(Thio)urea-catalyzed Friedel-Crafts Reaction: Synthesis of Bis(indolyl)- methanes

Page: [959 - 968] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Bis(indolyl)methane derivatives (BIMs) were synthesized in moderate to good yields by (thio)urea catalyzed electrophilic substitution of indole (2) with various aldehydes 1. Reactions were performed under conventional and microwave (MW) heating, either using 1,2-dichloroetane as solvent or without solvent. The procedure using microwave heating was also applied to the synthesis of the natural products vibrindole A (3n), arsindoline A (3i), arundine (3o) and tris(1H-indol-3-yl)methane (3j). Additionally, the synthesis of streptindole was carried out via intermediate 3g. This methodology is well suited for the synthesis of bis(indolyl)methanes: it offers good yields of products, low sensitivity to moisture and oxygen, high tolerance to different functional groups on the aldehydes such as alkynes and trimethylsilane, and simplicity in operation

Keywords: (Thio)urea, Bis(indolyl)methane, Microwave reaction, Solvent free conditions, Catalysts, Indole, Vibrindole A.

Graphical Abstract

[1]
Endo, T.; Tsuda, M.; Dromont, J.; Kobayashi, J.; Hyrtinadine, A.J. Nat. Prod., 2007, 70(3), 423-424.
[2]
Sivaprasad, G.; Perumal, P.T.; Prabavathy, V.R.; Mathivanan, N. Bioorg. Med. Chem. Lett., 2006, 16, 6302-6305.
[3]
Sujatha, K.; Perumal, P.T.; Muralidharan, D.; Rajendran, M. Indian J. Chem., 2009, 48, 267-272.
[4]
Benabadji, S.H.; Wen, R.; Zheng, J.B.; Dong, X.; Yuan, S. Acta Pharmacol. Sin., 2004, 25(5), 666-671.
[5]
Sashidhara, K.V.; Kumar, M.; Sonkar, R.; Singh, B.S.; Khanna, A.K.; Bhatia, G. J. Med. Chem., 2012, 55(6), 2769-2779.
[6]
Shiri, M.; Zolfigol, M.A.; Kruger, H.G.; Tanbakouchian, Z. Chem. Rev., 2010, 110, 2250-2293.
[7]
He, X.; Hu, S.; Liu, K.; Guo, Y.; Xu, J.; Shao, S. Org. Lett., 2006, 8, 333-336.
[8]
Martinez, R.; Espinosa, A.; Tarraga, A.; Molina, P. Tetrahedron, 2008, 64, 2184-2191.
[9]
Azizi, N.; Gholiberghlo, E.; Manocheri, Z. Sci. Iran., 2012, 19, 574-578.
[10]
García-Merinos, J.P.; López-Ruiz, H.; López, Y.; Rojas-Lima, S. Lett. Org. Chem., 2015, 12, 332-336.
[11]
Kalla, R.M.N.; Hong, S.C.; Kim, I. ACS Omega, 2018, 3, 2242-2253.
[12]
Siadatifard, S.H.; Abdoli-Senejani, M.; Bodaghifard, M.A. Cogent Chemistry, 2016, 21188435
[13]
(a)Zahran, M.; Abdin, Y.; Salama, H. ARKIVOC, 2008, (xi), 256-265.
(b)Pal, R. Int. J. Org. Chem. , 2013, 3, 136-142.
[14]
Polshettiwar, V.; Nadagouda, M.N.; Varma, R.S. Aust. J. Chem., 2009, 62, 16-26.
[15]
Polshettiwar, V.; Varma, R.S. Acc. Chem. Res., 2008, 41, 629-639.
[16]
Gawande, M.B.; Shelke, S.N.; Zboril, R.; Varma, R.S. Acc. Chem. Res., 2008, 47, 1338-1348.
[17]
(a)Zhang, Z.; Bao, Z.; Xing, H. Org. Biomol. Chem., 2014, 12, 3151-3162.
(b)Kotke, M.; Schreiner, P.R. In hydrogent Bonding in Organic Synthesis, Pihko, M.P., Ed., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim , 2009. pp. 141-351
[18]
(a)Saeed, A.; Qamar, R.; Fattah, T.A. Flӧrke, U.; Erben, M. F. Res. Chem. Intermed., 2017, 43, 3053-3093.
(b)Saeed, A.; Flӧrke, U.; Erben, M.F. J. Sulfur Chem., 2014, 35, 318-355.
[19]
López-Ruiz, H.; Briseño-Ortega, H.; Rojas-Lima, S.; Santillan, R.; Farfan, N. Tetrahedron Lett., 2011, 52, 4308-4312.
[20]
X-ray data Crystallographic data (excluding structure factors) for the structures in this paper has been deposited with the Cambridge Crystallographic Data Centre as a Supplementary Publication Numbers, CCDC 1007167 No. for 3b and CCDC 1007170 No. for 3i, Copy of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44(0) 1223 336033 or e-mail: deposit@ccdc.cam.ac.uk]..
[21]
Gatfaoui, S.; Mezni, A.; Roisnel, T. Marouani. H. J. Mol. Struct., 2017, 1139, 52-59.
[22]
Oxford Diffraction, CrysAlis Software System, Version 1.171.33.31; Oxford Diffraction Ltd.: Abingdon, UK, 2009.
[23]
SHELXTL, Version 5.10; Bruker AXS, Inc.: Madison, WI, USA, 1998.
[24]
Lin, B.; Waymouth, R.N. Macromolecules, 2018, 51, 2932-2938.
[25]
Stojanovic, A.; Morgenbesser, C.; Galanski, M.; Kogelnig, D.; Roller, A.; Krachler, R.; Keppler, B.K. J. Mol. Struct., 2010, 965, 50-55.
[26]
Yu, W.; Huang, Y.; Li, J.; Tang, X.; Wu, W.; Jiang, H. J. Org. Chem., 2018, 83, 9334-9343.
[27]
Mendes, S.R.; Thurow, S.; Penteado, F.; da Silva, M.S.; Gariani, R.A.; Perin, G.; Lenardӑo, E.J. Green Chem., 2015, 17, 4334-4339.
[28]
Noland, W.E.; Kumar, H.V.; Flic, G.C.; Aspros, C.L.; Yoon, J.; Wilt, A.C.; Dehkordi, N.; Thao, S.; Schneerer, A.K.; Gao, S.; Tritch, K.J. Tetrahedron, 2017, 73, 3913-3922.
[29]
Swetha, A.; Babu, B.M.; Meshram, H.M. Tetrahedron Lett., 2015, 56, 1775-1779.
[30]
Praveen, P.J.; Parameswaran, P.S.; Majik, M.S. Synthesis, 2015, 47, 1827-1837.
[31]
Manas, C.; Sulakshana, K.; Yoshihiro, H. Heterocycles, 2005, 65, 37-48.