [PMID: 10748244]
[48]
Calera, M.R.; Anaya, A.L.; Gavilanes-Ruiz, M. Effect of phytotoxic resin glycoside on activity of H(+)-ATPase from plasma membrane. J. Chem. Ecol., 1995, 21(3), 289-297.
[http://dx.doi.org/10.1007/BF02036718] [PMID: 24234061]
[49]
Lotina-Hennsen, B.; King-Díaz, B.; Pereda-Miranda, R. Tricolorin A as a natural herbicide. Molecules, 2013, 18(1), 778-788.
[http://dx.doi.org/10.3390/molecules18010778] [PMID: 23303337]
[50]
Larson, D.P.; Heathcock, C.H. Total Synthesis of Tricolorin A. J. Org. Chem., 1997, 62(24), 8406-8418.
[http://dx.doi.org/10.1021/jo971413u] [PMID: 11671979]
[51]
Fürstner, A.; Müller, T. Efficient Total Syntheses of Resin Glycosides and Analogues by Ring-Closing Olefin Metathesis. J. Am. Chem. Soc., 1999, 121(34), 7814-7821.
[http://dx.doi.org/10.1021/ja991361l]
[52]
Brito-Arias, M.; Pereda-Miranda, R.; Heathcock, C.H. Synthesis of tricolorin F. J. Org. Chem., 2004, 69(14), 4567-4570.
[http://dx.doi.org/10.1021/jo030244c] [PMID: 15230576]
[53]
Bah, M.; Pereda-Miranda, R. Isolation and structural characterization of new glyclipid ester type dimers from the resin of Ipomoea tricolor (Convolvulaceae). Tetrahedron, 1997, 53(27), 9007-9022.
[http://dx.doi.org/10.1016/S0040-4020(97)00607-8]
[54]
Pereda-Miranda, R.; Kaatz, G.W.; Gibbons, S. Polyacylated oligosaccharides from medicinal Mexican morning glory species as antibacterials and inhibitors of multidrug resistance in Staphylococcus aureus. J. Nat. Prod., 2006, 69(3), 406-409.
[http://dx.doi.org/10.1021/np050227d] [PMID: 16562846]
[55]
Cao, S.; Guza, R.C.; Wisse, J.H.; Miller, J.S.; Evans, R.; Kingston, D.G.; Ipomoeassins, A-E. Ipomoeassins A-E, cytotoxic macrocyclic glycoresins from the leaves of Ipomoea squamosa from the Suriname rainforest. J. Nat. Prod., 2005, 68(4), 487-492.
[http://dx.doi.org/10.1021/np049629w] [PMID: 15844934]
[56]
Postema, M.H.; TenDyke, K.; Cutter, J.; Kuznetsov, G.; Xu, Q. Total synthesis of ipomoeassin F. Org. Lett., 2009, 11(6), 1417-1420.
[http://dx.doi.org/10.1021/ol900086b] [PMID: 19228042]
[57]
Jiang, Z-H.; Geyer, A.; Schmidt, R.R. The Macrolidic Glycolipid Calonyctin A, a Plant Growth Regulator: Synthesis, Structural Assignment, and Conformational Analysis in Micellar Solution. Angew. Chem. Int. Ed. Engl., 1995, 34(22), 2520-2524.
[http://dx.doi.org/10.1002/anie.199525201]
[58]
Fürstner, A.; Ruiz-Caro, J.; Prinz, H.; Waldmann, H. Structure assignment, total synthesis, and evaluation of the phosphatase modulating activity of glucolipsin A. J. Org. Chem., 2004, 69(2), 459-467.
[http://dx.doi.org/10.1021/jo035079f] [PMID: 14725460]
[59]
Nilsson, I.; Hoffmann, I. Cell cycle regulation by the Cdc25 phosphatase family. Prog. Cell Cycle Res., 2000, 4, 107-114.
[http://dx.doi.org/10.1007/978-1-4615-4253-7_10] [PMID: 10740819]
[60]
Tsunakawa, M.; Komiyama, N.; Tenmyo, O.; Tomita, K.; Kawano, K.; Kotake, C.; Konishi, M.; Oki, T. New antiviral antibiotics, cycloviracins B1 and B2. I. Production, isolation, physico-chemical properties and biological activity. J. Antibiot. (Tokyo), 1992, 45(9), 1467-1471.
[http://dx.doi.org/10.7164/antibiotics.45.1467] [PMID: 1331014]
[61]
Fürstner, A.; Albert, M.; Mlynarski, J.; Matheu, M.; DeClercq, E. Structure assignment, total synthesis, and antiviral evaluation of cycloviracin B1. J. Am. Chem. Soc., 2003, 125(43), 13132-13142.
[http://dx.doi.org/10.1021/ja036521e] [PMID: 14570487]
[62]
Fürstner, A.; Albert, M.; Mlynarski, J.; Matheu, M. A concise synthesis of the fully functional lactide core of cycloviracin B with implications for the structural assignment of related glycolipids. J. Am. Chem. Soc., 2002, 124(7), 1168-1169.
[http://dx.doi.org/10.1021/ja0175791] [PMID: 11841275]
[63]
Fürstner, A.; Mlynarski, J.; Albert, M. Total synthesis of the antiviral glycolipid cycloviracin B. J. Am. Chem. Soc., 2002, 124(35), 10274-10275.
