Establishment of Novel Cells Stably Secreting Various Human IL-18 Recombinant Proteins

Page: [47 - 55] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: The immunotherapies against cancer, autoinmmune diseases or infection are remarkable development. These days programmed cell death (PD)-1 antibody-induced immune checkpoint blockade or chimeric antigen receptor-T cells (CAR-T) have been shown to have eminent therapeutic effects on tumor development. We have focused on adoptive transfer with human gamma delta T cells for novel immunotherapies. Additionally, IL-18 is one of the cytokines that enhances cytokine secretion and cytotoxicity of human gamma delta T cells.

Method: Thus, we established novel cell lines stably expressing and secreting various types of human recombinant IL-18 proteins to their culture supernatants using episomal vector. We also differentiated primary cultured human gamma delta T cells from peripheral blood mononuclear leukocytes to validate biological activity of the IL-18 proteins using measuring IFN-γ by ELISA.

Results and Conclusion: Finally, we demonstrated that the supernatant could activate human gamma delta T cells using monitoring interferon gamma in culture medium.

Keywords: IL-18, EBNA1, OriP, conditioned medium, human gamma delta T cells, IFN-γ.

Graphical Abstract

[1]
Nakamura, K.; Okamura, H.; Nagata, K.; Komatsu, T.; Tamura, T. Purification of a factor which provides a costimulatory signal for gamma interferon production. Infect. Immun., 1993, 61, 64-70.
[2]
Okamura, H.; Tsutsi, H.; Komatsu, T.; Yutsudo, M.; Hakura, A.; Tanimoto, T.; Torigoe, K.; Okura, T.; Nukada, Y.; Hattori, K.; Akita, K.; Namba, M.; Tanabe, F.; Konish, K.; Fukuda, S.; Kurimoto, M. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature, 1995, 378, 88-91.
[3]
Dinarello, C.A. IL-18: A TH1-inducing, proinflammatory cyto- kine and new member of the IL-1 family. J. Allergy Clin. Immunol., 1999, 103, 11-24.
[4]
Torigoe, K.; Ushio, S.; Okura, T.; Kobayashi, S.; Taniai, M.; Kunikata, T.; Murakami, T.; Sanou, O.; Kojima, H.; Fujii, M.; Ohta, T.; Ikeda, M.; Ikegami, H.; Kurimoto, M. Purification and characterization of the human interleukin-18 receptor. J. Biol. Chem., 1997, 272, 25737-25742.
[5]
Hoshino, K.; Tsutsui, H.; Kawai, T.; Takeda, K.; Nakanishi, K.; Takeda, Y.; Akira, S. Cutting edge: Generation of IL-18 receptor-deficient mice: Evidence for IL-1 receptor- related protein as an essential IL-18 binding receptor. J. Immunol., 1999, 162, 5041-5044.
[6]
Dinarello, C.A. Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist. Int. Rev. Immunol., 1998, 16, 457-499.
[7]
Serrano, I.; Luque, A.; Aran, J.M. Exploring the Immunomodulatory moonlighting activities of acute phase proteins for tolerogenic dendritic cell generation. Front. Immunol., 2018, 9, 892.
[8]
Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; Leming, P.D.; Spigel, D.R.; Antonia, S.J.; Horn, L.; Drake, C.G.; Pardoll, D.M.; Chen, L.; Sharfman, W.H.; Anders, R.A.; Taube, J.M.; McMiller, T.L.; Xu, H.; Korman, A.J.; Jure-Kunkel, M.; Agrawal, S.; McDonald, D.; Kollia, G.D.; Gupta, A.; Wigginton, J.M.; Sznol, M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med., 2012, 366, 2443-2454.
[9]
Salmikangas, P.; Kinsella, N.; Chamberlain, P. Chimeric antigen receptor T-Cells (CAR T-Cells) for cancer immunotherapy - moving target for industry? Pharm. Res., 2018, 35, 152.
[10]
Virginie, L.; Françoise, S.; Emilie, L.; Henri-Alexandre, M.; Laurent, G.; Jean-François, E.; Nathalie, B. Plasticity of γδ T cells: Impact on the anti-tumor response. Front. Immunol., 2014, 5, 622.
[11]
Elizabeth, S.M.; Antonia, R.; Joanne, E. The role of gamma delta T lymphocytes in breast cancer: A review. Transl. Res., 2019, 203, 88-96.
[12]
Tanaka, Y.; Murata-Hirai, K.; Iwasaki, M.; Matsumoto, K.; Hayashi, K.; Kumagai, A.; Nada, M.H.; Wang, H.; Kobayashi, H.; Kamitakahara, H.; Okamura, H.; Sugie, T.; Minato, N.; Toi, M.; Morita, C.T. Expansion of human γδ T cells for adoptive immunotherapy using a bisphosphonate prodrug. Cancer Sci., 2018, 109, 587-599.
[13]
Takakura, Y.; Oka, N.; Kajiwara, H.; Tsunashima, M. Engineering of novel tamavidin 2 muteins with lowered isoelectric points and lowered non-specific binding properties. J. Biosci. Bioeng., 2012, 114, 485-489.
[14]
Kurata, R.; Kumagai, A.; Cui, X.; Harada, M.; Nagai, J.; Yoshida, Y.; Ozaki, K.I.; Tanaka, Y.; Yonezawa, T. establishment of novel reporter cells stably maintaining transcription factor-driven human secreted alkaline phosphatase expression. Curr. Pharm. Biotechnol., 2018, 19, 224-231.
[15]
Tanaka, Y.; Murata-Hirai, K.; Iwasaki, M.; Matsumoto, K.; Hayashi, K.; Kumagai, A.; Nada, M.H.; Wang, H.; Kobayashi, H.; Kamitakahara, H.; Okamura, H.; Sugie, T.; Minato, N.; Toi, M.; Morita, C.T. Expansion of human γδ T cells for adoptive immunotherapy using a bisphosphonate prodrug. Cancer Sci., 2018, 109, 587-599.
[16]
Li, W.; Kubo, S.; Okuda, A.; Yamamoto, H.; Ueda, H.; Tanaka, T.; Nakamura, H.; Yamanishi, H.; Terada, N.; Okamura, H. Effect of IL-18 on expansion of gammadelta T cells stimulated by zoledronate and IL-2. J. Immunother., 2010, 33, 287-296.
[17]
Gong, G.; Shao, L.; Wang, Y.; Chen, C.Y.; Huang, D.; Yao, S.; Zhan, X.; Sicard, H.; Wang, R.; Chen, Z.W. Phosphoantigen-activated V gamma 2V delta 2 T cells antagonize IL-2-inducedCD4+CD25+Foxp3+ T regulatory cells in mycobacterial infection. Blood, 2009, 113, 837-845.
[18]
Eberl, M.; Moser, B. Monocytes and gammadelta T cells: Close encounters in microbial infection. Trends Immunol., 2009, 30, 562-568.