Exploring Promises of siRNA in Cancer Therapeutics

Page: [29 - 35] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Since the discovery of the RNA interference (RNAi) in 2006, several attempts have been made to use it for designing and developing drug treatments for a variety of diseases, including cancer. In this mini-review, we focus on the potential of small interfering RNAs (siRNA) in anticancer treatment. We first describe the significant barriers that exist on the path to clinical application of siRNA drugs. Then the current delivery approaches of siRNAs using lipids, polymers, and, in particular, polymeric carriers that overcome the aforementioned obstacles have been reviewed. Also, few siRNA mediated drugs currently in clinical trials for cancer therapy, and a collated list of siRNA databases having a qualitative and/ or quantitative summary of the data in each database have been briefly mentioned. This mini review aims to facilitate our understanding about the siRNA, their delivery systems and the possible barriers in their in vivo usage for biomedical applications.

Keywords: RNA interference, siRNA, carriers of siRNA, siRNA delivery systems, cancer, mRNA.

Graphical Abstract

[1]
Covey SN, Al-Kaff NS, Langara A, Turner DS. Plants combat infection by gene silencing. Nature 1997; 385(6619): 781-2.
[2]
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391(6669): 806-11.
[3]
Kupferschmidt K. A lethal dose of RNA. Science 2013; 341(6147): 732-3.
[4]
Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 2005; 123(4): 631-40.
[5]
Whitehead KA, Langer R, Anderson DG. Knocking down barriers: Advances in siRNA delivery. Nat Rev Drug Discov 2009; 8(2): 129-38.
[6]
Xu CF, Wang J. Delivery systems for siRNA drug development in cancer therapy. Asian J Pharmaceut Sci 2015; 10(1): 1-2.
[7]
Mansoori B, Shotorbani SS, Baradaran B. RNA interference and its role in cancer therapy. Adv Pharmaceut Bull 2014; 4(4): 313-21.
[8]
Bora RS, Gupta D, Mukkur TK, Saini KS. RNA interference therapeutics for cancer: Challenges and opportunities. Mol Med Reports 2012; 6(1): 9-15.
[9]
Mahavir BC. Current scene and prospective potentials of siRNA in cancer therapy. J Pharmacogenom Pharmacoproteom 2012; 3e125
[10]
Mohana M, Suvadeep S. SiRNA delivery for cancer therapy: Challenges and future perspective. Adv Bioequiv Avail 2018; 1(4)000518
[11]
Kaymaz BT, Kosova B. Advances in therapeutic approaches using RNA interference as a gene silencing tool. Adv Tech Biol Med 2013; 1(108): 2.
[12]
Chang H. RNAi-mediated knockdown of target genes: A promising strategy for pancreatic cancer research. Cancer Gene Ther 2007; 14: 677-85.
[13]
Wang J, Lu Z, Wientjes MG, Au JL. Delivery of siRNA therapeutics: Barriers and carriers. AAPS J 2010; 12(4): 492-503.
[14]
Van de Water FM, Boerman OC, Wouterse AC, Peters JG, Russel FG, Masereeuw R. Intravenously administered siRNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules. Drug Metabol Dispos 2006; 34(8): 1393-7.
[15]
Gomes-da-Silva LC, Fonseca NA, Moura V, Pedroso de Lima MC, Simões S, Moreira JN. Lipid-based nanoparticles for siRNA delivery in cancer therapy: Paradigms and challenges. Acc Chem Res 2012; 45(7): 1163-71.
[16]
Gavrilov K, Saltzman WM. Therapeutic siRNA: Principles, challenges, and strategies. Yale J Biol Med 2012; 85(2): 187-200.
[17]
Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004; 5(10): 987-95.
[18]
Dar SA, Thakur A, Qureshi A, Kumar M. siRNAmod: A database of experimentally validated chemically modified siRNAs. Sci Reports 2016; 6: 20031.
[19]
Thakur N, Qureshi A, Kumar M. VIRsiRNAdb: A curated database of experimentally validated viral siRNA/shRNA. Nucleic Acids Res 2011; 40(D1): D230-6.
[20]
Schmidt EE, Pelz O, Buhlmann S, Kerr G, Horn T, Boutros M. GenomeRNAi: A database for cell-based and in vivo RNAi phenotypes, 2013 update. Nucleic Acids Res 2012; 41(D1): D1021-6.
[21]
Tyagi A, Ahmed F, Thakur N, Sharma A, Raghava GP, Kumar M. HIVsirDB: A database of HIV inhibiting siRNAs. PloS One 2011; 6(10)e25917
