Separation, Characterization and Discriminant Analysis of Subvisible Particles in Biologics Formulations

Page: [232 - 244] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: The presence of subvisible particles (SVPs) in parenteral formulations of biologics is a major challenge in the development of therapeutic protein formulations. Distinction between proteinaceous and non-proteinaceous SVPs is vital in monitoring formulation stability.

Methods: The current compendial method based on light obscuration (LO) has limitations in the analysis of translucent/low refractive index particles. A number of attempts have been made to develop an unambiguous method to characterize SVPs, albeit with limited success.

Results: Herein, we describe a robust method that characterizes and distinguishes both potentially proteinaceous and non-proteinaceous SVPs in protein formulations using Microflow imaging (MFI) in conjunction with the MVAS software (MFI View Analysis Suite), developed by ProteinSimple. The method utilizes two Intensity parameters and a morphological filter that successfully distinguishes proteinaceous SVPs from non-proteinaceous SVPs and mixed aggregates.

Conclusion: The MFI generated raw data of a protein sample is processed through Lumetics LINK software that applies an in-house developed filter to separate proteinaceous from the rest of the particulates.

Keywords: Protein aggregation, proteinaceous particles, non-proteinaceous particles, subvisible particles, MFI, MVAS, lumetics link, discriminant analysis.

