Effect of Powdered Activated Carbon as Advanced Step in Wastewater Treatments on Antibiotic Resistant Microorganisms

Page: [63 - 75] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Conventional wastewater treatment plants discharge significant amounts of antibiotic resistant bacteria and antibiotic resistance genes into natural water bodies contributing to the spread of antibiotic resistance. Some advanced wastewater treatment technologies have been shown to effectively decrease the number of bacteria. Nevertheless, there is still a lack of knowledge about the effectiveness of these treatments on antibiotic resistant bacteria and antibiotic resistant genes. To the best of our knowledge, no specific studies have considered how powdered activated carbon (PAC) treatments can act on antibiotic resistant bacteria, although it is essential to assess the impact of this wastewater treatment on the spread of antibiotic resistant bacteria.

Methods: To address this gap, we evaluated the fate and the distribution of fluorescent-tagged antibiotic/ antimycotic resistant microorganisms in a laboratory-scale model simulating a process configuration involving powdered activated carbon as advanced wastewater treatment. Furthermore, we studied the possible increase of naturally existing antibiotic resistant bacteria during the treatment implementing PAC recycling.

Results: The analysis of fluorescent-tagged microorganisms demonstrated the efficacy of the PAC adsorption treatment in reducing the load of both susceptible and resistant fluorescent microorganisms in the treated water, reaching a removal efficiency of 99.70%. Moreover, PAC recycling did not increase the resistance characteristics of cultivable bacteria neither in the sludge nor in the treated effluent.

Conclusion: Results suggest that wastewater PAC treatment is a promising technology not only for the removal of micropollutants but also for its effect in decreasing antibiotic resistant bacteria release.

Keywords: Powdered Activated Carbon (PAC), antibiotic resistant microorganisms, wastewater treatment plant, fluorescenttagged microorganisms, next-generation sequencing (NGS) analysis, Denaturing Gradient Gel Electrophoresis (DGGE).