[http://dx.doi.org/10.1021/ja027346p] [PMID: 12197718]
[64]
Ivanchina, N.V.; Kicha, A.A.; Stonik, V.A. Steroid glycosides from marine organisms. Steroids, 2011, 76(5), 425-454.
[http://dx.doi.org/10.1016/j.steroids.2010.12.011] [PMID: 21194537]
[65]
Dong, G.; Xu, T.; Yang, B.; Lin, X.; Zhou, X.; Yang, X.; Liu, Y. Chemical constituents and bioactivities of starfish. Chem. Biodivers., 2011, 8(5), 740-791.
[http://dx.doi.org/10.1002/cbdv.200900344] [PMID: 21560228]
[66]
Kicha, A.A.; Kalinovsky, A.I.; Malyarenko, T.V.; Ivanchina, N.V.; Dmitrenok, P.S.; Menchinskaya, E.S.; Yurchenko, E.A.; Pislyagin, E.A.; Aminin, D.L.; Huong, T.T.; Long, P.Q.; Stonik, V.A. Cyclic Steroid Glycosides from the Starfish Echinaster luzonicus: Structures and Immunomodulatory Activities. J. Nat. Prod., 2015, 78(6), 1397-1405.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00332] [PMID: 26068600]
[67]
Kong, F-h.; Zhu, D-y.; Xu, R-s.; Fu, Z-c.; Zhou, L-y.; Iwashita, T.; Komura, H. Structural study of tubeimoside i, a constituent of tu-bei-mu. Tetrahedron Lett., 1986, 27(47), 5765-5768.
[http://dx.doi.org/10.1016/S0040-4039(00)85321-6]
[68]
Fujioka, T.; Iwamoto, M.; Iwase, Y.; Hachiyama, S.; Okabe, H.; Yamauchi, T.; Mihashi, K. Studies on the Constituents of Actinostemma lobatum MAXIM. IV. Structures of Lobatosides C, D and H, the Dicrotalic Acid Esters of Bayogenin Bisdesmosides Isolated from the Herb. Chem. Pharm. Bull. (Tokyo), 1989, 37(7), 1770-1775.
[http://dx.doi.org/10.1248/cpb.37.1770]
[69]
Cheng, G.; Zhang, Y.; Zhang, X.; Tang, H.F.; Cao, W.D.; Gao, D.K.; Wang, X.L.; Tubeimoside, V. Tubeimoside V (1), a new cyclic bisdesmoside from tubers of Bolbostemma paniculatum, functions by inducing apoptosis in human glioblastoma U87MG cells. Bioorg. Med. Chem. Lett., 2006, 16(17), 4575-4580.
[http://dx.doi.org/10.1016/j.bmcl.2006.06.020] [PMID: 16784856]
[70]
Fujioka, T.; Kashiwada, Y.; Okabe, H.; Mihashi, K.; Lee, K-H. Antitumor agents 171. Cytotoxicities of lobatosides B, C, D, and E, cyclic bisdesmosides isolated from Actinostemma lobatum maxim. Bioorg. Med. Chem. Lett., 1996, 6(23), 2807-2810.
[http://dx.doi.org/10.1016/S0960-894X(96)00522-7]
[71]
Zhu, C.; Tang, P.; Yu, B. Total synthesis of lobatoside E, a potent antitumor cyclic triterpene saponin. J. Am. Chem. Soc., 2008, 130(18), 5872-5873.
[http://dx.doi.org/10.1021/ja801669r] [PMID: 18407637]
[72]
White, C.J.; Yudin, A.K. Contemporary strategies for peptide macrocyclization. Nat. Chem., 2011, 3(7), 509-524.
[http://dx.doi.org/10.1038/nchem.1062] [PMID: 21697871]
[73]
Singh, A.; Khatri, V.; Malhotra, S.; Prasad, A.K. Sugar-based novel chiral macrocycles for inclusion applications and chiral recognition. Carbohydr. Res., 2016, 421, 25-32.
[http://dx.doi.org/10.1016/j.carres.2015.12.006] [PMID: 26774875]
[74]
Łęczycka-Wilk, K.; Dąbrowa, K.; Cmoch, P.; Jarosz, S. Chloride-Templated Macrocyclization and Anion-Binding Properties of C2-Symmetric Macrocyclic Ureas from Sucrose. Org. Lett., 2017, 19(17), 4596-4599.
[http://dx.doi.org/10.1021/acs.orglett.7b02198] [PMID: 28825841]
[75]
Chen, A.; Samankumara, L.P.; Dodlapati, S.; Wang, D.; Adhikari, S.; Wang, G. Syntheses of Bis-Triazole Linked Carbohydrate Based Macrocycles and Their Applications for Accelerating Copper Sulfate Mediated Click Reaction. Eur. J. Org. Chem., 2018.
[http://dx.doi.org/10.1002/ejoc.201801714]
[76]
Chaciak, B.; Dąbrowa, K.; Świder, P.; Jarosz, S. Macrocyclic derivatives with a sucrose scaffold: insertion of a long polyhydroxylated linker between the terminal 6,6′-positions. New J. Chem., 2018, 42(23), 18578-18584.
