Thermal Performance of Electrochromic Smart Window with Nanocomposite Structure under Different Climates in Iran

Page: [154 - 164] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Objective: This study investigated the optimization of thermal energy consumption using electrochromic components with a new nanocomposite layer (WO3+Ag) in a larger size (window) for a room with an educational application for five cities with different climatic conditions in Iran (Yazd, Tehran, Bandar Abbas, Tabriz, and Sari).

Materials and Methods: For this simulation platform, the software was implemented in Energy Plus. This feasibility study was modeled by DesignBuilder software which reported reduced thermal energy consumption across all climates in Iran (hot and dry, warm and semi-humid, warm and wet, moderate and dry, and mild and humid.). Four strategies were considered for better comparison. The first strategy used for common double-glazed windows, while the second to fourth strategies involved the use of the electrochromic window in three different modes; bleached mode (Off), colored mode (On), and switchable mode (controlled below comfort conditions).

Results: The third and fourth strategies indicated a reduction in thermal energy consumption in different climates from 25 to 45% relative to typical windows. The best result of cooling energy consumption was observed in Tehran.

Conclusion: For this climate, the average energy consumption dropped to 34% for the warm months of the year and even 42% for the warmest month of the year (August).

Keywords: Smart window, electrochromic, energy consumption, simulation, thermochromic.