[22]
Chalk AM, Warfinge RE, Georgii-Hemming P, Sonnhammer EL. siRNAdb: A database of siRNA sequences. Nucleic Acids Res 2005; 33(Suppl. 1): D131-4.
[23]
Jackson AL, Bartz SR, Schelter J, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003; 21(6): 635-7.
[24]
Jackson AL, Burchard J, Schelter J, et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 2006; 12(7): 1179-87.
[25]
Birmingham A, Anderson EM, Reynolds A, et al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 2006; 3(3): 199-204.
[26]
Chang H. RNAi-mediated knockdown of target genes: a promising strategy for pancreatic cancer research. Cancer Gene Therapy 2007; 14: 677-85.
[27]
Layzer JM, McCaffrey AP, Tanner AK, Huang ZA, Kay MA, Sullenger BA. In vivo activity of nuclease-resistant siRNAs. RNA 2004; 10(5): 766-71.
[28]
Braasch DA, Jensen S, Liu Y, et al. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 2003; 42(26): 7967-75.
[29]
Chiu YL, Rana TM. siRNA function in RNAi: A chemical modification analysis. RNA 2003; 9(9): 1034-48.
[30]
Harborth J, Elbashir SM, Vandenburgh K, et al. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Develop 2003; 13(2): 83-105.
[31]
Czauderna F, Fechtner M, Dames S, et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 2003; 31(11): 2705-16.
[32]
Oh YK, Park TG. siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev 2009; 61(10): 850-62.
[33]
Liao H, Wang JH. Biomembrane-permeable and ribonuclease-resistant siRNA with enhanced activity. Oligonucleotides 2005; 15(3): 196-205.
[34]
Hall AH, Wan J, Shaughnessy EE, Shaw BR, Alexander KA. RNA interference using boranophosphate siRNAs: Structure–activity relationships. Nucleic Acids Res 2004; 32(20): 5991-6000.
[35]
Ozpolat B, Sood AK, Lopez‐Berestein G. Nanomedicine based approaches for the delivery of siRNA in cancer. J Intern Med 2010; 267(1): 44-53.
[36]
Agarwal A, Unfer R, Mallapragada SK. Novel cationic pentablock copolymers as non-viral vectors for gene therapy. J Control Release 2005; 103(1): 245-58.
[37]
Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: An overview of biomedical applications. J Control Release 2012; 161(2): 505-22.
[38]
Boyer C, Teo J, Phillips P, et al. Effective delivery of siRNA into cancer cells and tumors using well-defined biodegradable cationic star polymers. Mol Pharmaceut 2013; 10(6): 2435-44.
[39]
Jeong JH, Mok H, Oh YK, Park TG. siRNA conjugate delivery systems. Bioconj Chem 2008; 20(1): 5-14.
[40]
Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004; 432(7014): 173-8.
[41]
Serda RE, Godin B, Blanco E, Chiappini C, Ferrari M. Multi-stage delivery nano-particle systems for therapeutic applications. Biochim Biophys Acta 2011; 1810(3): 317-29.
[42]
Serda RE, Chiappini C, Fine D, Tasciotti E, Ferrari M. Porous silicon particles for imaging and therapy of cancer. In: Nanotechnologies for the Life Sciences. Wiley-VCH Verlag GmbH & Co.: Germany 2007; pp. 357-406.
[43]
Chiappini C, Tasciotti E, Fakhoury JR, et al. Tailored porous silicon microparticles: fabrication and properties. Chemphyschem 2010; 11(5): 1029-35.
[44]
Aleku M, Schulz P, Keil O, et al. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res 2008; 68(23): 9788-98.
[45]
Ramanathan RK, Hamburg SI, Borad MJ, et al. A phase I dose escalation study of TKM-080301, a RNAi therapeutic directed against PLK1, in patients with advanced solid tumors. Clin Res 2013; 73(8) LB-289
[46]
Khvalevsky EZ, Gabai R, Rachmut IH, et al. Mutant KRAS is a druggable target for pancreatic cancer. Proc Nat Acad Sci 2013; 110(51): 20723-8.
[47]
Kimchi-Sarfaty C, Brittain S, Garfield S, Caplen NJ, Tang Q, Gottesman MM. Efficient delivery of RNA interference effectors via in vitro-packaged SV40 pseudovirions. Hum Gene Ther 2005; 16(9): 1110-5.
[48]
Triozzi P, Kooshki M, Alistar A, et al. Phase I clinical trial of adoptive cellular immunotherapy with APN401 in patients with solid tumors. J Immunother Cancer 2015; 3(S2): P175.