Activation of GLP-1 and Glucagon Receptors Regulates Bile Homeostasis Independent of Thyroid Hormone

Page: [139 - 146] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Balanced coagonists of glucagon-like peptide-1 (GLP-1) and glucagon receptors are emerging therapies for the treatment of obesity and diabetes. Such coagonists also regulate lipid metabolism, independent of their body weight lowering effects. Many actions of the coagonists are partly mediated by fibroblast growth factor 21 (FGF21) signaling, with the major exception of bile homeostasis. Since thyroid hormone is an important regulator of bile homeostasis, we studied the involvement of thyroid hormone in coagonist-induced changes in lipid and bile metabolism.

Methods: We evaluated the effect of a single dose of coagonist Aib2 C24 chimera2 at 150 to 10000 µg/kg on tetraiodothyronine (T4) and triiodothyronine (T3) in high-fat diet-induced obese (DIO) mice and chow-fed mice. Repeated dose treatment of coagonist (150 µg/kg, subcutaneously) was assessed in four mice models namely, on lipid and bile homeostasis in DIO mice, propylthiouracil (PTU)-treated DIO mice, methimazole (MTM)-treated DIO mice and choline-deficient, L-amino acid-defined, highfat diet (CDAHFD)-induced nonalcoholic steatohepatitis (NASH).

Results: Single dose treatment of coagonist did not alter serum T3 and T4 in chow-fed mice and DIO mice. Coagonist treatment improved lipid metabolism and biliary cholesterol excretion. Chronic treatment of GLP-1 and glucagon coagonist did not alter serum T3 in hypothyroid DIO mice and CDAHFDinduced NASH. Coagonist increased serum T4 in DIO mice after 4 and 40 weeks of treatment, though no change in T4 levels was observed in hypothyroid mice or mice with NASH.

Conclusion: Our data demonstrate that coagonist of GLP-1 and glucagon receptors does not modulate bile homeostasis via thyroid signaling.

Keywords: Coagonist, GLP-1, glucagon, thyroid hormone, bile homeostasis, hypothyroid, anti-inflammatory, and anti-fibrotic effects.