Graphical Abstract

[1]
Barancheshme, F.; Munir, M. Strategies to combat antibiotic resistance in the wastewater treatment plants. Front. Microbiol., 2018.
[2]
Rizzo, L.; Manaia, C.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Michael, I.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci. Total Environ., 2013, 447, 345-360.
[3]
Baquero, F.; Martínez, J-L.; Cantón, R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol., 2008, 19, 260-265.
[4]
Guo, J.; Li, J.; Chen, H.; Bond, P.L.; Yuan, Z. Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements. Water Res., 2017, 123, 468-478.
[5]
Czekalski, N.; Sigdel, R.; Birtel, J.; Matthews, B.; Bürgmann, H. Does human activity impact the natural antibiotic resistance background? abundance of antibiotic resistance genes in 21 swiss lakes. Environ. Int., 2015, 81, 45-55.
[6]
Ben, W.; Wang, J.; Cao, R.; Yang, M.; Zhang, Y.; Qiang, Z. distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in china and the effect of treatment processes. Chemosphere, 2017, 172, 392-398.
[7]
Audenaert, W.T.M.; Chys, M.; Auvinen, H.; Dumoulin, A.; Rousseau, D.; Van Hulle, S.W.H. (Future) regulation of trace organic compounds in WWTP effluents as a driver for advanced wastewater treatment. Ozone News, 2014, 42, 17-23.
[8]
Abegglen, C.; Siegrist, H. Micropolluants Dans Les Eaux Usées Urbaines. Etape de Traitement Supplémentaire Dans Les Stations d’épuration, Connaissance de l'environnement no. 1214; Office fédéral de l’environnement: Bern. 2012.
[9]
Östman, M.; Björlenius, B.; Fick, J.; Tysklind, M. Effect of full-scale ozonation and pilot-scale granular activated carbon on the removal of biocides, antimycotics and antibiotics in a sewage treatment plant. Sci. Total Environ., 2019, 193, 163-171.
[10]
Altmann, J.; Ruhl, A.S.; Zietzschmann, F.; Jekel, M. Direct comparison of ozonation and adsorption onto powdered activated carbon for micropollutant removal in advanced wastewater treatment. Water Res., 2014, 55, 185-193.
[11]
Kårelid, V.; Larsson, G.; Björlenius, B. Pilot-scale removal of pharmaceuticals in municipal wastewater: comparison of granular and powdered activated carbon treatment at three wastewater treatment plants. J. Environ. Manage., 2017, 193, 491-502.
[12]
Margot, J.; Kienle, C.; Magnet, A.; Weil, M.; Rossi, L.; de Alencastro, L.F.; Abegglen, C.; Thonney, D.; Chèvre, N.; Schärer, M.; Barry, D.A.A. Treatment of micropollutants in municipal wastewater: Ozone or powdered activated carbon? Sci. Total Environ., 2013, 461-462, 480-498.
[13]
Schaffner, M.; Studer, P.; Ramseier, C. Evaluation Des Eaux de Baignade. Recommandations Concernant l’analyse et l’évaluation de La Qualité Des Eaux de Baignade (Lacs et Rivières); Connaissance de l'environnement no. 1310; Office fédéral de l’environnement: Bern. , 2013.
[14]
Krahnstöver, T.; Wintgens, T. Separating Powdered Activated Carbon (PAC) from wastewater - technical process options and Assessment of removal efficiency. J. Environ. Chem. Eng., 2018, 6, 5744-5762.
[15]
Zwickenpflug, B.; Böhler, M.; Siegrist, H.; Behl, M.; Neuenschwanden, S.; Joss, A.; Sterkele, B.; Dorusch, F.; Hollender, J. Einsatz von Pulveraktivkohle Zur Elimination von Mikroverunreinigungen Aus Kommunalem Abwasser 3. Zwischenbericht; Eidgenössische Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz (EAWAG): Dübendorf, 2009.
[16]
Meinel, F.; Zietzschmann, F.; Ruhl, A.S.; Sperlich, A.; Jekel, M. The benefits of powdered activated carbon recirculation for micropollutant removal in advanced wastewater treatment. Water Res., 2016, 91, 97-103.
[17]
Böhler, M.; Zwickenpflug, B.; Hollender, J.; Ternes, T.; Joss, A.; Siegrist, H. Removal of micropollutants in municipal wastewater treatment plant by powder-activated carbon. Water Sci. Technol., 2012, 66, 2115-2121.
[18]
Margot, T.; Magnet, A.; Thonney, D.; Chèvre, N.; de Alencastro, F.; Rossi, L. Traitement Des Micropolluants Dans Les Eaux Usées Aide a La Conception Des Ouvrages, Ville de Lausanne ed.; Ville de Lausanne: Lausanne. 2011.
[19]
Zwickenpflug, B.; Böhler, M.; Sterkele, B.; Joss, A.; Siegrist, H.; Traber, J.; Gujer, W.; Behl, M.; Dorusch, F.; Hollender, J. Einsatz von Pulveraktivkohle Zur Elimination von Mikroverunreinigungen Aus Dem Abwasser - Abschlussbericht, Eidgenössische Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz (EAWAG): Dübendorf. 2010.
[20]
Zhang, J.; Mao, F.; Loh, K.C.; Gin, K.Y.H.; Dai, Y.; Tong, Y.W. Evaluating the effects of activated carbon on methane generation and the fate of antibiotic resistant genes and class i integrons during anaerobic digestion of solid organic wastes. Bioresour. Technol., 2018, 249, 729-736.
[21]
Li, Y.; Jin, H.; Liu, W.; Su, H.; Lu, Y.; Li, J. Study on regeneration of waste powder activated carbon through pyrolysis and its adsorption capacity of phosphorus. Sci. Rep., 2018, 8(778), 1-7.
[http://dx.doi.org/10.1038/s41598-017-19131-x]
[22]
CDALED. Rapporto Annuale 2016, Consorzio Depurazione Acque Lugano e Dintorni: Bioggio. 2016.
[23]
Standard Methods for the Examination of Water and Wastewater, 20th ed; American Public Health Association: Washington, DC, 1998.
[24]
