Optimized V-Shaped Beam Micro-Electrothermal Actuator Using Particle Swarm Optimization (PSO) Technique

Page: [62 - 67] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Background: Electrothermal microactuators are very promising for wide range of Microelectromechanical Systems (MEMS) applications due to the low voltage requirement and large force produced.

Method: A new optimized V-beam electrothermal micro actuator was implemented in variable optical attenuator. In this work, Particle Swarm Optimization (PSO) technique is proposed to design the Vshaped beam.

Result: The approach has successfully improved both angular displacement & output force of the microactuator. Entropy generation rate was used as optimization criteria.

Keywords: PSO, entropy, variable optical attenuator, microactuators, RF MEMS, genetic algorithms.

Graphical Abstract

[1]
Jiang, L.; Cheung, R.; Hedley, J.; Hassan, M.A.; Harris, A.J.; Burdess, J.S.; Mehregany, M.; Zorman, C.A. SiC cantilever resonators with electrothermal actuation. Sens. Actuators A Phys., 2006, 128(2), 376-386.
[2]
Hassan, M.A. Pt/3C-SiC electrothermal cantilever for MEMS-based Mixers. J. Microsyst. Technol., 2011, 17(3), 425-428.
[3]
Lee, C. Variable optical attenuator using planar light attenuation scheme based on rotational and translational misalignment. J. Microsyst. Technol., 2007, 13(1), 41-48.
[4]
Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In:Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ1995, pp. 1942-1948.
[5]
Eberhart, R.C.; Kennedy, J. A new optimizer using particle swarm theory. In:Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan1995, pp. 39-43.
[6]
De Silva, C.W. Mechatronic systems: Devices, design, control, operation and monitoring; CRC press, 2007.
[7]
Xiaohui, H.; Eberhart, R.C.; Yuhui, S. Engineering optimization with particle swarm. In:Proceedings of IEEE Swarm Intelligence Symposium, Indianapolis, IN2003, pp. 53-57.
[8]
Abido, M.A. Optimal power flow using particle swarm optimization. Int. J. Electr. Power Energy Syst., 2002, 24, 563-571.
[9]
Carlisle, A.J. Applying the Particle Swarm Optimizer to non-stationary environments., Ph.D. Thesis, Auburn University, Auburn,AL, USA. 2002.
[10]
Satyobroto, T. Mathematical Modelling and Applications of Particle Swarm Optimization, Master’s Thesis, SE - 371 79 Karlskrona,Sweden, Blekinge Institute of Technology, Thesis no: 2010:8. 2011.
[11]
Carlisle, A.; Dozier, G. An Off-The-Shelf PSO. In:Proceedings of the Workshop on Particle Swarm Optimization, Indianapolis, IN2001, pp. 1-6.
[12]
Engelbrecht, A.P. Computational Intelligence: An Introduction; John Wiley and Sons, 2007, pp. 289-358.
[13]
Bergh, F.V.D. An analysis of Particle Swarm Optimizers., PhD thesis, Department of Computer Science, University of Pretoria,Pretoria, South Africa. 2006.
[14]
Valle, Y.D.; Venayagamoorthy, G.K.; Mohagheghi, S.; Hernandez, J.C.; Harley, R.G. Particle swarm optimization: Basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput., 2008, 12(2), 171-195.
[15]
Talbi, E.G. Metaheuristics-From Design to Implementation; John Wiley and Sons, 2009.