Graphical Abstract

[1]
Pocai, A. Unraveling oxyntomodulin, GLP1’s enigmatic brother. J. Endocrinol., 2012, 215, 335-346.
[2]
Patel, V.J.; Joharapurkar, A.A.; Kshirsagar, S.G.; Patel, K.N.; Shah, G.B.; Jain, M.R. Therapeutic potential of coagonists of glucagon and GLP-1. Cardiovasc. Hematol. Agents Med. Chem., 2014, 12, 126-133.
[3]
Patel, V.; Joharapurkar, A.; Kshirsagar, S.; Patel, H.M.; Pandey, D.; Patel, D.; Sutariya, B.; Patel, M.; Bahekar, R.; Jain, M.R. Balanced coagonist of GLP-1 and glucagon receptors corrects dyslipidemia by improving FGF21 sensitivity in hamster model. Drug Res. (Stuttg.), 2017, 67, 730-736.
[4]
Patel, V.; Joharapurkar, A.; Kshirsagar, S.; Sutariya, B.; Patel, M.; Pandey, D.; Patel, H.; Ranvir, R.; Kadam, S.; Patel, D.; Bahekar, R.; Jain, M. Coagonist of GLP-1 and glucagon decreases liver inflammation and atherosclerosis in dyslipidemic condition. Chem. Biol. Interact., 2018, 282, 13-21.
[5]
Patel, V.; Joharapurkar, A.; Kshirsagar, S.; Sutariya, B.; Patel, M.; Patel, H.; Pandey, D.; Patel, D.; Ranvir, R.; Kadam, S.; Bahekar, R.; Jain, M. Coagonist of GLP-1 and glucagon receptor ameliorates development of non-alcoholic fatty liver disease. Cardiovasc. Hematol. Agents Med. Chem., 2018, 16, 35-43.
[6]
Patel, V.J.; Joharapurkar, A.A.; Kshirsagar, S.G.; Sutariya, B.K.; Patel, M.S.; Patel, H.M.; Pandey, D.K.; Bahekar, R.H.; Jain, M.R. Coagonist of glucagon-like peptide-1 and glucagon receptors ameliorates kidney injury in murine models of obesity and diabetes mellitus. World J. Diabetes, 2018, 9, 80-91.
[7]
Patel, V.; Joharapurkar, A.; Kshirsagar, S.; Sutariya, B.; Patel, M.; Patel, H.; Pandey, D.; Patel, D.; Bahekar, R.; Jain, M. Central administration of coagonist of GLP-1 and glucagon receptors improves dyslipidemia. Biomed. Pharmacother., 2018, 98, 364-371.
[8]
Trauner, M.; Claudel, T.; Fickert, P.; Moustafa, T.; Wagner, M. Bile Acids as Regulators of Hepatic Lipid and Glucose Metabolism. Dig. Dis., 2010, 28, 220-224.
[9]
González-Regueiro, J.A.; Moreno-Castañeda, L.; Uribe, M.; Chávez-Tapia, N.C. The Role of Bile Acids in Glucose Metabolism and Their Relation with Diabetes. Ann. Hepatol., 2017, 16, 16-21.
[10]
Charach, G.; Rabinovich, P.D.; Konikoff, F.M.; Grosskopf, I.; Weintraub, M.S.; Gilat, T. Decreased fecal bile acid output in patients with coronary atherosclerosis. J. Med., 1998, 29, 125-136.
[11]
Gylling, H.; Hallikainen, M.; Rajaratnam, R.A.; Simonen, P.; Pihlajamäki, J.; Laakso, M.; Miettinen, T.A. The metabolism of plant sterols is disturbed in postmenopausal women with coronary artery disease. Metabolism, 2009, 58, 401-407.
[12]
Fiorucci, S.; Rizzo, G.; Donini, A.; Distrutti, E.; Santucci, L. Targeting farnesoid X receptor for liver and metabolic disorders. Trends Mol. Med., 2007, 13, 298-309.
[13]
McAninch, E.A.; Bianco, A.C. Thyroid hormone signaling in energy homeostasis and energy metabolism. Ann. N. Y. Acad. Sci., 2014, 1311, 77-87.
[14]
Song, Y.; Xu, C.; Shao, S.; Liu, J.; Xing, W.; Xu, J.; Qin, C.; Li, C.; Hu, B.; Yi, S.; Xia, X.; Zhang, H.; Zhang, X.; Wang, T.; Pan, W.; Yu, C.; Wang, Q.; Lin, X.; Wang, L.; Gao, L.; Zhao, J. Thyroid-stimulating hormone regulates hepatic bile acid homeostasis via SREBP-2/HNF-4α/CYP7A1 axis. J. Hepatol., 2015, 62, 1171-1179.
[15]
Kim, T.; Nason, S.; Holleman, C.; Pepin, M.; Wilson, L.; Berryhill, T.F.; Wende, A.R.; Steele, C.; Young, M.E.; Barnes, S.; Drucker, D.J.; Finan, B.; DiMarchi, R.; Perez-Tilve, D.; Tschöp, M.; Habegger, K.M. Glucagon Receptor Signaling Regulates Energy Metabolism via Hepatic Farnesoid X Receptor and Fibroblast Growth Factor 21. Diabetes, 2018, 67, 1773-1782.
