Sodium Oleate Increases Ampicillin Sensitivity in Methylophilus quaylei Biofilms on Teflon and Polypropylene

Page: [261 - 270] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Drug combination is a new therapy to improve antibiotic deficiency treatment towards biofilm resistance.

Objective: This study was conducted to determine the potential effect of sodium oleate to inhibit established biofilms of two strains, methylotrophic bacteria Methylophilus quaylei in combination with ampicillin. Minimum inhibitory concentration (MIC) of ampicillin was determined and added in combination with sodium oleate and examined on planktonic and established biofilms of two strains M. quaylei were characterized by different properties of cell surface hydrophobicity.

Methods: The effect on biofilms was evaluated by the number of colony forming units (CFUs), crystal violet assay, light and scanning electron microscopy.

Results: The study demonstrates that sodium oleate has a promoting activity against planktonic growth of M. quaylei strains and has a slight inhibitory effect on biofilm. Addition of sodium oleate enhances the bactericidal effect of ampicillin against biofilm cells. Combination of ampicillin 0.1 mg/ml (MIC) and sodium oleate 0.03 mg/ml showed a remarkable destruction effect on established biofilms.

Discussion: Combination of ampicillin 0.1 mg/ml (MIC) and sodium oleate 0.03 mg/ml showed a remarkable destruction effect on established biofilms. Overall, results indicated that sodium oleate in combination with ampicillin enhances the inhibition of M. quaylei biofilms and this combination can be utilized for combating bacterial biofilm resistance.

Conclusion: Overall, results indicated that sodium oleate in combination with ampicillin enhances the inhibition of M. quaylei biofilms and this combination can be utilized for combating bacterial biofilm resistance.

Keywords: Bacterial biofilms, ampicillin, sodium oleate, antibiotics resistance, methylotrophic bacteria, polypropylene.

