Endocrine, Metabolic & Immune Disorders - Drug Targets

Author(s): Xuan Wang, Xiaoqing Shao, Xinhao Liu, Qiu Qin, Jian Xu and Jin A. Zhang*

DOI: 10.2174/1871530319666190226164309

Dysregulated Interleukin -33/ST2 Pathway Perpetuates Chronic Inflammation in Hashimoto’s Thyroiditis

Page: [1012 - 1021] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Objective: Hashimoto’s Thyroiditis (HT) is an autoimmune disease, characterized by chronic inflammation of the thyroid gland with unknown etiologies. Recently, interleukin-33/ST2 (IL- 33/ST2) pathway reveals its participation in the process of several autoimmune diseases. In this study, the role of IL-33/ST2 pathway in the development of HT is investigated.

Methods: The levels of plasma IL-33, sST2 and the frequency of circulating CD4+ST2L+T cells in 30 HT patients and 20 healthy controls were determined by enzyme-linked immunosorbent assay (ELISA) and flow cytometry respectively. The mRNA expressions of related molecules in IL-33/ST2 pathway in thyroid tissues (12 HT patients and 10 controls) were detected by real-time quantitative PCR (RTqPCR). The protein expressions of IL-33 and ST2 were determined by Western blot and immunohistochemistry staining.

Results: The mRNA expressions of plasma IL-33 and sST2 were elevated in HT patients, with an increased ratio of IL-33/sST2. The number of CD4+ST2L+ T cells in PBMCs of HT group was significantly increased when compared to the control group (CON) by Flow cytometry assay. MRNA Expression of IL-33 and ST2 in thyroid tissue and the level of IL-1β and IL-18 were significantly upregulated in HT patients, while IL-5 was down-regulated in HT patients, compared to CON. The expression of IL-1β and IL-18 were positively correlated with the expression of IL-33. Results of western blot and immunohistochemical staining were consistent with qPCR.

Conclusion: IL-33/ST2 pathway participates in HT via affecting the production of inflammatory cytokines.

Keywords: Interleukin-33(IL-33), ST2, hashimoto’s thyroiditis (HT), inflammatory cytokines, soluble ST2, biomarker.