Musovic, S.; Oregaard, G.; Kroer, N.; Sørensen, S.J. Cultivation-independent examination of horizontal transfer and host range of an IncP-1 plasmid among gram-positive and gram-negative bacteria indigenous to the barley rhizosphere. Appl. Environ. Microbiol., 2006, 72, 6687-6692.
[25]
Bottinelli, M.C. Approche moléculaire à l'étude des bactéries sulfato- réductrices et des Archaea méthanogènes dans les sédiments des lacs Cadagno et Rotsee., PhD Thesis, Geneva University: Genève, January 2008.
[26]
Koch, B.; Jensen, L.E.; Nybroe, O. A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned dna into gram-negative bacteria at a neutral chromosomal site. J. Microbiol. Methods, 2001, 45, 187-195.
[27]
Rochat, L.; Péchy-Tarr, M.; Baehler, E.; Maurhofer, M.; Keel, C. Combination of fluorescent reporters for simultaneous monitoring of root colonization and antifungal gene expression by a biocontrol pseudomonad on cereals with flow cytometry. Mol. Plant Microbe Interact., 2010, 23, 949-961.
[28]
Green, M.; Sambrock, J. Molecular Cloning: A Laboratory Manual, 4th ed; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 2012.
[29]
Lohberger, A.; Coste, A.T.; Sanglard, D. Distinct roles of Candida albicans drug resistance transcription factors TAC1, MRR1, and UPC2 in virulence. Eukaryot. Cell, 2014, 13, 127-142.
[30]
Nettmann, E.; Fröhling, A.; Heeg, K.; Klocke, M.; Schlüter, O.; Mumme, J. Development of a flow-fluorescence in situ hybridization protocol for the analysis of microbial communities in anaerobic fermentation liquor. BMC Microbiol., 2013, 13, 278-293.
[31]
Orruño, M.; Garaizabal, I.; Arana, I.; Barcina, I. Validation of a sonication-based method for bacterial dislodgement from flocs. J. Microbiol. Res., 2013, 3, 208-212.
[32]
European Committee on Antimicrobial Susceptibility Testing. Available from: www. eucast.org
[33]
George, I.; Crop, P.; Servais, P. Fecal coliform removal in wastewater treatment plants studied by plate counts and enzymatic methods. Water Res., 2002, 36, 2607-2617.
[34]
Ferreira Da Silva, M.; Tiago, I.; Onio Veríssimo, A.; Boaventura, R.A.R.; Nunes, O.C.; Manaia, M. Antibiotic resistance of enterococci and related bacteria in an Urban wastewater treatment plant. FEMS Microbiol. Ecol., 2006, 55, 322-329.
[35]
Wolff, D.; Krah, D.; Dötsch, A.; Ghattas, A.K.; Wick, A.; Ternes, T.A. Insights into the variability of microbial community composition and micropollutant degradation in diverse biological wastewater treatment systems. Water Res., 2018, 143, 313-324.
[36]
Cydzik-Kwiatkowska, A.; Zielińska, M. Bacterial communities in full-scale wastewater treatment systems. World J. Microbiol. Biotechnol., 2016, 32, 1-8.
[37]
Sidhu, C.; Vikram, S.; Pinnaka, A.K. Unraveling the microbial interactions and metabolic potentials in pre- and post-treated sludge from a wastewater treatment plant using metagenomic studies. Front. Microbiol., 2017, 8, 1-10.
[38]
Laht, M.; Karkman, A.; Voolaid, V.; Ritz, C.; Tenson, T.; Virta, M.; Kisand, V. Abundances of tetracycline, sulphonamide and beta-lactam antibiotic resistance genes in conventional Wastewater Treatment Plants (WWTPs) with Different Waste Load. PLoS One, 2014, 9(8), 1-8.
[39]
Krzeminski, P.; Tomei, M.C.; Karaolia, P.; Langenhoff, A.; Almeida, C.M.R.; Felis, E.; Gritten, F.; Andersen, H.R.; Fernandes, T.; Manaia, C.M.; Rizzo, L.; Fatta-Kassinos, D. Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Sci. Total Environ., 2019, 648, 1052-1081.
[40]
Yu, F.; Li, Y.; Han, S.; Ma, J. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere, 2016, 153, 365-385.
[41]
Weber, W.J.; Pirbazari, M.; Melson, G.L. Biological growth on activated carbon: An investigation by scanning electron microscopy. Environ. Sci. Technol., 1978, 12(7), 817-819.
[42]
Kaarela, O.E.; Härkki, H.A.; Palmroth, M.R.T.; Tuhkanen, T.A. Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures. Environ. Technol. (United Kingdom), 2015, 36(6), 681-682.
[43]
Pradhan, B.K.; Sandle, N.K. Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon, 1999, 37, 1323-1332.
[44]
Daifullah, A.A.; Girgis, B.; Gad, H.M. A study of the factors affecting the removal of humic acid by activated carbon prepared from biomass material. Colloids Surf. A Physicochem. Eng. Asp., 2004, 235, 1-10.
[45]
Şengül, A.; Ersan, G.; Tüfekçi, N. Removal of intra- and extracellular microcystin by Submerged Ultrafiltration (UF) membrane combined with coagulation/flocculation and Powdered Activated Carbon (PAC) Adsorption. J. Hazard. Mater., 2018, 343, 29-35.
[46]
Abebe, L.S.; Chen, X.; Sobsey, M.D. Chitosan coagulation to improve microbial and turbidity removal by ceramic water filtration for household drinking water treatment. Int. J. Environ. Res. Public Health, 2016, 13, 1-11.
[47]
Yang, Z.; Degorce-Dumas, J.R.; Yang, H.; Guibal, E.; Li, A.; Cheng, R. flocculation of Escherichia coli using a quaternary ammonium salt grafted carboxymethyl chitosan flocculant. Environ. Sci. Technol., 2014, 48, 6867-6873.
[48]
Li, N.; Sheng, G.P.; Lu, Y.Z.; Zeng, R.J.; Yu, H.Q. Removal of antibiotic resistance genes from wastewater treatment plant effluent by coagulation. Water Res., 2017, 111, 204-212.
[49]
Teh, C.Y.; Budiman, P.M.; Shak, K.P.Y.; Wu, T.Y. Recent advancement of coagulation-flocculation and its application in wastewater treatment. Ind. Eng. Chem. Res., 2016, 55, 4363-4389.