Infectious Disorders - Drug Targets

Author(s): Ramadevi Mohan and Subhashree Venugopal*

DOI: 10.2174/1871526519666190207092307

Molecular Binding and Simulation Studies of Staphylococcus aureus Superantigens with Flavonoid Compounds

Page: [531 - 542] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Superantigens of Staphylococcus aureus namely enterotoxin A, exfoliative toxin A, and Toxic shock syndrome toxin-1 cause detrimental effects on the cells of the immune system.

Methods: In this work, the toxins were downloaded from the Protein DataBank database and energies were minimized using KoBaMIN server. Forty flavonoids compounds were identified by pubchem compound database through extensive literature study and their 3D structures were obtained by submitting SMILES to CORINA tool. Based on Lipinski’s rule of five, the molecules were filtered that resulted in 27 compounds. Molecular docking was performed for identifying the binding and interaction sites of flavonoids with the toxins using Autodock 4.

Results and Conclusion: The docked complexes were then subjected to molecular dynamics simulation using Gromacs. The analysis revealed the stability of the complexes as indicated by three hydrogen bonds formed during the simulation time period of 20 ns.

Keywords: Staphylococcus aureus, superantigens, flavonoids, Lipinski’s Rule, molecular docking, dynamic simulation, hydrogen bonds.