Graphical Abstract

[1]
Costerton, J.; Lewandowski, Z.; Caldwell, D.; Korber, D.; Lappin-Scott, H. Microbial Biofilms. Annu. Rev. Microbiol., 1995, 49, 711-745.
[2]
Stewart, P.S. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol., 2002, 292(2), 107-113.
[3]
Simoes, M. Antimicrobial strategies effective against infectious bacterial biofilms. Curr. Med. Chem., 2011, 18(14), 2129-2145.
[4]
Stewart, P.S.; Costerton, W.J. Antibiotic resistance of bacteria in biofilms. Lancet, 2001, 358(9276), 135-138.
[5]
Singh, S.; Singh, S.K.; Chowdhury, I.; Singh, R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol. J., 2017, 11(1), 53-62.
[6]
Kint, C.I.; Verstraeten, N.; Fauvart, M.; Michiels, J. New-found fundamentals of bacterial persistence. Trends Microbiol., 2012, 20(12), 577-585.
[7]
Amani, H.; Habibey, R.; Hajmiresmail, S.J.; Latifi, S.; Pazoki-Toroudi, H.; Akhavan, O. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries. J. Mater. Chem. B., 2017, 5(48), 9452-9476.
[8]
Shleeva, M.; Goncharenko, A.; Kudykina, Y.; Young, D.; Young, M.; Kaprelyants, A. Cyclic Amp-dependent resuscitation of dormant mycobacteria by exogenous free fatty acids. PLoS One, 2013, 8(12), e82914.
[9]
Rabin, N.; Zheng, Y.; Opoku-Temeng, C.; Du, Y.; Bonsu, E.; Sintim, H.O. Agents that inhibit bacterial biofilm formation. Future Med. Chem., 2015, 7(5), 647-671.
[10]
Estrela, A.B.; Abraham, W.R. Combining biofilm-controlling compounds and antibiotics as a promising new way to control biofilm infections. Pharmaceuticals, 2010, 3(5), 1374-1393.
[11]
Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: Activities, Mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol., 2010, 85(6), 1629-1642.
[12]
Doronina, N.; Ivanova, E.; Trotsenko, Y.; Pshenichnikova, A.; Kalinina, E.; Shvets, V. Methylophilus quaylei Sp. nov., a new aerobic obligately methylotrophic bacterium. Syst. Appl. Microbiol., 2005, 28(4), 303-309.
[13]
Pshenichnikova, A.B.; Gavrilova, E.S.; Shvets, V.I. Influence of physico-chemical properties of the gram-negative bacteria cell surface on the resistance to streptomycin. Vestnik MITHT, 2011, 6(2), 43-50.
[14]
Mohamed, A.M.H.A.; Amzaeva, D.N.; Pshenichnikova, A.B.; Shvets, V.I. Influence of polymyxin B on the formation of biofilms by bacterium Methylophilus quaylei on polypropylene and teflon. Fine Chem. Technol, 2018, 13(2), 31-39.
[15]
Otman, S.A.M.; Pshenichnikova, A.B.; Shvets, V.I. Effect of exogenous fatty acids on the growth and production of exopolysaccharides of obligately methylotrophic bacterium Methylophilus quaylei. Appl. Biochem. Microbiol., 2012, 48(2), 200-205.
[16]
Brudzynski, K.; Sjaarda, C. Antibacterial compounds of canadian honeys target bacterial cell wall inducing phenotype changes, growth inhibition and cell lysis that resemble action of β-lactam antibiotics. PLoS One, 2014, 9(9), e106967.
[17]
Buettner, F.F.R.; Maas, A.; Gerlach, G.F. An Actinobacillus pleuropneumoniae ArcA deletion mutant is attenuated and deficient in biofilm formation. Vet. Microbiol., 2008, 127(1-2), 106-115.
[18]
Whittenbury, R.; Dalton, H. The methylotrophic bacteria introduction to the methanotrophs. Prokaryotes, 1977, 71(1-2), 894-902.
[19]
Donlan, R.M. Biofilms and device-associated infections. Emerg. Infect. Dis., 2001, 7(2), 277-281.
[20]
Kumar, C.G.; Anand, S. Significance of microbial biofilms in food industry: A review. Int. J. Food Microbiol., 1998, 42(1), 9-27.
[21]
Giles, D.K.; Hankins, J.V.; Guan, Z.; Trent, M.S. Remodelling of the Vibrio cholerae membrane by incorporation of exogenous fatty acids from host and aquatic environments. Mol. Microbiol., 2011, 79(3), 716-728.
[22]
Funari, S.S.; Barceló, F.; Escribá, P.V. Effects of oleic acid and its congeners, elaidic and stearic acids, on the structural properties of phosphatidylethanolamine membranes. J. Lipid Res., 2003, 44(3), 567-575.
[23]
Muranushi, N.; Takagi, S.; Muranishi, H. Sezaki. Effect of fatty-acids and monoglycerides on permeability of lipid bilayer. Chem. Phys. Lipids, 1981, 28(3), 269-279.
[24]
Ibarguren, M.; López, D.J.; Escribá, P.V. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health. Biochim. Biophys. Acta - Biomembr, 2014, 1838(6), 1518-1528.
[25]
Kenny, J.G.; Ward, D.; Josefsson, E.; Jonsson, I.M.; Hinds, J.; Rees, H.H.; Lindsay, J.A.; Tarkowski, A.; Horsburgh, M.J. The Staphylococcus aureus response to unsaturated long chain free fatty acids: Survival mechanisms and virulence implications. PLoS One, 2009, 4(2), e4344.
[26]
Terekhova, E.A.; Stepicheva, N.A.; Pshenichnikova, A.B.; Shvets, V.I. Stearic acid methyl ester: A new extracellular metabolite of the obligate methylotrophic bacterium Methylophilus quaylei. Appl. Biochem. Microbiol., 2010, 46(2), 166-172.
[27]
Corcoran, B.M.; Stanton, C.; Fitzgerald, G.F.; Ross, R.P. Growth of probiotic lactobacilli in the presence of oleic acid enhances subsequent survival in gastric juice. Microbiology, 2007, 153(1), 291-299.
[28]
Davies, D.G.; Marques, C.N.H. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J. Bacteriol., 2009, 191(5), 1393-1403.
[29]
Nicol, M.; Alexandre, S.; Luizet, J.B.; Skogman, M.; Jouenne, T.; Salcedo, S.P.; Dé, E. Unsaturated fatty acids affect quorum sensing communication system and inhibit motility and biofilm formation of Acinetobacter baumannii. Int. J. Mol. Sci., 2018, 19(1), 1-10.
[30]
Stenz, L.; François, P.; Fischer, A.; Huyghe, A.; Tangomo, M.; Hernandez, D.; Cassat, J.; Linder, P.; Schrenzel, J. impact of oleic acid (Cis-9-Octadecenoic Acid) on bacterial viability and biofilm production in Staphylococcus aureus. FEMS Microbiol. Lett., 2008, 287(2), 149-155.
[31]
Kaplan, J.B. Antibiotic-induced biofilm formation. Int. J. Artif. Organs, 2011, 34(9), 737-751.
[32]
Wu, S.; Li, X.; Gunawardana, M.; Maguire, K.; Guerrero-Given, D.; Schaudinn, C.; Wang, C.; Baum, M.M.; Webster, P. Beta- lactam antibiotics stimulate biofilm formation in non-typeable Haemophilus influenzae by up-regulating carbohydrate metabolism. PLoS One, 2014, 9(7), e99204.
[33]
Pandit, S.; Ravikumar, V.; Abdel-Haleem, A.M.; Derouiche, A.; Mokkapati, V.R.S.S.; Sihlbom, C.; Mineta, K.; Gojobori, T.; Gao, X.; Westerlund, F.; Mijakovic, I. Low concentrations of vitamin C reduce the synthesis of extracellular polymers and destabilize bacterial biofilms. Front. Microbiol., 2017, 8(DEC), 1-11.
[34]
Jennings, J.A.; Courtney, H.S.; Haggard, W.O. Cis-2-decenoic acid inhibits S. aureus growth and biofilm in vitro: A pilot study basic research. Clin. Orthop. Relat. Res., 2012, 470(10), 2663-2670.
[35]
Cai, J.N.; Kim, M.A.; Jung, J.E.; Pandit, S.; Song, K.Y.; Jeon, J.G. Effects of combined oleic acid and fluoride at sub-MIC levels on EPS formation and viability of Streptococcus mutans UA159 biofilms. Biofouling, 2015, 31(7), 555-563.