The Effect of Carrier Matrix and the Method of Preparing Solid Dispersion on Physical State and Solubility of Ibuprofen

Page: [157 - 165] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: The poor solubility of a drug substance is one of the factors which are responsible for poor dissolution and bioavailabity.

Objective: To enhance the solubility of Ibuprofen using different techniques, and to investigate the effect of carrier matrixes and methods of preparing solid dispersion on physical state and solubility of Ibuprofen.

Methods: Fusion method, solvent evaporation and effervescence assisted fusion methods were used to prepare solid dispersions of ibuprofen (IBU). Mannitol, polyethylene-glycol-6000, urea, microcrystalline cellulose, calcium carbonate, sugar spheres, sodium chloride, magnesium oxide, titanium dioxide, citric acid, hydroxypropyl-β-cyclodextrin and β-cyclodextrin were used as carrier matrix. Solid dispersions were characterized using scanning electron microscopy and Differential Scanning Calorimetry (DSC). The solubility of IBU powder and its solid dispersions were investigated in water, acidic buffer (pH-1.2) and in phosphate buffer (pH-6.8).

Results: In some of the solid dispersions, IBU lost its crystalline structure and converted into amorphous powder. Scanning electron micrographs and DSC thermograms revealed the absence of IBU crystalline particles in few of the solid dispersion matrixes. Solid dispersion comprising amorphous IBU showed remarkable enhancement in its solubility. The IBU-magnesium oxide solid dispersion showed the highest solubility enhancement, followed by IBU-hydroxypropyl-β-cyclodextrin, IBUpolyethylene glycol-6000, IBU-urea and IBU-β-cyclodextrin. The magnesium oxide, hydroxypropyl-β- cyclodextrin and β-cyclodextrin enhanced solubility even at acidic pH. Effervescence assisted fusion technique showed better solubility results than the other two techniques.

Conclusions: On the basis of present observations, it can be suggested that the type of carrier matrix, the method of preparation and the pH of the dispersion plays an important role in the solubility of IBU.

Keywords: Ibuprofen, solid dispersion, poorly soluble drugs, BCS Class II and IV, solubility enhancement, cyclodextrin complexation.