[http://dx.doi.org/10.1039/C8NJ02808G]
[77]
Zong, G.; Sun, X.; Bhakta, R.; Whisenhunt, L.; Hu, Z.; Wang, F.; Shi, W.Q. New insights into structure-activity relationship of ipomoeassin F from its bioisosteric 5-oxa/aza analogues. Eur. J. Med. Chem., 2018, 144, 751-757.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.022] [PMID: 29291442]
[78]
Sytniczuk, A.; Dąbrowski, M.; Banach, Ł.; Urban, M.; Czarnocka-Śniadała, S.; Milewski, M.; Kajetanowicz, A.; Grela, K. At Long Last: Olefin Metathesis Macrocyclization at High Concentration. J. Am. Chem. Soc., 2018, 140(28), 8895-8901.
[http://dx.doi.org/10.1021/jacs.8b04820] [PMID: 29944361]
[79]
Maurya, S.K.; Rana, R. An eco-compatible strategy for the diversity-oriented synthesis of macrocycles exploiting carbohydrate-derived building blocks. Beilstein J. Org. Chem., 2017, 13, 1106-1118.
[http://dx.doi.org/10.3762/bjoc.13.110] [PMID: 28684990]
[80]
Varki, A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology, 1993, 3(2), 97-130.
[http://dx.doi.org/10.1093/glycob/3.2.97] [PMID: 8490246]
[81]
Dwek, R.A. Glycobiology: Toward Understanding the Function of Sugars. Chem. Rev., 1996, 96(2), 683-720.
[http://dx.doi.org/10.1021/cr940283b] [PMID: 11848770]
[82]
Bertozzi, C.R.; Kiessling, L.L. Chemical glycobiology. Science, 2001, 291(5512), 2357-2364.
[http://dx.doi.org/10.1126/science.1059820] [PMID: 11269316]
[83]
Wyatt, R.; Sodroski, J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science, 1998, 280(5371), 1884-1888.
[http://dx.doi.org/10.1126/science.280.5371.1884] [PMID: 9632381]
[84]
Geyer, H.; Geyer, R. Glycobiology of Viruses. In: Ernst B, Hart G W, Sinaj P, editors. Carbohydr Chem Biol. Weinheim, Germany: Wiley-VCH; 2008. pp. 821-838.
[85]
Troy, F.A., II Polysialylation: from bacteria to brains. Glycobiology, 1992, 2(1), 5-23.
[http://dx.doi.org/10.1093/glycob/2.1.5] [PMID: 1550990]
[86]
Lasky, L.A. Selectin-carbohydrate interactions and the initiation of the inflammatory response. Annu. Rev. Biochem., 1995, 64, 113-139.
[http://dx.doi.org/10.1146/annurev.bi.64.070195.000553] [PMID: 7574477]
[87]
Weis, W.I.; Drickamer, K. Structural basis of lectin-carbohydrate recognition. Annu. Rev. Biochem., 1996, 65, 441-473.
[http://dx.doi.org/10.1146/annurev.bi.65.070196.002301] [PMID: 8811186]
[88]
Takano, R.; Muchmore, E.; Dennis, J.W. Sialylation and malignant potential in tumour cell glycosylation mutants. Glycobiology, 1994, 4(5), 665-674.
[http://dx.doi.org/10.1093/glycob/4.5.665] [PMID: 7881181]
[89]
Muramatsu, T. Carbohydrate signals in metastasis and prognosis of human carcinomas. Glycobiology, 1993, 3(4), 291-296.
[http://dx.doi.org/10.1093/glycob/3.4.291] [PMID: 8400544]
[90]
Hanwell, P.A. The biology of glycoproteins: Biochem Edu; R J , Ivatt, Ed.; , 1985, 13, p. (3)148.
[http://dx.doi.org/10.1016/0307-4412(85)90221-3]
[91]
Hart, G.W. Glycosylation. Curr. Opin. Cell Biol., 1992, 4(6), 1017-1023.
[http://dx.doi.org/10.1016/0955-0674(92)90134-X] [PMID: 1485955]
[92]
McAuliffe, J.C.; Fukuda, M.; Hindsgaul, O. Expedient synthesis of a series of N-acetyllactosamines. Bioorg. Med. Chem. Lett., 1999, 9(19), 2855-2858.
[http://dx.doi.org/10.1016/S0960-894X(99)00485-0] [PMID: 10522705]
[93]
Hounsell, E.F.; Davies, M.J.; Renouf, D.V. O-linked protein glycosylation structure and function. Glycoconj. J., 1996, 13(1), 19-26.
[http://dx.doi.org/10.1007/BF01049675] [PMID: 8785483]
[94]
Lohof, E.; Planker, E.; Mang, C.; Burkhart, F.; Dechantsreiter, M.A.; Haubner, R.; Wester, H.J.; Schwaiger, M.; Hölzemann, G.; Goodman, S.L.; Kessler, H. Carbohydrate Derivatives for Use in Drug Design: Cyclic alpha(v)-Selective RGD Peptides Angew. Chem. Int. Ed. Engl., 2000, 39(15), 2761-2764.
[http://dx.doi.org/10.1002/1521-3773(20000804)39:15<2761:AID-ANIE2761>3.0.CO;2-9] [PMID: 10934419]
[95]
Locardi, E.; Stöckle, M.; Gruner, S.; Kessler, H. Cyclic homooligomers from sugar amino acids: synthesis, conformational analysis, and significance. J. Am. Chem. Soc., 2001, 123(34), 8189-8196.