Graphical Abstract

[1]
Granqvist, C.G.; Bayrak Pehlivan, İ.; Niklasson, G.A. Electrochromics on a roll: Web-coating and lamination for smart windows. Surf. Coat. Tech., 2018, 336, 133-138.
[2]
Wen, R.T.; Arvizu, M.A.; Niklasson, G.A.; Granqvist, C.G. Electrochromics for energy efficient buildings: Towards long-term durability and materials rejuvenation. Surf. Coat. Tech., 2016, 290, 135-139.
[3]
Granqvist, C.G. Recent progress in thermochromics and electrochromics: A brief survey. Thin Solid Films, 2016, 614, 90-96.
[4]
Granqvist, C.G.; Niklasson, G.A. Solar energy materials for thermal applications: A primer. Sol. Energy Mater. Sol. Cells, 2018, 180, 213-226.
[5]
Lee, E.S.; Di Bartolomeo, D.L. Application issues for large-area electrochromic windows in commercial buildings. Sol. Energy Mater. Sol. Cells, 2002, 71, 465-491.
[6]
Piccolo, A. Thermal performance of an electrochromic smart window tested in an environmental test cell. Energy Build., 2010, 42, 1409-1417.
[7]
Piccolo, A.; Simone, F. Performance requirements for electrochromic smart window. J. Build. Eng., 2015, 3, 94-103.
[8]
Piccolo, A.; Simone, F. Performance of an all solid state electrochromic prototype for smart window applications. Energ. Proc, 2015, 78, 110-115.
[9]
Piccolo, A.; Marino, C.; Nucara, A.; Pietrafesa, M. Energy performance of an electrochromic switchable glazing: Experimental and computational assessments. Energy Build., 2018, 165, 390-398.
[10]
Aste, N.; Leonforte, F.; Piccolo, A. Color rendering performance of smart glazings for building applications. Sol. Energy, 2018, 176, 51-61.
[11]
Piccolo, A.; Pennisi, A.; Simone, F. Daylighting performance of an electrochromic window in a small scale test-cell. Sol. Energy, 2009, 83, 832-844.
[12]
Piccolo, A.; Simone, F. Effect of switchable glazing on discomfort glare from windows. Build. Environ., 2009, 44, 1171-1180.
[13]
Sun, G.Y.; Cao, X.; Zhou, H.; Bao, S.; Jin, P. A novel multifunctional thermochromic structure with skin comfort design for smart window application. Sol. Energy Mater. Sol. Cells, 2017, 159, 553-559.
[14]
Skaff, M.C.; Gosselin, L. Summer performance of ventilated windows with absorbing or smart glazings. Sol. Energy, 2014, 105, 2-13.
[15]
Dussault, J.M.; Gosselin, L. Office buildings with electrochromic windows: A sensitivity analysis of design parameters on energy performance, and thermal and visual comfort. Energy Build., 2017, 153, 50-62.
[16]
Gosselin, L.; Dussault, J.M. Correlations for glazing properties and representation of glazing types with continuous variables for daylight and energy simulations. Sol. Energy, 2017, 141, 159-165.
[17]
Rouleau, J.; Gosselin, L.; Blanchet, P. Understanding energy consumption in high-performance social housing buildings: A case study from Canada. Energy, 2018, 145, 677-690.
[18]
Papaefthimiou, S.; Syrrakou, E.; Yianoulis, P. An alternative approach for the energy and environmental rating of advanced glazing: An electrochromic window case study. Energy Build., 2009, 41, 17-26.
[19]
Papaefthimiou, S. Chromogenic technologies: Towards the realization of smart electrochromic glazing for energy-saving applications in buildings. Adv. Build. Energy Res., 2010, 4, 77-126.
[20]
Papaefthimiou, S.; Leftheriotis, G.; Yianoulis, P.; Hyde, T.; Eames, P.C.; Fang, Y.; Pennarun, P.Y.; Jannasch, P. Development of electrochromic evacuated advanced glazing. Energy Build., 2006, 38, 1455-1467.
[21]
Syrrakou, E.; Papaefthimiou, S.; Yianoulis, P. Environmental assessment of electrochromic glazing production. Sol. Energy Mater. Sol. Cells, 2005, 85, 205-240.
[22]
Papaefthimiou, S.; Syrrakou, E.; Yianoulis, P. Energy performance assessment of an electrochromic window. Thin Solid Films, 2006, 502, 257-264.
[23]
Tavares, P.; Bernardo, H.; Gaspar, A.; Martins, A. Control criteria of electrochromic glasses for energy savings in mediterranean buildings refurbishment. Sol. Energy, 2016, 134, 236-250.
[24]
Tavares, P.F.; Gaspar, A.R.; Martins, A.G.; Frontini, F. Eco-efficient Materials for Mitigating Building Cooling Needs: Design, Properties and Applications; Elsevier Ltd, 2015, pp. 499-524.
[25]
Tavares, P.F.; Gaspar, A.R.; Martins, A.G.; Frontini, F. Evaluation of electrochromic windows impact in the energy performance of buildings in mediterranean climates. Energy Policy, 2014, 67, 68-81.
[26]