Graphical Abstract

[1]
Garven, J.M. Gunner, B.W. The harmful effects of particles in intravenous fluids. Med. J. Aust., 1964, 2(1), 1-6.
[2]
Carpenter, J.F.; Randolph, T.W.; Jiskoot, W.; Crommlin, D.J.A.; Middaugh, C.R.; Winter, G.; Fan, Y.X.; Kirshner, S.; Verthelyi, D.; Koslowski, S.; Clouse, K.A.; Swann, P.G.; Rosenberg, A.; Cherney, B. Overlooking subvisible particles, in therapeutic protein products: Gaps that may compromise product quality. J. Pharm. Sci., 2009, 98(4), 1201-1205.
[3]
Das, T.K. Protein particulate detection issues in bio-therapeutics development - current status. AAPS PharmSciTech, 2012, 13(2), 732-746.
[4]
Lehr, H.A.; Brunner, J.; Rangoonwala, R.; Kirkpatrick, C.J. Particulate matter contamination of intravenous antibiotics aggravates loss of functional capillary density in post-ischemic striated muscle. Am. J. Respir. Care Med, 2002, 165, 514-520.
[5]
Groves, M.J. Particulate contamination in parenterals: Current issues. Boll. Chim. Farmaceutico Anno, 1991, 130, 347-354.
[6]
Narhi, L.O.; Corvari, V.; Ripple, D.C.; Nataliya, A.; Cecchini, I.; Defelippis, M.R.; Garidel, P.; Herre, A.; Koulov, A.; Lubiniecki, T.; Mahler, H.C.; Mangiagalli, P.; Nesta, D.; Perez-Ramerez, B.; Polozava, A.; Rossi, M.; Schmidt, R.; Simler, R.; Singh, S.; Spitznagel, T.; Weiskopf, A.; Wuchner, K. Subvisible (2-100 mm) particle analysis during biotherapeutic drug product development: Part 1, Considerations and strategy. J. Pharm. Sci., 2015, 104(6), 1899-1908.
[7]
James, D.E.; Jenkins, A.B.; Kraegen, E.W.; Chisholm, D.J. Insulin precipitation in artificial infusion devices. Diabetologia, 1981, 21, 554-557.
[8]
Insigler, K.; Kirtz, H. Longterm continuous intravenous insulin therapy with a portable insulin dosage -regulating apparatus. Diabetes, 1979, 28, 196-203.
[9]
Warne, N.W. Development of high concentration protein biopharmaceuticals: The use of the plateform approaches in formulation development. Eur. J. Biopharm, 2011, 78, 202-212.
[10]
Schellekens, H. Immunogenicity of therapeutic proteins. Nephro. Dial., 2003, 18, 1257-1259.
[11]
Schellekens, H. Factors influencing the immunogenicity of therapeutic proteins. Nephro. Dial, 2005, 20, vi3-vi9.
[12]
Carpenter, J.; Cherney, B.; Lubinecki, A.; Ma, S.; Marszal, E.; Mire-Sluis, A.; Nikolai, T.; Novak, J.; Ragheb, J.; Simak, J. Meeting report on protein particles and immunogenicity of therapeutic proteins: Filling in the gaps in risk evaluation and mitigation. Biologicals, 2010, 38, 602-611.
[13]
van Beers, M.M.C.; Sauerborn, M.; Gilli, F.; Brinks, V.; Shellekens, H.; Jiskoot, W. Aggregated recombinant human interferon Beta induces antibodies but no memory in immune-tolerant transgenic mice. Pharm. Res., 2010, 27, 1812-1824.
[14]
van Beers, M.M.C.; Gilli, F.V.; Shellekens, H.; Randolph, T.W.; Jiskoot, W. Immunogenicity of recombinant human interferon beta interacting with particles of glass, metal, and polystyrene. J. Pharm. Sci., 2012, 101(1), 187-199.
[15]
Jiang, Y.; Nashed-Samuel, Y.; Li, C.; Liu, W.; Pollastrinin, J.; Mallard, D.; Zai-Qing, W.; Fujimori, K.; Pallitto, M.; Donahue, L.; Chu, G.; Torraca, G.; Vance, A.; Mitre-Sluis, T.; Freund, E.; Davis, J.; Narhi, L. Tungsten-induced aggregation: Solution behavior. J. Pharm. Sci., 2009, 98(12), 4695-4710.
[16]
Kumar, S.; Singh, S.K.; Wang, X.; Rup, B.; Gill, D. Coupling of aggregation and immunogenicity in biotherapeutics: T- and B-Cell immune epitopes may contain aggregation - prone regions. Pharm. Res., 2011, 28, 949-961.
[17]
Fradkin, A.H.; Carpenter, J.F.; Randolph, T.W. Glass particles as an adjuvant: A model for adverse immunogenicity of therapeutic proteins. J. Pharm. Sci., 2011, 100(11), 4953-4964.
[18]
Rosenberg, A.S. Effect of protein aggregates: An immunologic perspective. AAPS J., 2006, 8, E501-E507.
[19]
Rosenberg, A.S.; Verthelyi, D.; Cherney, B.W. Managing uncertainity: A perspective on risk pertaining to product quality attributes as they bear on immunogenicity of therapeutic proteins. J. Pharm. Sci., 2012, 101(10), 35603567.
[20]
Narhi, L.O.; Schmit, J.; Bechtold-Peters, K.; Sharma, D. Classification of protein aggregates. J. Pharm. Sci., 2012, 101(2), 493-498.
[21]
Current USP General Chapter <788>. Particulate Matter in Injections.
[22]
Current USP General Chapter <787>. Subvisible Particulate Matter in Protein Therapeutic Injections.
[23]
Current USP General Chapter <789>. Particulate Matter in Opthalmic Solutions.
[24]
Zolls, S.; Tantipolphan, R.; Wiggenhorn, M.; Winter, G.; Jiskoot, W.; Friess, W.; Hawe, A. Particles in therapeutic protein formulations, part 1: Overview of analytical methods. J. Pharm. Sci., 2012, 101(3), 914-935.
[25]
Felsovalyi, F.; Janvier, S.; Jouffray, S.; Soukiassian, H.; Mangiagalli, P. Silicone-oil-based subvisible particles: Their detection, interactions, and regulation in prefilled container closure systems for biopharmaceuticals. J. Pharm. Sci., 2012, 101(12), 4569-4583.
[26]
Demeule, B.; Messick, S.; Shire, S.J.; Liu, J. Characterization of particles in protein solutions: Reaching the limits of current technologies. AAPS J., 2010, 12(4), 708-714.
[27]
Jones, L.S.; Kaufmann, A.; Middaugh, C.R. Silicone oil aggregation of proteins. J. Pharm. Sci., 2005, 94(4), 918-927.
[28]