[http://dx.doi.org/10.1021/ja010181k] [PMID: 11516268]
[96]
van Well, R.M.; Marinelli, L.; Altona, C.; Erkelens, K.; Siegal, G.; van Raaij, M.; Llamas-Saiz, A.L.; Kessler, H.; Novellino, E.; Lavecchia, A.; van Boom, J.H.; Overhand, M. Conformational analysis of furanoid epsilon-sugar amino acid containing cyclic peptides by NMR spectroscopy, molecular dynamics simulation, and X-ray crystallography: evidence for a novel turn structure. J. Am. Chem. Soc., 2003, 125(36), 10822-10829.
[http://dx.doi.org/10.1021/ja035461+] [PMID: 12952461]
[97]
El Oualid, F.; Burm, B.E.; Leroy, I.M.; Cohen, L.H.; van Boom, J.H.; van den Elst, H.; Overkleeft, H.S.; van der Marel, G.A.; Overhand, M. Design, synthesis, and evaluation of sugar amino acid based inhibitors of protein prenyl transferases PFT and PGGT-1. J. Med. Chem., 2004, 47(16), 3920-3923.
[http://dx.doi.org/10.1021/jm049927q] [PMID: 15267228]
[98]
Chakraborty, T.K.; Srinivasu, P.; Tapadar, S.; Mohan, B.K. Sugar amino acids in designing new molecules. Glycoconj. J., 2005, 22(3), 83-93.
[http://dx.doi.org/10.1007/s10719-005-0844-x] [PMID: 16133829]
[99]
Seitz, O. Glycopeptide synthesis and the effects of glycosylation on protein structure and activity. ChemBioChem, 2000, 1(4), 214-246.
[http://dx.doi.org/10.1002/1439-7633(20001117)1:4<214:AID-CBIC214>3.0.CO;2-B] [PMID: 11828414]
[100]
Lis, H.; Sharon, N. Protein glycosylation. Structural and functional aspects. Eur. J. Biochem., 1993, 218(1), 1-27.
[http://dx.doi.org/10.1111/j.1432-1033.1993.tb18347.x] [PMID: 8243456]
[101]
Sharon, N.; Lis, H. Lectins--proteins with a sweet tooth: functions in cell recognition. Essays Biochem., 1995, 30, 59-75.
[PMID: 8822149]
[102]
Tsai, C-Y.; Huang, X.; Wong, C-H. Design and synthesis of cyclic sialyl Lewis X mimetics: a remarkable enhancement of inhibition by pre-organizing all essential functional groups. Tetrahedron Lett., 2000, 41(49), 9499-9503.
[http://dx.doi.org/10.1016/S0040-4039(00)01653-1]
[103]
Sprengard, U.; Schudok, M.; Schmidt, W.; Kretzschmar, G.; Kunz, H. Multiple Sialyl Lewisx N-Glycopeptides: Effective Ligands for E-Selectin. Angew. Chem. Int. Ed. Engl., 1996, 35(3), 321-324.
[http://dx.doi.org/10.1002/anie.199603211]
[104]
Ramphal, J.Y.; Zheng, Z.L.; Perez, C.; Walker, L.E.; DeFrees, S.A.; Gaeta, F.C. Structure--activity relationships of sialyl Lewis x-containing oligosaccharides. 1. Effect of modifications of the fucose moiety. J. Med. Chem., 1994, 37(21), 3459-3463.
[http://dx.doi.org/10.1021/jm00047a003] [PMID: 7523674]
[105]
Brandley, B.K.; Kiso, M.; Abbas, S.; Nikrad, P.; Srivasatava, O.; Foxall, C.; Oda, Y.; Hasegawa, A. Structure-function studies on selectin carbohydrate ligands. Modifications to fucose, sialic acid and sulphate as a sialic acid replacement. Glycobiology, 1993, 3(6), 633-641.
[http://dx.doi.org/10.1093/glycob/3.6.633] [PMID: 7510548]
[106]
Tsai, C.Y.; Park, W.K.; Weitz-Schmidt, G.; Ernst, B.; Wong, C.H. Synthesis of sialyl Lewis X mimetics using the Ugi four-component reaction. Bioorg. Med. Chem. Lett., 1998, 8(17), 2333-2338.
[http://dx.doi.org/10.1016/S0960-894X(98)00422-3] [PMID: 9873537]
[107]
Sharma, A.; Sharma, S.; Tripathi, R.P.; Ampapathi, R.S. Robust turn structures in α3β cyclic tetrapeptides induced and controlled by carbo-β3 amino acid. J. Org. Chem., 2012, 77(4), 2001-2007.
[http://dx.doi.org/10.1021/jo2019834] [PMID: 22283925]
[108]
Gruner, S.A.; Kéri, G.; Schwab, R.; Venetianer, A.; Kessler, H. Sugar amino acid containing somatostatin analogues that induce apoptosis in both drug-sensitive and multidrug-resistant tumor cells. Org. Lett., 2001, 3(23), 3723-3725.
[http://dx.doi.org/10.1021/ol0166698] [PMID: 11700122]
[109]
Chandrasekhar, S.; Rao, C.L.; Seenaiah, M.; Naresh, P.; Jagadeesh, B.; Manjeera, D.; Sarkar, A.; Bhadra, M.P. Total synthesis of azumamide E and sugar amino acid-containing analogue. J. Org. Chem., 2009, 74(1), 401-404.