Graphical Abstract

[1]
Caturegli, P.; De Remigis, A.; Rose, N.R. Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmun. Rev., 2014, 13(4-5), 391-397.
[http://dx.doi.org/10.1016/j.autrev.2014.01.007] [PMID: 24434360]
[2]
Axtell, R.C.; Raman, C.; Steinman, L. Type I interferons: beneficial in Th1 and detrimental in Th17 autoimmunity. Clin. Rev. Allergy Immunol., 2013, 44(2), 114-120.
[http://dx.doi.org/10.1007/s12016-011-8296-5] [PMID: 22231516]
[3]
Drugarin, D.; Negru, S.; Koreck, A.; Zosin, I.; Cristea, C. The pattern of a T(H)1 cytokine in autoimmune thyroiditis. Immunol. Lett., 2000, 71(2), 73-77.
[http://dx.doi.org/10.1016/S0165-2478(99)00156-X] [PMID: 10714432]
[4]
Phenekos, C.; Vryonidou, A.; Gritzapis, A.D.; Baxevanis, C.N.; Goula, M.; Papamichail, M. Th1 and Th2 serum cytokine profiles characterize patients with Hashimoto’s thyroiditis (Th1) and Graves’ disease (Th2). Neuroimmunomodulation, 2004, 11(4), 209-213.
[http://dx.doi.org/10.1159/000078438] [PMID: 15249726]
[5]
Bootz, F.; Neri, D. Immunocytokines: a novel class of products for the treatment of chronic inflammation and autoimmune conditions. Drug Discov. Today, 2016, 21(1), 180-189.
[http://dx.doi.org/10.1016/j.drudis.2015.10.012] [PMID: 26526566]
[6]
Mikos, H.; Mikos, M.; Rabska-Pietrzak, B.; Niedziela, M. The clinical role of serum concentrations of selected cytokines: IL-1β, TNF-α and IL-6 in diagnosis of autoimmune thyroid disease (AITD) in children. Autoimmunity, 2014, 47(7), 466-472.
[http://dx.doi.org/10.3109/08916934.2014.914175] [PMID: 24801540]
[7]
Rebuffat, S.A.; Kammoun-Krichen, M.; Charfeddine, I.; Ayadi, H.; Bougacha-Elleuch, N.; Peraldi-Roux, S. IL-1β and TSH disturb thyroid epithelium integrity in autoimmune thyroid diseases. Immunobiology, 2013, 218(3), 285-291.
[http://dx.doi.org/10.1016/j.imbio.2012.05.016] [PMID: 22878044]
[8]
Huang, C.Y.; Ting, W.H.; Lo, F.S.; Wu, Y.L.; Chang, T.Y.; Chan, H.W.; Lin, W.S.; Chen, W.F.; Lien, Y.P.; Lee, Y.J. The IL18 gene and Hashimoto thyroiditis in children. Hum. Immunol., 2013, 74(1), 120-124.
[http://dx.doi.org/10.1016/j.humimm.2012.10.005] [PMID: 23073298]
[9]
Liu, Z.; Wang, H.; Xiao, W.; Wang, C.; Liu, G.; Hong, T. Thyrocyte interleukin-18 expression is up-regulated by interferon-γ and may contribute to thyroid destruction in Hashimoto’s thyroiditis. Int. J. Exp. Pathol., 2010, 91(5), 420-425.
[http://dx.doi.org/10.1111/j.1365-2613.2010.00715.x] [PMID: 20586818]
[10]
Kakkar, R.; Lee, R.T. The IL-33/ST2 pathway: therapeutic target and novel biomarker. Nat. Rev. Drug Discov., 2008, 7(10), 827-840.
[http://dx.doi.org/10.1038/nrd2660] [PMID: 18827826]
[11]
Theoharides, T.C.; Petra, A.I.; Taracanova, A.; Panagiotidou, S.; Conti, P. Targeting IL-33 in autoimmunity and inflammation. J. Pharmacol. Exp. Ther., 2015, 354(1), 24-31.
[http://dx.doi.org/10.1124/jpet.114.222505] [PMID: 25906776]
[12]
Xu, W.D.; Zhang, M.; Zhang, Y.J.; Ye, D.Q. IL-33 in rheumatoid arthritis: potential role in pathogenesis and therapy. Hum. Immunol., 2013, 74(9), 1057-1060.
[http://dx.doi.org/10.1016/j.humimm.2013.06.029] [PMID: 23800433]
[13]
Yang, Z.; Liang, Y.; Xi, W.; Li, C.; Zhong, R. Association of increased serum IL-33 levels with clinical and laboratory characteristics of systemic lupus erythematosus in Chinese population. Clin. Exp. Med., 2011, 11(2), 75-80.
[http://dx.doi.org/10.1007/s10238-010-0115-4] [PMID: 20963466]
[14]