Graphical Abstract

[1]
Alam, M.A.; Al-Jenoobi, F.I.; Al-Mohizea, A.M.; Ali, R. Understanding and managing oral bioavailability: Physiological concepts and patents. Recent Pat Anticancer Drug Discov., 2015, 10(1), 87-96.
[2]
Alam, M.A.; Al-Jenoobi, F.I.; Al-Mohizea, A.M. Commercially bioavailable proprietary technologies and their marketed products. Drug Discov. Today, 2013, 18(19-20), 936-949.
[3]
Alam, M.A.; Ali, R.; Al-Jenoobi, F.I.; Al-Mohizea, A.M. Solid dispersions: A strategy for poorly aqueous soluble drugs and technology updates. Expert Opin. Drug Deliv., 2012, 9(11), 1419-1440.
[4]
Verma, S.; Rudraraju, V.S. A systematic approach to design and prepare solid dispersions of poorly water-soluble drug. AAPS PharmSciTech, 2014, 15(3), 641-657.
[5]
Newa, M.; Bhandari, K.H.; Kim, J.O.; Im, J.S.; Kim, J.A.; Yoo, B.K.; Woo, J.S.; Choi, H.G.; Yong, C.S. Enhancement of solubility, dissolution and bioavailability of ibuprofen in solid dispersion systems. Chem. Pharm. Bull. (Tokyo), 2008, 56(4), 569-574.
[6]
Newa, M.; Bhandari, K.H.; Li, D.X.; Kim, J.O.; Yoo, D.S.; Kim, J.A.; Yoo, B.K.; Woo, J.S.; Choi, H.G.; Yong, C.S. Preparation and evaluation of immediate release ibuprofen solid dispersions using polyethylene glycol 4000. Biol. Pharm. Bull., 2008, 31(5), 939-945.
[7]
Newa, M.; Bhandari, K.H.; Kim, J.A.; Yoo, B.K.; Choi, H.G.; Yong, C.S.; Woo, J.S.; Lyoo, W.S. Preparation and evaluation of fast dissolving ibuprofen-polyethylene glycol 6000 solid dispersions. Drug Deliv., 2008, 15(6), 355-364.
[8]
Newa, M.; Bhandari, K.H.; Lee, D.X.; Sung, J.H.; Kim, J.A.; Yoo, B.K.; Woo, J.S.; Choi, H.G.; Yong, C.S. Enhanced dissolution of ibuprofen using solid dispersion with polyethylene glycol 20000. Drug Dev. Ind. Pharm., 2008, 34(10), 1013-1021.
[9]
Newa, M.; Bhandari, K.H.; Oh, D.H.; Kim, Y.R.; Sung, J.H.; Kim, J.O.; Woo, J.S.; Choi, H.G.; Yong, C.S. Enhanced dissolution of ibuprofen using solid dispersion with poloxamer 407. Arch. Pharm. Res., 2008, 31(11), 1497-1507.
[10]
Park, Y.J.; Kwon, R.; Quan, Q.Z.; Oh, D.H.; Kim, J.O.; Hwang, M.R.; Koo, Y.B.; Woo, J.S.; Yong, C.S.; Choi, H.G. Development of novel ibuprofen-loaded solid dispersion with improved bioavailability using aqueous solution. Arch. Pharm. Res., 2009, 32(5), 767-772.
[11]
Elkordy, A.A.; Essa, E.A. Dissolution of ibuprofen from spray dried and spray chilled particles. Pak. J. Pharm. Sci., 2010, 23(3), 284-290.
[12]
Newa, M.; Bhandari, K.H.; Li, D.X.; Kwon, T.H.; Kim, J.A.; Yoo, B.K.; Woo, J.S.; Lyoo, W.S.; Yong, C.S.; Choi, H.G. Preparation, characterization and in vivo evaluation of ibuprofen binary solid dispersions with poloxamer 188. Int. J. Pharm., 2007, 343(1-2), 228-237.
[13]
Passerini, N.; Albertini, B.; González-Rodríguez, M.L.; Cavallari, C.; Rodriguez, L. Preparation and characterisation of ibuprofen-poloxamer 188 granules obtained by melt granulation. Eur. J. Pharm. Sci., 2002, 15(1), 71-78.
[14]
Hu, L.; Yang, J.; Liu, W.; Li, L. Preparation and evaluation of ibuprofen-loaded microemulsion for improvement of oral bioavailability. Drug Deliv., 2011, 18(1), 90-95.
[15]
You, X.; Xing, Q.; Tuo, J.; Song, W.; Zeng, Y.; Hu, H. Optimizing surfactant content to improve oral bioavailability of ibuprofen in microemulsions: just enough or more than enough? Int. J. Pharm., 2014, 471(1-2), 276-284.
[16]
Baek, H.H.; Kim, D.H.; Kwon, S.Y.; Rho, S.J.; Kim, D.W.; Choi, H.G.; Kim, Y.R.; Yong, C.S. Development of novel ibuprofen-loaded solid dispersion with enhanced bioavailability using cycloamylose. Arch. Pharm. Res., 2012, 35(4), 683-689.
[17]
Dian, L.; Yang, Z.; Li, F.; Wang, Z.; Pan, X.; Peng, X.; Huang, X.; Guo, Z.; Quan, G.; Shi, X.; Chen, B.; Li, G.; Wu, C. Cubic phase nanoparticles for sustained release of ibuprofen: Formulation, characterization, and enhanced bioavailability study. Int. J. Nanomedicine, 2013, 8, 845-854.