[http://dx.doi.org/10.1021/jo8020264] [PMID: 19053574]
[110]
Dasari, B.; Jogula, S.; Borhade, R.; Balasubramanian, S.; Chandrasekar, G.; Kitambi, S.S.; Arya, P. Macrocyclic glycohybrid toolbox identifies novel antiangiogenesis agents from zebrafish assay. Org. Lett., 2013, 15(3), 432-435.
[http://dx.doi.org/10.1021/ol3032297] [PMID: 23331160]
[111]
Dolhem, F.; Al Tahli, F.; Lièvre, C.; Demailly, G. Efficient Synthesis of 1,2,3-Triazole-Fused Bicyclic Compounds from Aldoses. Eur. J. Org. Chem., 2005, 2005(23), 5019-5023.
[http://dx.doi.org/10.1002/ejoc.200500451]
[112]
Hotha, S.; Anegundi, R.I.; Natu, A.A. Expedient synthesis of 1,2,3-triazole-fused tetracyclic compounds by intramolecular Huisgen (‘click’) reactions on carbohydrate-derived azido-alkynes. Tetrahedron Lett., 2005, 46(27), 4585-4588.
[http://dx.doi.org/10.1016/j.tetlet.2005.05.012]
[113]
Xie, J.; Bogliotti, N. Synthesis and applications of carbohydrate-derived macrocyclic compounds. Chem. Rev., 2014, 114(15), 7678-7739.
[http://dx.doi.org/10.1021/cr400035j] [PMID: 25007213]
[114]
Pasini, D. The click reaction as an efficient tool for the construction of macrocyclic structures. Molecules, 2013, 18(8), 9512-9530.
[http://dx.doi.org/10.3390/molecules18089512] [PMID: 23966075]
[115]
Yu, Y.; Bogliotti, N.; Tang, J.; Xie, J. Synthesis and Properties of Carbohydrate-Based BODIPY-Functionalised Fluorescent Macrocycles. Eur. J. Org. Chem., 2013, 2013(34), 7749-7760.
[http://dx.doi.org/10.1002/ejoc.201300953]
[116]
Chandrasekhar, S.; Rao, C.L.; Nagesh, C.; Reddy, C.R.; Sridhar, B. Inter and intramolecular copper(I)-catalyzed 1,3-dipolar cycloaddition of azido-alkynes: synthesis of furanotriazole macrocycles. Tetrahedron Lett., 2007, 48(33), 5869-5872.
[http://dx.doi.org/10.1016/j.tetlet.2007.06.062]
[117]
Lo Conte, M.; Grotto, D.; Chambery, A.; Dondoni, A.; Marra, A. Convergent synthesis and inclusion properties of novel Cn-symmetric triazole-linked cycloglucopyranosides. Chem. Commun. (Camb.), 2011, 47(4), 1240-1242.
[http://dx.doi.org/10.1039/C0CC04127K] [PMID: 21103536]
[118]
Billing, J.F.; Nilsson, U.J. C2-symmetric macrocyclic carbohydrate/amino acid hybrids through copper(I)-catalyzed formation of 1,2,3-triazoles. J. Org. Chem., 2005, 70(12), 4847-4850.
[http://dx.doi.org/10.1021/jo050585l] [PMID: 15932327]
[119]
Ray, A.; Manoj, K.; Bhadbhade, M.M.; Mukhopadhyay, R.; Bhattacharjya, A. Cu(I)-Catalyzed cycloaddition of constrained azido-alkynes: access to 12- to 17-membered monomeric triazolophanes incorporating furanoside rings. Tetrahedron Lett., 2006, 47(16), 2775-2778.
[http://dx.doi.org/10.1016/j.tetlet.2006.02.068]
[120]
Ågren, J.K.M.; Billing, J.F.; Grundberg, H.E.; Nilsson, U.J. Synthesis of a Chiral and Fluorescent Sugar-Based Macrocycle by 1,3-Dipolar Cycloaddition. Synthesis, 2006, 2006(18), 3141-3145.
[http://dx.doi.org/10.1055/s-2006-942503]
[121]
Ying, L.; Gervay-Hague, J. Synthesis of N-(fluoren-9-ylmethoxycarbonyl)glycopyranosylamine uronic acids. Carbohydr. Res., 2004, 339(2), 367-375.
[http://dx.doi.org/10.1016/j.carres.2003.10.018] [PMID: 14698895]
[122]
Leyden, R.; Murphy, P.V. Glycotriazolophane Synthesis via Click Chemistry. Synlett, 2009, 2009(12), 1949-1950.
[http://dx.doi.org/10.1055/s-0029-1217534]
[123]
Das Adhikary, N.; Chattopadhyay, P. Design and synthesis of 1,2,3-triazole-fused chiral medium-ring benzo-heterocycles, scaffolds mimicking benzolactams. J. Org. Chem., 2012, 77(12), 5399-5405.
[http://dx.doi.org/10.1021/jo3004327] [PMID: 22647142]
[124]
Dörner, S.; Westermann, B. A short route for the synthesis of “sweet” macrocycles via a click-dimerization-ring-closing metathesis approach. Chem. Commun. (Camb.), 2005, (22), 2852-2854.