Celik, H.T.; Abusoglu, S.; Burnik, S.F.; Sezer, S.; Serdar, M.A.; Ercan, M.; Uguz, N.; Avcikucuk, M.; Ceylan, B.; Yildirimkaya, M. Increased serum interleukin-33 levels in patients with Graves’ disease. Endocr. Regul., 2013, 47(2), 57-64.
[http://dx.doi.org/10.4149/endo_2013_02_57] [PMID: 23641786]
[15]
Oboki, K.; Ohno, T.; Kajiwara, N.; Saito, H.; Nakae, S. IL-33 and IL-33 receptors in host defense and diseases. Allergol. Int., 2010, 59(2), 143-160.
[http://dx.doi.org/10.2332/allergolint.10-RAI-0186] [PMID: 20414050]
[16]
Milovanovic, M.; Volarevic, V.; Radosavljevic, G.; Jovanovic, I.; Pejnovic, N.; Arsenijevic, N.; Lukic, M.L. IL-33/ST2 axis in inflammation and immunopathology. Immunol. Res., 2012, 52(1-2), 89-99.
[http://dx.doi.org/10.1007/s12026-012-8283-9] [PMID: 22392053]
[17]
Pei, C.; Barbour, M.; Fairlie-Clarke, K.J.; Allan, D.; Mu, R.; Jiang, H.R. Emerging role of interleukin-33 in autoimmune diseases. Immunology, 2014, 141(1), 9-17.
[http://dx.doi.org/10.1111/imm.12174] [PMID: 24116703]
[18]
Yin, H.; Li, X.Y.; Liu, T.; Yuan, B.H.; Zhang, B.B.; Hu, S.L.; Gu, H.B.; Jin, X.B.; Zhu, J.Y. Adenovirus-mediated delivery of soluble ST2 attenuates ovalbumin-induced allergic asthma in mice. Clin. Exp. Immunol., 2012, 170(1), 1-9.
[http://dx.doi.org/10.1111/j.1365-2249.2012.04629.x] [PMID: 22943195]
[19]
Lee, H.Y.; Rhee, C.K.; Kang, J.Y.; Byun, J.H.; Choi, J.Y.; Kim, S.J.; Kim, Y.K.; Kwon, S.S.; Lee, S.Y. Blockade of IL-33/ST2 ameliorates airway inflammation in a murine model of allergic asthma. Exp. Lung Res., 2014, 40(2), 66-76.
[http://dx.doi.org/10.3109/01902148.2013.870261] [PMID: 24446582]
[20]
Palmer, G.; Talabot-Ayer, D.; Lamacchia, C.; Toy, D.; Seemayer, C.A.; Viatte, S.; Finckh, A.; Smith, D.E.; Gabay, C. Inhibition of interleukin-33 signaling attenuates the severity of experimental arthritis. Arthritis Rheum., 2009, 60(3), 738-749.
[http://dx.doi.org/10.1002/art.24305] [PMID: 19248109]
[21]
Wang, X.; Zhu, Y.F.; Li, D.M.; Qin, Q.; Wang, Q.; Muhali, F.S.; Jiang, W.J.; Zhang, J.A. Polymorphisms of ST2-IL18R1-IL18RAP gene cluster: a new risk for autoimmune thyroid diseases. Int. J. Immunogenet., 2016, 43(1), 18-24.
[http://dx.doi.org/10.1111/iji.12240] [PMID: 26566691]
[22]
Talabot-Ayer, D.; McKee, T.; Gindre, P.; Bas, S.; Baeten, D.L.; Gabay, C.; Palmer, G. Distinct serum and synovial fluid interleukin (IL)-33 levels in rheumatoid arthritis, psoriatic arthritis and osteoarthritis. Joint Bone Spine, 2012, 79(1), 32-37.
[http://dx.doi.org/10.1016/j.jbspin.2011.02.011] [PMID: 21441054]
[23]
Christophi, G.P.; Gruber, R.C.; Panos, M.; Christophi, R.L.; Jubelt, B.; Massa, P.T. Interleukin-33 upregulation in peripheral leukocytes and CNS of multiple sclerosis patients. Clin. Immunol., 2012, 142(3), 308-319.
[http://dx.doi.org/10.1016/j.clim.2011.11.007] [PMID: 22189043]
[24]
Jiang, H.R.; Milovanović, M.; Allan, D.; Niedbala, W.; Besnard, A.G.; Fukada, S.Y.; Alves-Filho, J.C.; Togbe, D.; Goodyear, C.S.; Linington, C.; Xu, D.; Lukic, M.L.; Liew, F.Y. IL-33 attenuates EAE by suppressing IL-17 and IFN-γ production and inducing alternatively activated macrophages. Eur. J. Immunol., 2012, 42(7), 1804-1814.
[http://dx.doi.org/10.1002/eji.201141947] [PMID: 22585447]
[25]
Hong, Y.S.; Moon, S.J.; Joo, Y.B.; Jeon, C.H.; Cho, M.L.; Ju, J.H.; Oh, H.J.; Heo, Y.J.; Park, S.H.; Kim, H.Y.; Min, J.K. Measurement of interleukin-33 (IL-33) and IL-33 receptors (sST2 and ST2L) in patients with rheumatoid arthritis. J. Korean Med. Sci., 2011, 26(9), 1132-1139.