Zolls, S.; Gregoritza, M.; Tantipolphan, R.; Wiggenhorn, M.; Winter, G.; Friess, W.; Hawe, A. How subvisible particles become invisible - relevance of the refractive index for protein analysis. J. Pharm. Sci., 2013, 102(5), 1434-1446.
[29]
Weinbuch, D.; Zolls, S.; Wiggenhorn, M.; Friess, W.; Winter, G.; Jiskoot, W.; Hawe, A. Micro-flow imaging and resonant mass measurement (Archimedes) - complementary methods to quantitatively differentiate protein particles and silicone oil droplets. J. Pharm. Sci., 2013, 102(5), 1434-1446.
[30]
Wuchner, K.; Buchler, J.; Spycher, R.; Dalmonte, P.; Volken, D.B. Development of a microflow digital imaging assay to characterize protein particulates during storage of a high concentration Ig G1 monoclonal antibody formulation. J. Pharm. Sci., 2010, 99(8), 3343-3361.
[31]
Telikepalli, S.N.; Kumru, O.S.; Kalonia, C.; Esfandiary, R.; Joshi, S.B.; Middaugh, C.R.; Volkin, D.B. Structural characterization of IgG1 mAb aggregates and particles generated under various stress conditions. J. Pharm. Sci., 2014, 103, 796-809.
[32]
Simler, B.R.; Guodong, H.; Jennifer, E.D.; Perez-Ramirez, B. Mechanistic complexity of subvisible particle formation: Links to protein aggregation are highly specific. J. Pharm. Sci., 2012, 101(11), 4140-4154.
[33]
Sharma, D.K.; King, D.; Oma, P.; Merchant, C. Micro flow imaging: Flow microscopy applied to subvisible particulate analysis in protein formulations. AAPS J., 2010, 12(3), 455-464.
[34]
Sharma, D.K.; King, D.; Oma, P.; Pollo, M.J.; Sukumar, M. Quantitation and characterization of subvisible proteinaceous particles in opalescent mAb formulations using micro flow imaging, Micro flow imaging. J. Pharm. Sci., 2009, 99(6), 2628-2642.
[35]
Huang, C-T.; Sharma, D.; Oma, P.; Krishnamurty, R. Quantitation of protein particles in parenteral solutions using micro flow imaging. J. Pharm. Sci., 2008, 98(9), 3058-3070.
[36]
Ripple, D.C.; Dimitrova, M.N. Protein particles: What we know and what we do not know. J. Pharm. Sci., 2012, 101(10), 3568-3579.
[37]
James, G.; Bernard, S.S.; Theodore, W.; Randolph, J.; Carpenter, F. Subvisible particle counting provides a sensitive method of detecting and quantifying aggregation of monoclonal antibody caused by freeze-thawing: Insights into the roles of particles in the protein aggregation pathway. J. Pharm. Sci., 2011, 100(2), 492-503.
[38]
Singh, S.K.; Afonina, N.; Awwad, M.; Bechtold-Peters, K.; Blue, J.T.; Chou, D.; Cromwell, M.; Krause, H.J.; Mahler, H.C.; Meyer, B.K.; Narhi, L.; Nesta, P.D.; Spitznagel, T. An Industry perspective on the monitoring of subvisible particles as a quality attribute for protein therapeutics. J. Pharm. Sci., 2010, 99(8), 3302-3321.
[39]
Traban, M.B.; Truong, H.C.; Feng, Y.; Jouravleva, E.V.; Anisimov, M.A.; Yu, Y.B. Water proton NMR for in situ detection of insulin aggregates. J. Pharm. Sci., 2015, 104, 4132-4141.
[40]
Mach, H.; Middaugh, C.R. Ultraviolet spectroscopy as a tool in therapeutic protein development. J. Pharm. Sci., 2010, 100(4), 1214-1227.
[41]
Strehl, R.; Rombach-Riegraf, V.; Diez, M.; Egodage, K.; Bluemel, M.; Jeschke, M.; Koulov, A.V. Discrimination between silicone oil droplets and protein aggregates in biopharmaceuticals: A novel multiparametric image filter for sub-visible particles in microflow imaging analysis. Pharm. Res., 2012, 29, 594-604.
[42]
Philo, J.S. Is any measurement method optimal for all aggregate sizes and types. AAPS J., 2006, 8(3), E564-E571.
[43]
Joubert, M.K.; Luo, Q.; Nashed-Samuel, Y.; Wypych, J.; Narhi, L.O. Classification and characterization of therapeutic antibody aggregates. J. Biochem., 2011, 286(28), 25118-25133.
[44]
Bai, K.; Barnett, G.V.; Kar, S.R.; Das, T.K. Interference from proteins and surfactants on particle size distributions measured by nanoparticle tracking analysis. Pharm. Res., 2017, 34, 800-808.
[45]
Filipe, V.; Hawe, A.; Jiskoot, W. Critical evaluation of nanoparticle tracking analysis (nta) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm. Res., 2010, 27(5), 796-810.
[46]
Patel, A.R.; Lau, D.; Liu, J. Quantification and characterization of micrometer and submicrometer sibvisible particles in protein therapeutics by use of a suspended microchannel resonator. Anal. Chem., 2012, 84, 6833-6840.
[47]
Khodabandehloo, A.; Chen, D.D.Y. Particles sizing method for the detection of protein aggregates in biopharmaceuticals. Bioanalysis, 2017, 9(3), 313-326.
[48]
Lorber, B.; Fischer, F.; Bailly, M.; Roy, H.; Kern, D. Protein analysis by dynamic light scattering: Methods and techniques for students. Biochem. Mol. Biol. Educ., 2012, 40(6), 372-382.
[49]
Sharma, D.; Oma, P.; Krishnan, S. Silicone-micro-droplets in protein formulations-detection and enumeration. Pharm. Technol., 2009, 33(4), 74-79.
[50]
Sharma, D.; King, D.; Oma, P.; Merchant, C. Micro-flow imaging: Flow microscopy applied to sub-visible particulate analysis in protein formulations. AAPS J., 2010, 12(3), 455-464.
[51]
MFI View Analysis Suite, (MVAS), version 4.1. Software manufactured by ProteinSimple; Bio-techne, 2015.
[52]
Eriksson, L.; Byrne, T.; Johansson, E.; Trygg, J.; Vikstrom, C. Multi- and megavariate data analysis, Basic principles and applications; Umetric Academy Malmo: Sweden, 2013.