[18]
Sekizaki, H.; Danjo, K.; Eguchi, H.; Yonezawa, Y.; Sunada, H.; Otsuka, A. Solid-state interaction of ibuprofen with polyvinylpyrrolidone. Chem. Pharm. Bull., 1995, 43(6), 988-993.
[19]
Shakhtshneider, T.P.; Vasiltchenko, M.A.; Politov, A.A.; Boldyrev, V.V. The mechanochemical preparation of solid disperse systems of ibuprofen-polyethylene glycol. Int. J. Pharm., 1996, 130(1), 25-32.
[20]
Najib, N.M.; Suleiman, M.; Malakh, A. Characteristics of the in vitro release of ibuprofen from polyvinylpyrrolidone solid dispersions. Int. J. Pharm., 1986, 32(2-3), 229-236.
[21]
Najib, N.M.; El-Hinnawi, M.A.; Suleiman, M.S. Physicochemical characterization of ibuprofen-polyvinylpyrrolidone dispersions. Int. J. Pharm., 1988, 45(1-2), 139-144.
[22]
Mallick, S.; Pattnaik, S.; Swain, K.; De, P.K.; Saha, A.; Ghoshal, G.; Mondal, A. Formation of physically stable amorphous phase of ibuprofen by solid state milling with kaolin. Eur. J. Pharm. Biopharm., 2008, 68(2), 346-351.
[23]
Rawlinson, C.F.; Williams, A.C.; Timmins, P.; Grimsey, I. Polymer-mediated disruption of drug crystallinity. Int. J. Pharm., 2007, 336(1), 42-48.
[24]
Mallick, S.; Pattnaik, S.; Swain, K.; De, P.K.; Saha, A.; Mazumdar, P.; Ghoshal, G. Physicochemical characterization of interaction of ibuprofen by solid-state milling with aluminum hydroxide. Drug Dev. Ind. Pharm., 2008, 34(7), 726-734.
[25]
Varghese, S.; Ghoroi, C. Improving the wetting and dissolution of ibuprofen using solventless co-milling. Int. J. Pharm., 2017, 533(1), 145-155.
[26]
Parojcić, J.; Corrigan, O.I. Rationale for ibuprofen co-administration with antacids: Potential interaction mechanisms affecting drug absorption. Eur. J. Pharm. Biopharm., 2008, 69(2), 640-647.
[27]
Lee, T.; Zhang, C.W. Dissolution enhancement by bio-inspired mesocrystals: the study of racemic (R, S)-(+/-)-sodium ibuprofen dehydrate. Pharm. Res., 2008, 25(7), 1563-1571.
[28]
Lai, J.; Lin, W.; Scholes, P.; Li, M. Investigating the effects of loading factors on the in vitro pharmaceutical performance of mesoporous materials as drug carriers for ibuprofen. Materials (Basel), 2017, 10(2), E150.
[29]
Yong, C.S.; Lee, M.K.; Park, Y.J.; Kong, K.H.; Xuan, J.J.; Kim, J.H.; Kim, J.A.; Lyoo, W.S.; Han, S.S.; Rhee, J.D.; Kim, J.O.; Yang, C.H.; Kim, C.K.; Choi, H.G. Enhanced oral bioavailability of ibuprofen in rats by poloxamer gel using poloxamer 188 and menthol. Drug Dev. Ind. Pharm., 2005, 31(7), 615-622.
[30]
Neuvonen, P.J. The effect of magnesium hydroxide on the oral absorption of ibuprofen, ketoprofen and diclofenac. Br. J. Clin. Pharmacol., 1991, 31(3), 263-266.
[31]
Greenhalgh, D.J.; Williams, A.C.; Timmins, P.; York, P. Solubility parameters as predictors of miscibility in solid dispersions. J. Pharm. Sci., 1999, 88(11), 1182-1190.
[32]
Alam, M.A.; Al-Jenoobi, F.I.; Al-Mohizea, A.M.; Ali, R. Effervescence assisted fusion technique to enhance the solubility of drugs. AAPS PharmSciTech, 2015, 16(6), 1487-1494.
[33]
Jahan, M.S.; Islam, M.J.; Begum, R.; Kayesh, R.; Rahman, A. A study of method development, validation, and forced degradation for simultaneous quantification of paracetamol and ibuprofen in pharmaceutical dosage form by RP-HPLC method. Anal. Chem. Insights, 2014, 9, 75-81.
[34]
Potthast, H.; Dressman, J.B.; Junginger, H.E.; Midha, K.K.; Oeser, H.; Shah, V.P.; Vogelpoel, H.; Barends, D.M. Biowaiver monographs for immediate release solid oral dosage forms: Ibuprofen. J. Pharm. Sci., 2005, 94(10), 2121-2131.
[35]
Kararli, T.T.; Needham, T.E.; Seul, C.J.; Finnegan, P.M. Solid-state interaction of magnesium oxide and ibuprofen to form a salt. Pharm. Res., 1989, 6(9), 804-808.