[http://dx.doi.org/10.3346/jkms.2011.26.9.1132] [PMID: 21935266]
[26]
Qin, Q.; Liu, P.; Liu, L.; Wang, R.; Yan, N.; Yang, J.; Wang, X.; Pandey, M.; Zhang, J.A. The increased but non-predominant expression of Th17- and Th1-specific cytokines in Hashimoto’s thyroiditis but not in Graves’ disease. Braz. J. Med. Biol. Res., 2012, 45(12), 1202-1208.
[http://dx.doi.org/10.1590/S0100-879X2012007500168] [PMID: 23090124]
[27]
Imai, Y.; Yasuda, K.; Sakaguchi, Y.; Haneda, T.; Mizutani, H.; Yoshimoto, T.; Nakanishi, K.; Yamanishi, K. Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice. Proc. Natl. Acad. Sci. USA, 2013, 110(34), 13921-13926.
[http://dx.doi.org/10.1073/pnas.1307321110] [PMID: 23918359]
[28]
Akdis, M.; Burgler, S.; Crameri, R.; Eiwegger, T.; Fujita, H.; Gomez, E.; Klunker, S.; Meyer, N.; O’Mahony, L.; Palomares, O.; Rhyner, C.; Ouaked, N.; Schaffartzik, A.; Van De Veen, W.; Zeller, S.; Zimmermann, M.; Akdis, C.A. Interleukins, from 1 to 37, and interferon- γ: receptors, functions, and roles in diseases. J. Allergy Clin. Immunol., 2011, 127(3), 701-21.e1, 70
[http://dx.doi.org/10.1016/j.jaci.2010.11.050] [PMID: 21377040]
[29]
Zhao, Q.; Chen, G. Role of IL-33 and its receptor in T cell-mediated autoimmune diseases. BioMed Res. Int., 2014.2014587376
[http://dx.doi.org/10.1155/2014/587376] [PMID: 25032216]
[30]
Xiangyang, Z.; Lutian, Y.; Lin, Z.; Liping, X.; Hui, S.; Jing, L. Increased levels of interleukin-33 associated with bone erosion and interstitial lung diseases in patients with rheumatoid arthritis. Cytokine, 2012, 58(1), 6-9.
[http://dx.doi.org/10.1016/j.cyto.2011.12.010] [PMID: 22239947]
[31]
Mok, M.Y.; Huang, F.P.; Ip, W.K.; Lo, Y.; Wong, F.Y.; Chan, E.Y.; Lam, K.F.; Xu, D. Serum levels of IL-33 and soluble ST2 and their association with disease activity in systemic lupus erythematosus. Rheumatology (Oxford), 2010, 49(3), 520-527.
[http://dx.doi.org/10.1093/rheumatology/kep402] [PMID: 20026564]
[32]
Pastorelli, L.; Garg, R.R.; Hoang, S.B.; Spina, L.; Mattioli, B.; Scarpa, M.; Fiocchi, C.; Vecchi, M.; Pizarro, T.T. Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis. Proc. Natl. Acad. Sci. USA, 2010, 107(17), 8017-8022.
[http://dx.doi.org/10.1073/pnas.0912678107] [PMID: 20385815]
[33]
Martínez-Martínez, E.; Miana, M.; Jurado-López, R.; Rousseau, E.; Rossignol, P.; Zannad, F.; Cachofeiro, V.; López-Andrés, N. A role for soluble ST2 in vascular remodeling associated with obesity in rats. PLoS One, 2013, 8(11)e79176
[http://dx.doi.org/10.1371/journal.pone.0079176] [PMID: 24265755]
[34]
Demyanets, S.; Kaun, C.; Pentz, R.; Krychtiuk, K.A.; Rauscher, S.; Pfaffenberger, S.; Zuckermann, A.; Aliabadi, A.; Gröger, M.; Maurer, G.; Huber, K.; Wojta, J. Components of the interleukin-33/ST2 system are differentially expressed and regulated in human cardiac cells and in cells of the cardiac vasculature. J. Mol. Cell. Cardiol., 2013, 60, 16-26.
[http://dx.doi.org/10.1016/j.yjmcc.2013.03.020] [PMID: 23567618]
[35]
Masterson, J.C.; Capocelli, K.E.; Hosford, L.; Biette, K.; McNamee, E.N.; de Zoeten, E.F.; Harris, R.; Fernando, S.D.; Jedlicka, P.; Protheroe, C.; Lee, J.J.; Furuta, G.T. Eosinophils and IL-33 Perpetuate Chronic Inflammation and Fibrosis in a Pediatric Population with Stricturing Crohn’s Ileitis. Inflamm. Bowel Dis., 2015, 21(10), 2429-2440.
[PMID: 26218140]