[16]
Huang, G.; He, C.; Meng, F.; Li, J.; Zhang, J.; Wang, Y. Glucagon-like peptide (GCGL) is a novel potential TSH-releasing factor (TRF) in Chickens: I) Evidence for its potent and specific action on stimulating TSH mRNA expression and secretion in the pituitary. Endocrinology, 2014, 155, 4568-4580.
[17]
Ueta, C.B.; Olivares, E.L.; Bianco, A.C. Responsiveness to thyroid hormone and to ambient temperature underlies differences between brown adipose tissue and skeletal muscle thermogenesis in a mouse model of diet-induced obesity. Endocrinology, 2011, 152, 3571-3581.
[18]
McIntosh, L.M.; Pernitsky, A.N.; Anderson, J.E. The effects of altered metabolism (hypothyroidism) on muscle repair in the mdx dystrophic mouse. Muscle Nerve, 1994, 17, 444-453.
[19]
Day, J.W.; Ottaway, N.; Patterson, J.T.; Gelfanov, V.; Smiley, D.; Gidda, J.; Findeisen, H.; Bruemmer, D.; Drucker, D.J.; Chaudhary, N.; Holland, J.; Hembree, J.; Abplanalp, W.; Grant, E.; Ruehl, J.; Wilson, H.; Kirchner, H.; Lockie, S.H.; Hofmann, S.; Woods, S.C.; Nogueiras, R.; Pfluger, P.T.; Perez-Tilve, D.; Dimarchi, R.; Tschöp, M.H.; Tschop, M.H. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat. Chem. Biol., 2009, 5, 749-757.
[20]
Patel, V.; Joharapurkar, A.; Dhanesha, N.; Kshirsagar, S.; Patel, K.; Bahekar, R.; Shah, G.; Jain, M. Co-agonist of glucagon and GLP-1 reduces cholesterol and improves insulin sensitivity independent of its effect on appetite and body weight in diet-induced obese C57 mice. Can. J. Physiol. Pharmacol., 2013, 91, 1009-1015.
[21]
Patel, V.; Joharapurkar, A.; Kshirsagar, S.; Patel, H.M.; Pandey, D.; Patel, D.; Shah, K.; Bahekar, R.; Shah, G.B.; Jain, M.R. Central and Peripheral Glucagon Reduces Hyperlipidemia in Rats and Hamsters. Drug Res. (Stuttg.), 2017, 67, 318-326.
[22]
Patel, V.; Joharapurkar, A.A.; Kshirsagar, S.G.; Patel, K.N.; Bahekar, R.; Shah, G.; Jain, M.R. Central GLP-1 receptor activation improves cholesterol metabolism partially independent of its effect on food intake. Can. J. Physiol. Pharmacol., 2016, 94, 161-167.
[23]
Chiang, J.Y. Recent advances in understanding bile acid homeostasis. F1000 Res., 2017, 6, 2029.
[24]
Boyer, J.L. Bile formation and secretion. Compr. Physiol., 2013, 3, 1035-1078.
[25]
Gebhard, R.L.; Prigge, W.F. Thyroid hormone differentially augments biliary sterol secretion in the rat. II. The chronic bile fistula model. J. Lipid Res., 1992, 33, 1467-1473.
[26]
Bonde, Y.; Breuer, O.; Lütjohann, D.; Sjöberg, S.; Angelin, B.; Rudling, M. Thyroid hormone reduces PCSK9 and stimulates bile acid synthesis in humans. J. Lipid Res., 2014, 55, 2408-2415.
[27]
Gälman, C.; Bonde, Y.; Matasconi, M.; Angelin, B.; Rudling, M. Dramatically increased intestinal absorption of cholesterol following hypophysectomy is normalized by thyroid hormone. Gastroenterology, 2008, 134, 1127-1136.
[28]
Ness, G.C.; Pendleton, L.C.; Li, Y.C.; Chiang, J.Y. Effect of thyroid hormone on hepatic cholesterol 7 alpha hydroxylase, LDL receptor, HMG-CoA reductase, farnesyl pyrophosphate synthetase and apolipoprotein A-I mRNA levels in hypophysectomized rats. Biochem. Biophys. Res. Commun., 1990, 172, 1150-1156.
[29]
Tan, T.M.; Field, B.C.T.; McCullough, K.A.; Troke, R.C.; Chambers, E.S.; Salem, V.; Gonzalez, M.J.; Baynes, K.C.R.; De, S.A.; Viardot, A.; Alsafi, A.; Frost, G.S.; Ghatei, M.A.; Bloom, S.R.; Maffe, J.G.; Baynes, K.C.R.; De Silva, A.; Viardot, A.; Alsafi, A.; Frost, G.S.; Ghatei, M.A.; Bloom, S.R. Coadministration of glucagon-like peptide-1 during glucagon infusion in humans results in increased energy expenditure and amelioration of hyperglycemia. Diabetes, 2013, 62, 1131-1138.