De Forest, N.; Shehabi, A.; O’Donnell, J.; Garcia, G.; Greenblatt, J.; Lee, E.S.; Selkowitz, S.; Milliron, D.J. United States energy and CO2 savings potential from deployment of near-infrared electrochromic window glazings. Build. Environ., 2015, 89, 107-117.
[27]
De Forest, N.; Shehabi, A.; Selkowitz, S.; Milliron, D.J. A comparative energy analysis of three electrochromic glazing technologies in commercial and residential buildings. Appl. Energy, 2017, 192, 95-109.
[28]
De Forest, N.; Shehabi, A.; Garcia, G.; Greenblatt, J.; Masanet, E.; Lee, E.S.; Selkowitz, S.; Milliron, D.J. Regional performance targets for transparent near-infrared switching electrochromic window glazings. Build. Environ., 2013, 61, 160-168.
[29]
Lee, E.S.; Tavil, A. Energy and visual comfort performance of electrochromic windows with overhangs. Build. Environ., 2007, 42, 2439-2449.
[30]
Tavil, E.S. Lee, Effects of overhangs on the performance of electrochromic windows. Archit. Sci. Rev., 2006, 49, 349-356.
[31]
Fernandes, L.L.; Lee, E.S.; Ward, G. Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort. Energy Build., 2013, 61, 8-20.
[32]
Aldawoud, A. Conventional fixed shading devices in comparison to an electrochromic glazing system in hot, dry climate. Energy Build., 2013, 59, 104-110.
[33]
Assimakopoulos, M.N.; Tsangrassoulis, A.; Santamouris, M.; Guarracino, G. Comparing the energy performance of an electrochromic window under various control strategies. Build. Environ., 2007, 42, 2829-2834.
[34]
Shen, E.; Hong, T. Simulation-based assessment of the energy savings benefits of integrated control in office buildings. Build. Simul., 2009, 2, 239-251.
[35]
Jelle, B.P. Solar radiation glazing factors for window panes, glass structures and electrochromic windows in buildings. Measurement and calculation. Sol. Energy Mater. Sol. Cells, 2013, 116, 291-323.
[36]
Baetens, R.; Jelle, B.P.; Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater. Sol. Cells, 2010, 94, 87-105.
[37]
Lim, S.H.N.; Isidorsson, J.; Sun, L.; Kwak, B.L.; Anders, A. Modeling of optical and energy performance of tungsten-oxide-based electrochromic windows including their intermediate states. Sol. Energy Mater. Sol. Cells, 2013, 108, 129-135.
[38]
Long, L.; Ye, H. How to be smart and energy efficient: A general discussion on thermochromic windows. Sci. Rep., 2014, 4, 6427.
[39]
Kamalisarvestani, M.; Saidur, R.; Mekhilef, S.; Javadi, F.S. Performance, materials and coating technologies of thermochromic thin films on smart windows. Renew. Sustain. Energy Rev., 2013, 26, 353-364.
[40]
Baetens, R.; Jelle, B.P.; Gustavsen, A. Phase change materials for building applications: A state-of-the-art review. Energy Build., 2010, 42, 1361-1368.
[41]
Baetens, R.; Jelle, B.P.; Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater. Sol. Cells, 2010, 94, 87-105.
[42]
Livage, J.; Ganguli, D. Sol-gel electrochromic coatings and devices: A review. Sol. Energy Mater. Sol. Cells, 2001, 68, 365-381.
[43]
Lampert, C.M. Smart switchable glazing for solar energy and daylight control. Sol. Energy Mater. Sol. Cells, 1998, 52, 207-221.
[44]
Lampert, M. Chromogenic smart materials. Mater. Today, 2004, 7, 28-35.
[45]
Granqvist, C.G. Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films, 2014, 564, 1-38.
[46]
Granqvist, C.G.; Green, S.; Niklasson, G.A.; Mlyuka, N.R.; Von Kraemer, S.; Georén, P. Advances in chromogenic materials and devices. Thin Solid Films, 2010, 518, 3046-3053.
[47]
Granqvist, G. Electrochromic Materials and Devices; Wiley Blackwell, 2015, pp. 1-40.
[48]
Shehabi, A.; De Forest, N.; Mc Neil, A.; Masanet, E.; Greenblatt, J.; Lee, E.S.; Masson, G.; Helms, B.A.; Milliron, D.J.U.S. energy savings potential from dynamic daylighting control glazings. Energy Build., 2013, 66, 415-423.
[49]
Baldassarri, C.; Shehabi, A.; Asdrubali, F.; Masanet, E. Energy and emissions analysis of next generation electrochromic devices. Sol. Energy Mater. Sol. Cells, 2016, 156, 170-181.
[50]
Yaman, K.; Arslan, G. Modeling, simulation, and optimization of a solar water heating system in different climate regions. J. Renew. Sustain. Energy, 2018, 10(2)023703
[51]
Lee, J.W.; Jung, H.J.; Park, J.Y.; Lee, J.B.; Yoon, Y. Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements. Renew. Energy, 2013, 50, 522-531.
[52]
Chan, L.S.; Chow, T.T. Thermal performance of air-conditioned office buildings constructed with inclined walls in different climates in China. Appl. Energy, 2014, 114, 45-57.
[53]