[http://dx.doi.org/10.1039/b502682b] [PMID: 15928780]
[125]
Hoffmann, B.; Bernet, B.; Vasella, A. Oligosaccharide Analogues of Polysaccharides. Helv. Chim. Acta, 2002, 85(1), 265-287.
[http://dx.doi.org/10.1002/1522-2675(200201)85:1<265:AID-HLCA265>3.0.CO;2-1]
[126]
Rajesh, R.; Periyasami, G.; Raghunathan, R. An efficient one-pot synthesis of C2-symmetric triazolophanes by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Tetrahedron Lett., 2010, 51(14), 1896-1898.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.020]
[127]
Moore, B.P.; Chung, D.H.; Matharu, D.S.; Golden, J.E.; Maddox, C.; Rasmussen, L.; Noah, J.W.; Sosa, M.I.; Ananthan, S.; Tower, N.A.; White, E.L.; Jia, F.; Prisinzano, T.E.; Aubé, J.; Jonsson, C.B.; Severson, W.E. (S)-N-(2,5-Dimethylphenyl)-1-(quinoline-8-ylsulfonyl)pyrrolidine-2-carboxamide as a small molecule inhibitor probe for the study of respiratory syncytial virus infection. J. Med. Chem., 2012, 55(20), 8582-8587.
[http://dx.doi.org/10.1021/jm300612z] [PMID: 23043370]
[128]
Cui, J.J.; McTigue, M.; Nambu, M.; Tran-Dubé, M.; Pairish, M.; Shen, H.; Jia, L.; Cheng, H.; Hoffman, J.; Le, P.; Jalaie, M.; Goetz, G.H.; Ryan, K.; Grodsky, N.; Deng, Y.L.; Parker, M.; Timofeevski, S.; Murray, B.W.; Yamazaki, S.; Aguirre, S.; Li, Q.; Zou, H.; Christensen, J. Discovery of a novel class of exquisitely selective mesenchymal-epithelial transition factor (c-MET) protein kinase inhibitors and identification of the clinical candidate 2-(4-(1-(quinolin-6-ylmethyl)-1H-[1,2,3]triazolo[4,5-b]pyrazin-6-yl)-1H-pyrazol-1-yl)ethanol (PF-04217903) for the treatment of cancer. J. Med. Chem., 2012, 55(18), 8091-8109.
[http://dx.doi.org/10.1021/jm300967g] [PMID: 22924734]
[129]
Carta, A.; Briguglio, I.; Piras, S.; Corona, P.; Boatto, G.; Nieddu, M.; Giunchedi, P.; Marongiu, M.E.; Giliberti, G.; Iuliano, F.; Blois, S.; Ibba, C.; Busonera, B.; La Colla, P. Quinoline tricyclic derivatives. Design, synthesis and evaluation of the antiviral activity of three new classes of RNA-dependent RNA polymerase inhibitors. Bioorg. Med. Chem., 2011, 19(23), 7070-7084.
[http://dx.doi.org/10.1016/j.bmc.2011.10.009] [PMID: 22047799]
[130]
Thakur, R.K.; Mishra, A.; Ramakrishna, K.K.G.; Mahar, R.; Shukla, S.K.; Srivastava, A.K.; Tripathi, R.P. Synthesis of novel pyrimidine nucleoside analogues owning multiple bases/sugars and their glycosidase inhibitory activity. Tetrahedron, 2014, 70(45), 8462-8473.
[http://dx.doi.org/10.1016/j.tet.2014.09.078]
[131]
Wei, C.X.; Deng, X.Q.; Chai, K.Y.; Sun, Z.G.; Quan, Z.S. Synthesis and anticonvulsant activity of 1-formamide-triazolo[4,3-a]quinoline derivatives. Arch. Pharm. Res., 2010, 33(5), 655-662.
[http://dx.doi.org/10.1007/s12272-010-0502-0] [PMID: 20512461]
[132]
Wei, C-X.; Li, F-N.; Zhao, L-X.; Zhao, L-M.; Quan, Z-S. Synthesis of 2-substituted-7-heptyloxy-4,5-dihydro-[1,2,4]-triazolo[4,3-a]quinolin-1(2H)-ones with anticonvulsant activity. Arch. Pharm. (Weinheim), 2007, 340(9), 491-495.
[http://dx.doi.org/10.1002/ardp.200700106] [PMID: 17763376]
[133]
Herbrecht, R. Posaconazole: a potent, extended-spectrum triazole anti-fungal for the treatment of serious fungal infections. Int. J. Clin. Pract., 2004, 58(6), 612-624.
[http://dx.doi.org/10.1111/j.1368-5031.2004.00167.x] [PMID: 15311563]
[134]
Anand, N.; Jaiswal, N.; Pandey, S.K.; Srivastava, A.K.; Tripathi, R.P. Application of click chemistry towards an efficient synthesis of 1,2,3-1H-triazolyl glycohybrids as enzyme inhibitors. Carbohydr. Res., 2011, 346(1), 16-25.
[http://dx.doi.org/10.1016/j.carres.2010.10.017] [PMID: 21129735]
[135]
Singh, N.; Pandey, S.K.; Tripathi, R.P. Regioselective [3+2] cycloaddition of chalcones with a sugar azide: easy access to 1-(5-deoxy-D-xylofuranos-5-yl)-4,5-disubstituted-1H-1,2,3-triazoles. Carbohydr. Res., 2010, 345(12), 1641-1648.
