[3]
Ashraf MN, Habib Z, Hussain M. Computer aided diagnosis of Diabetic Retinopathy. LAP LAMBERT Academic Publishing 2015.
[10]
Autio I. Borra´ s JC, Immonen I, Jalli P, Ukkonen E. A voting margin approach for the detection of retinal micro-aneurysms. In Proceedings of the Fifth IASTED International Conference on Visualization, imagine, and Image Processing. 2005 Sep 7-9; Benidorm, Spain: ACTA Press pp. 511-7.
[17]
Fleming AD, Goatman KA, Williams GJP, Philip S, Sharp PF, Olson JA. Automated detection of blot haemorrhages as a sign of referable diabetic retinopathy. In: Proceedings of 12th the Medical Image Understanding and Analysis. 2008 Jul 2-3; Dundee, UK: IEEE pp 235-39.
[20]
Garc’ıa M, S’anchez CI, L’opez MI, D’ıez A, Hornero’ R. Automatic detection of red lesions in retinal images using a multilayer perceptron neural network. In: Proceedings of 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS2008). 2008 Aug 20-24; Vancouver BC, Canada: IEEE pp. 25-8.
[22]
Giancardo L. Quality analysis of retina images for the automatic
diagnosis of diabetic retinopathy. MSc Thesis, Université de Bourgogne,
France 2008.
[28]
Laÿ B. Analyse automatique des images angio fluorographiques au cours de la retinopathie diabetique PhD Dissertation Centre of
Mathematical Morphology Paris, France 1983.
[30]
Mendonc a A, Campilho AJ, Nunes JM. Automatic segmentation
of microaneurysms in retinal angiograms of diabetic patients. In:
Procedings of IEEE International Conference on Image Analysis
and Processing (ICIAP’ 99); 1999 Sept 27-29; Venice, Italy. IEEE;
pp. 728-33.
[31]
Kanski JJ, Bowling B. Clinical ophthalmology: A systematic approach. 7th ed. Butterworth: Heinemann Elsevier 2011.
[32]
Mahesh KK. A survey of automated techniques for retinal disease identification in diabetic retinopathy. IJOART 2013; 2(5): 199-216.
[45]
Augustin A, Bandello F, Coscas G, et al. Macular edema a practical approach. Basel: Karger Publishers 2010.
[78]
Seo JW, Kim SD. Novel PCA-based color-to-gray image conversion. In: Proceedings of 20th IEEE International Conference on Image Processing (ICIP). 2013 Sep 15-18; Melbourne, Victoria, Australia: IEEE pp. 2279-83.
[87]
Abdullah M, Fraz MM, Barman SA. Localization and segmentation of optic disc in retinal images using circular Hough transform PeerJ 2016; 4(1): 1-23.
[97]
Gagnon L, Lalonde M, Beaulieu M, Boucher MC. Procedure to detect anatomical structures in optical fundus images. Proc SPIE Int Soc Opt Eng. 2001; 4322(3):1218-25.
[100]
Shah GA, Khan A, Shah AA, Raza M, Sharif M. A review on image contrast enhancement techniques using histogram equalization. Sci Int 2015; 27(2): 1297-302.
[110]
Fritzsche K, Can A, Shen H, et al. Automated model based segmentation, tracing and analysis of retinal vasculature from digital fundus images State-of-The-Art Angiography, Applications and Plaque Imaging Using MR, CT, Ultrasound and X-rays. 1st ed. Boca Raton, FL, USA: CRC Press 2003; pp. 225-98.
[111]
Dollr P, Tu Z, Perona P. Integral channel features. In: Cavallaro A, Prince S, Alexander D, Eds. Proceedings of the British Machine Conference. London, UK. 2009. pp. 91.1-11
[117]
Kolmogorov V, Boykov Y. Hat metrics can be approximated by geo-cuts, or global optimization of length/area and flux. In: Proceedings of 10th IEEE International Conference on Computer Vision (ICCV). 2005 Oct 17-21; Beijing, China: IEEE pp 564-71.
[122]
Kovesi P. Symmetry and asymmetry from local phase. In: Proceedings of 10th Australian Joint Converence on Artifical Intelligence. 1997 Dec 2-4; Perth, Australia: IEEE pp 185-90.
[123]
Kovesi P. Image Features from Phase Congruency. Videre J Comput Vis Res 1999; 1(3): 2-26.
[124]
Maji D, Santara A, Mitra P, Sheet D. Ensemble of deep convolutional neural networks for learning to detect retinal vessels in fundus images 2016. arXiv:1603.04833 [cs.LG].
[127]
Vincent P, Larochelle H, Lajoie IBY, Manzagol PA. Stacked Denoising Autoencoders: Learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 2010; 11: 3371-408.
[129]
Nair V, Hinton GE. Rectified linear units improve restricted Boltzmann machines. In: Proceedings of 27th International Conference on Machine Learning. 2010 Jun 21-24; Haifa, Israel: IEEE pp 807-14.
[130]
Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A simple way to prevent neural networks from overfitting. J Mach Learn Res 2014; 15(1): 1929-58.
[137]
Kauppi T, Kalesnykiene V, Kamarainen JK, et al. DIARETDB0:
Evaluation database and meth-odology for diabetic retinopathy algorithms.
Technical report 2006.
[142]
Kaur J, Sinha H. Automated localization of optic disc and macula from fundus images. Int J Adv Res Comput Sci Softw Eng 2012; 2(4): 242-9.
[145]
Vezhnevets V, Konouchine V. GrowCut: Interactive multi-label N-D image segmentation by cellular automata. In: Proceedings of 15th International Conference on Computer Graphics and Applications (GraphiCon’2005). 2005 June 20-24; Moscow, USSR: IEEE pp 150-56.
[153]
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Commun ACM 2012; 60(6): 1097-105.
[154]
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. 2014. arXiv:1409.4842 [cs.CV].