Pereira Tavares, M.C.; Perdigão Gonçalves, H.J.; De Faria Corrêa Bastos, J.N.T. The glazing area in residential buildings in temperate climate: The thermal-energetic performance of housing units in Lisbon. Energy Build., 2017, 140, 280-294.
[54]
Wei, J.; Zhao, J.; Chen, Q. Energy performance of a dual airflow window under different climates. Energy Build., 2010, 42, 111-122.
[55]
Lai, K.; Wang, W.; Giles, H. Solar shading performance of window with constant and dynamic shading function in different climate zones. Sol. Energy, 2017, 147, 113-125.
[56]
Aste, N.; Buzzetti, M.; Del Pero, C.; Leonforte, F. Glazing’s techno-economic performance: A comparison of window features in office buildings in different climates. Energy Build., 2018, 159, 123-135.
[57]
Hoseinzadeh, S.; Azadi, R. Simulation and optimization of a solar-assisted heating and cooling system for a house in Northern of Iran. J. Renew. Sustain. Energy, 2017, 9(4)045101
[58]
Yousef Nezhad, M.E.; Hoseinzadeh, S. Mathematical modelling and simulation of a solar water heater for an aviculture unit using MATLAB/SIMULINK. J. Renew. Sustain. Energy, 2017, 9(6)063702
[59]
Wang, Q.; Zhang, Y.; Wang, Y.; Sun, J.; He, L. Dynamic three-dimensional stress prediction of window glass under thermal loading. Int. J. Therm. Sci., 2012, 59, 152-160.
[60]
Wang, Q.; Chen, H.; Wang, Y.; Wen, J.X.; Dembele, S.; Sun, J.; He, L. Development of a dynamic model for crack propagation in glazing system under thermal loading. Fire Saf. J., 2014, 63, 113-124.
[61]
Silva, T.; Vicente, R.; Rodrigues, F.; Samagaio, A.; Cardoso, C. Performance of a window shutter with phase change material under summer Mediterranean climate conditions. Appl. Therm. Eng., 2015, 84, 246-256.
[62]
Lee, E.; Pang, X.; Mc Neil, A.; Hoffmann, S.; Thanachareonkit, A.; Li, Z.; Ding, Y. Assessment of the potential to achieve very low energy use in public buildings in China with advanced window and shading systems. Buildings, 2015, 5, 668-699.
[63]
Hoseinzadeh, S.; Ghasemiasl, R.; Havaei, D.; Chamkha, A.J. Numerical investigation of rectangular thermal energy storage units with multiple phase change materials. J. Mol. Liq., 2018, 271, 655-660.
[64]
Ghasemiasl, R.; Hoseinzadeh, S.; Javadi, M.A. Numerical analysis of energy storage systems using two phase-change materials with nanoparticles. J. Thermophys. Heat Transfer, 2018, 32, 440-448.
[65]
Hoseinzadeh, S.; Ghasemiasl, R.; Bahari, A.; Ramezani, A.H. Effect of post-annealing on the electrochromic properties of layer-by-layer arrangement FTO-WO3-Ag-WO3-Ag. J. Electron. Mater., 2018, 47, 3552-3559.
[66]
Hoseinzadeh, S.; Ghasemiasl, R.; Bahari, A.; Ramezani, A.H. n-Type WO3 semiconductor as a cathode electrochromic material for ECD devices. J. Mater. Sci. Mater. Electron., 2017, 28, 14446-14452.
[67]
Hoseinzadeh, S.; Ghasemiasl, R.; Bahari, A.; Ramezani, A.H. The injection of Ag nanoparticles on surface of WO3 thin film: Enhanced electrochromic coloration efficiency and switching response. J. Mater. Sci. Mater. Electron., 2017, 28, 14855-14863.
[68]
Najafi-Ashtiani, H.; Bahari, A.; Gholipour, S.; Hoseinzadeh, S. Structural, optical and electrical properties of WO3–Ag nanocomposites for the electro-optical devices. Appl. Phys., A Mater. Sci. Process., 2018, 124(1), 24.
[69]
Hoseinzadeh, S.; Sahebi, S.A.R.; Ghasemiasl, R.; Majidian, A.R. Experimental analysis to improving thermosyphon (TPCT) thermal efficiency using nanoparticles/based fluids (water). Eur. Phys. J. Plus, 2017, 132(5), 197.
[70]
Yari, A.; Hosseinzadeh, S.; Golneshan, A.A.; Ghasemiasl, R. Numerical simulation for thermal design of a gas water heater with turbulent combined convection. In: ASME/JSME/KSME Joint Fluids Engineering Conference, AJK Fluids. 2015, 1, VOIAT03A006- VOIAT03A006.
[71]
Ramezani, A.H.; Hoseinzadeh, S.; Bahari, A. The effects of nitrogen on structure, morphology and electrical resistance of tantalum by ion implantation method. J. Inorg. Organomet. Polym. Mater., 2018, 28, 847-853.
[72]
Hoseinzadeh, S.; Ramezani, A.H. Corrosion performance of Ta/Ni ions implanted with WO3/FTO. J. Chin. Soc. Mech. Eng., 2018, 39(5), 501-507.
[73]
Hoseinzadeh, S.; Hadi Zakeri, M.; Shirkhani, A.; Chamkha, A.J. Analysis of energy consumption improvements of a zero-energy building in a humid mountainous area. J. Renew. Sustain. Energy, 2019, 11015103
[74]
Hoseinzadeh, S.; Moafi, A.; Shirkhani, A.; Chamkha, A.J. Numerical validation heat transfer of rectangular cross-section porous fins. J. Thermophys. Heat Transfer, 2019, , 1-7.
[http://dx.doi.org/10.2514/1.T5583]