[http://dx.doi.org/10.1016/j.carres.2010.04.019] [PMID: 20579636]
[136]
Diot, J.D.; Garcia Moreno, I.; Twigg, G.; Ortiz Mellet, C.; Haupt, K.; Butters, T.D.; Kovensky, J.; Gouin, S.G. Amphiphilic 1-deoxynojirimycin derivatives through click strategies for chemical chaperoning in N370S Gaucher cells. J. Org. Chem., 2011, 76(19), 7757-7768.
[http://dx.doi.org/10.1021/jo201125x] [PMID: 21830816]
[137]
Mir, F.; Shafi, S.; Zaman, M.S.; Kalia, N.P.; Rajput, V.S.; Mulakayala, C.; Mulakayala, N.; Khan, I.A.; Alam, M.S. Sulfur rich 2-mercaptobenzothiazole and 1,2,3-triazole conjugates as novel antitubercular agents. Eur. J. Med. Chem., 2014, 76, 274-283.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.017] [PMID: 24589483]
[138]
Singh, B.K.; Yadav, A.K.; Kumar, B.; Gaikwad, A.; Sinha, S.K.; Chaturvedi, V.; Tripathi, R.P. Preparation and reactions of sugar azides with alkynes: synthesis of sugar triazoles as antitubercular agents. Carbohydr. Res., 2008, 343(7), 1153-1162.
[http://dx.doi.org/10.1016/j.carres.2008.02.013] [PMID: 18346719]
[139]
Meanwell, N.A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem., 2011, 54(8), 2529-2591.
[http://dx.doi.org/10.1021/jm1013693] [PMID: 21413808]
[140]
Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today, 2003, 8(24), 1128-1137.
[http://dx.doi.org/10.1016/S1359-6446(03)02933-7] [PMID: 14678739]
[141]
Goswami, S.; Mukherjee, R.; Ray, J. Design and synthesis of a neutral fluorescent macrocyclic receptor for the recognition of urea in chloroform. Org. Lett., 2005, 7(7), 1283-1285.
[http://dx.doi.org/10.1021/ol050034h] [PMID: 15787487]
[142]
Nepogodiev, S.A.; Stoddart, J.F. Cyclodextrin-Based Catenanes and Rotaxanes. Chem. Rev., 1998, 98(5), 1959-1976.
[http://dx.doi.org/10.1021/cr970049w] [PMID: 11848954]
[143]
Ajay, A.; Sharma, S.; Gupt, M.P.; Bajpai, V.; Hamidullah, ; Kumar, B.; Kaushik, M.P.; Konwar, R.; Ampapathi, R.S.; Tripathi, R.P. Diversity oriented synthesis of pyran based polyfunctional stereogenic macrocyles and their conformational studies. Org. Lett., 2012, 14(17), 4306-4309.
[http://dx.doi.org/10.1021/ol3022275] [PMID: 22931313]
[144]
Allam, A.; Dupont, L.; Behr, J-B.; Plantier-Royon, R. Convenient Synthesis of a Galacturonic Acid Based Macrocycle with Potential Copper-Complexation Ability. Eur. J. Org. Chem., 2012, 2012(4), 817-823.
[http://dx.doi.org/10.1002/ejoc.201101406]
[145]
Campo, V.L.; Ivanova, I.M.; Carvalho, I.; Lopes, C.D.; Carneiro, Z.A.; Saalbach, G.; Schenkman, S.; da Silva, J.S.; Nepogodiev, S.A.; Field, R.A. Click chemistry oligomerisation of azido-alkyne-functionalised galactose accesses triazole-linked linear oligomers and macrocycles that inhibit Trypanosoma cruzi macrophage invasion. Tetrahedron, 2015, 71(39), 7344-7353.
[http://dx.doi.org/10.1016/j.tet.2015.04.085] [PMID: 26435551]
[146]
Carvalho, I.; Andrade, P.; Campo, V.L.; Guedes, P.M.; Sesti-Costa, R.; Silva, J.S.; Schenkman, S.; Dedola, S.; Hill, L.; Rejzek, M.; Nepogodiev, S.A.; Field, R.A. ‘Click chemistry’ synthesis of a library of 1,2,3-triazole-substituted galactose derivatives and their evaluation against Trypanosoma cruzi and its cell surface trans-sialidase. Bioorg. Med. Chem., 2010, 18(7), 2412-2427.
[http://dx.doi.org/10.1016/j.bmc.2010.02.053] [PMID: 20335038]
[147]
Singh, K.; Sharma, G.; Shukla, M.; Kant, R.; Chopra, S.; Shukla, S.K.; Tripathi, R.P. Metal- and Phenol-Free Synthesis of Biaryl Ethers: Access to Dibenzobistriazolo-1,4,7-oxadiazonines and Vancomycin-Like Glyco-Macrocycles as Antibacterial Agents. J. Org. Chem., 2018, 83(24), 14882-14893.