[1]
Crossley, K.B.; Archer, G.L. Exotoxins (ed.), The staphylococci in human disease; Churchill Livingstone, New York, NY , 1997.
[2]
Wertheim, H.F.L.; Melles, D.C.; Vos, M.C.; van Leeuwen, W.; van Belkum, A.; Verbrugh, H.A.; Nouwen, J.L. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis., 2005, 5(12), 751-762.
[http://dx.doi.org/10.1016/S1473-3099(05)70295-4] [PMID: 16310147]
[3]
Klevens, R.M.; Morrison, M.A.; Nadle, J.; Petit, S.; Gershman, K.; Ray, S.; Harrison, L.H.; Lynfield, R.; Dumyati, G.; Townes, J.M.; Craig, A.S.; Zell, E.R.; Fosheim, G.E.; McDougal, L.K.; Carey, R.B.; Fridkin, S.K. Active Bacterial Core surveillance (ABCs) MRSA Investigators. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA, 2007, 298(15), 1763-1771.
[http://dx.doi.org/10.1001/jama.298.15.1763] [PMID: 17940231]
[4]
Lowy, F.D. Staphylococcus aureus infections. N. Engl. J. Med., 1998, 339(8), 520-532.
[http://dx.doi.org/10.1056/NEJM199808203390806] [PMID: 9709046]
[5]
Freeman-cook, L.; Freeman-cook, K. Staphylococcus aureus infections (Deadly Diseases and Epidemics); Chelsea House Publications: USA, 2006.
[6]
Bachert, C.; Zhang, N. Chronic rhinosinusitis and asthma: novel understanding of the role of IgE ‘above atopy’. J. Intern. Med., 2012, 272(2), 133-143.
[http://dx.doi.org/10.1111/j.1365-2796.2012.02559.x] [PMID: 22640264]
[7]
DeLeo, F.R.; Otto, M.; Kreiswirth, B.N.; Chambers, H.F. Community-associated meticillin-resistant Staphylococcus aureus. Lancet, 2010, 375(9725), 1557-1568.
[http://dx.doi.org/10.1016/S0140-6736(09)61999-1] [PMID: 20206987]
[8]
Foster, T.J. Immune evasion by staphylococci. Nat. Rev. Microbiol., 2005, 3(12), 948-958.
[http://dx.doi.org/10.1038/nrmicro1289] [PMID: 16322743]
[9]
Böhnel, H.; Gessler, F. Botulinum toxins--cause of botulism and systemic diseases? Vet. Res. Commun., 2005, 29(4), 313-345.
[http://dx.doi.org/10.1023/B:VERC.0000048489.45634.32] [PMID: 15751583]
[10]
Waldvogel, F.A. Infectious diseases in the 21st century: old challenges and new opportunities. Int. J. Infect. Dis., 2004, 8(1), 5-12.
[http://dx.doi.org/10.1016/j.ijid.2003.01.001] [PMID: 14690775]
[11]
Cazarolli, L.H.; Zanatta, L.; Alberton, E.H.; Figueiredo, M.S.; Folador, P.; Damazio, R.G.; Pizzolatti, M.G.; Silva, F.R. Flavonoids: prospective drug candidates. Mini Rev. Med. Chem., 2008, 8(13), 1429-1440.
[http://dx.doi.org/10.2174/138955708786369564] [PMID: 18991758]
[12]
Cushnie, T.P.T.; Lamb, A.J. Detection of galangin-induced cytoplasmic membrane damage in Staphylococcus aureus by measuring potassium loss. J. Ethnopharmacol., 2005, 101(1-3), 243-248.
[http://dx.doi.org/10.1016/j.jep.2005.04.014] [PMID: 15985350]
[13]
Sousa, S.F.; Fernandes, P.A.; Ramos, M.J. Protein-ligand docking: current status and future challenges. Proteins, 2006, 65(1), 15-26.
[http://dx.doi.org/10.1002/prot.21082] [PMID: 16862531]
[14]
Harborne, J.B.; Baxter, H. The handbook of natural flavo-noids; John Wiley and Sons: Chichester, 1999.
[15]
Kramer, R.; Hindorf, H.; Jha, H.; Kallage, J.; Zilliken, F. Anti fungal activity of soybean and chickpea isoflavones and their reduced derivatives. Phytochemistry, 1984, 23(10), 2203-2205.
[http://dx.doi.org/10.1016/S0031-9422(00)80520-8]
[16]
Davidson, P.M.; Naidu, A.S. Phytophenols.Natural Food Antimicrobial Systems; Naidu, A.S., Ed.; CRC Press: Boca Raton, FL, 2000, p. 265.
[17]
Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr. Med. Chem., 2015, 22(1), 132-149.
[http://dx.doi.org/10.2174/0929867321666140916113443] [PMID: 25245513]
[18]
Kuntz, I.D. Structure-based strategies for drug design and discovery. Science, 1992, 257(5073), 1078-1082.
[http://dx.doi.org/10.1126/science.257.5073.1078] [PMID: 1509259]
[19]
Bissantz, C.; Folkers, G.; Rognan, D. Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J. Med. Chem., 2000, 43(25), 4759-4767.
[http://dx.doi.org/10.1021/jm001044l] [PMID: 11123984]
[20]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated Docking Using a Lamarckian Genetic Algorithm and Empirical Binding Free Energy Function. J. Comput. Chem., 1998, 19(14), 1639-1662.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B]
[21]
McCammon, J.A.; Gelin, B.R.; Karplus, M. Dynamics of folded proteins. Nature, 1977, 267(5612), 585-590.
[http://dx.doi.org/10.1038/267585a0] [PMID: 301613]
[22]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G. Gin-dulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem Substance and Com-pound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[23]
Hendlich, M.; Rippmann, F.; Barnickel, G. LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. J. Mol. Graph. Model., 1997, 15(6), 359-363, 389.
[http://dx.doi.org/10.1016/S1093-3263(98)00002-3] [PMID: 9704298]
[24]
Alonso, H.; Bliznyuk, A.A.; Gready, J.E. Combining docking and molecular dynamic simulations in drug design. Med. Res. Rev., 2006, 26(5), 531-568.
[http://dx.doi.org/10.1002/med.20067] [PMID: 16758486]
[25]
Pyne, S.; Gayathri, P. Geometric Methods in Molecular Dock-ing. Bioinformatics India Journal III, 2005, 111, 11-12.
[26]
Kubinyi, H. Combinatorial and computational approaches in structure-based drug design. Curr. Opin. Drug Discov. Devel., 1998, 1(1), 16-27.
[PMID: 19649785]
[27]
Laurie, A.T.; Jackson, R.M. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics, 2005, 21(9), 1908-1916.
[http://dx.doi.org/10.1093/bioinformatics/bti315] [PMID: 15701681]
[28]
Mittal, R.R.; Harris, L.; McKinnon, R.A.; Sorich, M.J. Partial charge calculation method affects CoMFA QSAR prediction accuracy. J. Chem. Inf. Model., 2009, 49(3), 704-709.
[http://dx.doi.org/10.1021/ci800390m] [PMID: 19239274]
[29]
Wadood, A.; Ahmed, N.; Shah, L.; Ahmad, A.; Hassan, H.; Shams, S. In-silico drug design: An approach which revolu-tionarised the drug discovery process. OA. Drug Des. Deliv., 2013, 1(1), 3-7.
[30]
Hileman, B. Accounting for R&D, Many doubt the $800 millionpharmaceutical price tag. Chem. Eng. News, 2006, 84, 50-51.
[31]
Chothia, C.; Lesk, A.M. The relation between the divergence of sequence and structure in proteins. EMBO J., 1986, 5(4), 823-826.
[http://dx.doi.org/10.1002/j.1460-2075.1986.tb04288.x] [PMID: 3709526]
[32]
Qiu, J.; Wang, D.; Zhang, Y.; Dong, J.; Wang, J.; Niu, X. Molecular modeling reveals the novel inhibition mechanism and binding mode of three natural compounds to staphylococcal α-hemolysin. PLoS One, 2013, 8(11)e80197
[http://dx.doi.org/10.1371/journal.pone.0080197] [PMID: 24312202]
[33]
Dong, J.; Qiu, J.; Zhang, Y.; Lu, C.; Dai, X.; Wang, J.; Li, H.; Wang, X.; Tan, W.; Luo, M.; Niu, X.; Deng, X. Oroxylin A inhibits hemolysis via hindering the self-assembly of α-hemolysin heptameric transmembrane pore. PLOS Comput. Biol., 2013, 9(1)e1002869
[http://dx.doi.org/10.1371/journal.pcbi.1002869] [PMID: 23349625]
[34]
Melo, M.C.; Teixeira, L.R.; Pol-Fachin, L.; Rodrigues, C.G. Inhibition of the hemolytic activity caused by Staphylococcus aureus alpha-hemolysin through isatin-Schiff copper(II) complexes. FEMS Microbiol. Lett., 2016, 363(1)fnv207
[http://dx.doi.org/10.1093/femsle/fnv207] [PMID: 26519261]
[35]
Wang, J.; Zhou, X.; Liu, S.; Li, G.; Shi, L.; Dong, J.; Li, W.; Deng, X.; Niu, X. Morin hydrate attenuates Staphylococcus aureus virulence by inhibiting the self-assembly of α-hemolysin. J. Appl. Microbiol., 2015, 118(3), 753-763.
[http://dx.doi.org/10.1111/jam.12743] [PMID: 25564958]
[36]
Kurjogi, M.; Satapute, P.; Jogaiah, S.; Abdelrahman, M.; Daddam, J.R.; Ramu, V.; Tran, L.P. Computational Modeling of the Staphylococcal Enterotoxins and Their Interaction with Natural Antitoxin Compounds. Int. J. Mol. Sci., 2018, 19(1), 133-146.
[http://dx.doi.org/10.3390/ijms19010133] [PMID: 29301344]