[http://dx.doi.org/10.1021/acs.joc.8b01631] [PMID: 30457336]
[148]
Zhou, J.; Reidy, M.; O’Reilly, C.; Jarikote, D.V.; Negi, A.; Samali, A.; Szegezdi, E.; Murphy, P.V. Decorated macrocycles via ring-closing double-reductive amination. identification of an apoptosis inducer of leukemic cells that at least partially antagonizes a 5-HT2 receptor. Org. Lett., 2015, 17(7), 1672-1675.
[http://dx.doi.org/10.1021/acs.orglett.5b00404] [PMID: 25774456]
[149]
Bodine, K.D.; Gin, D.Y.; Gin, M.S. Highly convergent synthesis of C3- or C2-symmetric carbohydrate macrocycles. Org. Lett., 2005, 7(20), 4479-4482.
[http://dx.doi.org/10.1021/ol051818y] [PMID: 16178563]
[150]
Bodine, K.D.; Gin, D.Y.; Gin, M.S. Synthesis of readily modifiable cyclodextrin analogues via cyclodimerization of an alkynyl-azido trisaccharide. J. Am. Chem. Soc., 2004, 126(6), 1638-1639.
[http://dx.doi.org/10.1021/ja039374t] [PMID: 14871087]
[151]
Kim, M.J.; Lee, S.H.; Park, S.O.; Kang, H.; Lee, J.S.; Lee, K.N.; Jung, M.E.; Kim, J.; Lee, J. Novel macrocyclic C-aryl glucoside SGLT2 inhibitors as potential antidiabetic agents. Bioorg. Med. Chem., 2011, 19(18), 5468-5479.
[http://dx.doi.org/10.1016/j.bmc.2011.07.045] [PMID: 21868239]
[152]
Nomura, S.; Sakamaki, S.; Hongu, M.; Kawanishi, E.; Koga, Y.; Sakamoto, T.; Yamamoto, Y.; Ueta, K.; Kimata, H.; Nakayama, K.; Tsuda-Tsukimoto, M. Discovery of canagliflozin, a novel C-glucoside with thiophene ring, as sodium-dependent glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes mellitus. J. Med. Chem., 2010, 53(17), 6355-6360.
[http://dx.doi.org/10.1021/jm100332n] [PMID: 20690635]
[153]
Xu, B.; Feng, Y.; Cheng, H.; Song, Y.; Lv, B.; Wu, Y.; Wang, C.; Li, S.; Xu, M.; Du, J.; Peng, K.; Dong, J.; Zhang, W.; Zhang, T.; Zhu, L.; Ding, H.; Sheng, Z.; Welihinda, A.; Roberge, J.Y.; Seed, B.; Chen, Y. C-aryl glucosides substituted at the 4′-position as potent and selective renal sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors for the treatment of type 2 diabetes. Bioorg. Med. Chem. Lett., 2011, 21(15), 4465-4470.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.032] [PMID: 21737266]
[154]
Zhang, Y.; Liu, Z-P. Recent developments of C-aryl glucoside SGLT2 inhibitors. Curr. Med. Chem., 2016, 23(8), 832-849.
[http://dx.doi.org/10.2174/0929867323666160210125747] [PMID: 26861002]
[155]
Lv, B.; Xu, B.; Feng, Y.; Peng, K.; Xu, G.; Du, J.; Zhang, L.; Zhang, W.; Zhang, T.; Zhu, L.; Ding, H.; Sheng, Z.; Welihinda, A.; Seed, B.; Chen, Y. Exploration of O-spiroketal C-arylglucosides as novel and selective renal sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(24), 6877-6881.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.088] [PMID: 19896374]
[156]
Lapuerta, P.; Zambrowicz, B.; Strumph, P.; Sands, A. Development of sotagliflozin, a dual sodium-dependent glucose transporter 1/2 inhibitor. Diab. Vasc. Dis. Res., 2015, 12(2), 101-110.
[http://dx.doi.org/10.1177/1479164114563304] [PMID: 25690134]
[157]
Zambrowicz, B.; Freiman, J.; Brown, P.M.; Frazier, K.S.; Turnage, A.; Bronner, J.; Ruff, D.; Shadoan, M.; Banks, P.; Mseeh, F.; Rawlins, D.B.; Goodwin, N.C.; Mabon, R.; Harrison, B.A.; Wilson, A.; Sands, A.; Powell, D.R. LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a randomized, placebo-controlled trial. Clin. Pharmacol. Ther., 2012, 92(2), 158-169.
[http://dx.doi.org/10.1038/clpt.2012.58] [PMID: 22739142]
[158]
Dwarakanathan, A. Diabetes update. J. Insur. Med., 2006, 38(1), 20-30.
[PMID: 16642640]
[159]
Meng, W.; Ellsworth, B.A.; Nirschl, A.A.; McCann, P.J.; Patel, M.; Girotra, R.N.; Wu, G.; Sher, P.M.; Morrison, E.P.; Biller, S.A.; Zahler, R.; Deshpande, P.P.; Pullockaran, A.; Hagan, D.L.; Morgan, N.; Taylor, J.R.; Obermeier, M.T.; Humphreys, W.G.; Khanna, A.; Discenza, L.; Robertson, J.G.; Wang, A.; Han, S.; Wetterau, J.R.; Janovitz, E.B.; Flint, O.P.; Whaley, J.M.; Washburn, W.N. Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J. Med. Chem., 2008, 51(5), 1145-1149.
[http://dx.doi.org/10.1021/jm701272q] [PMID: 18260618]