Metabolism of the Dual Orexin Receptor Antagonist ACT-541468, Based on Microtracer/ Accelerator Mass Spectrometry

Page: [254 - 265] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: As part of an integrated and innovative approach to accelerate the clinical development of the dual receptor antagonist ACT-541468, 6 healthy subjects in one cohort in a first-in-humans (FIH) study received an oral dose of 50 mg non-labeled ACT-541468 together with a microtracer amount of 250 nCi of 14C-labeled ACT- 541468 to investigate its absorption, distribution, metabolism, and excretion (ADME).

Methods: Using accelerator mass spectrometry (AMS), radiochromatograms were constructed for fractionated plasma, urine, and feces samples. Subsequently, the structures of the metabolites were elucidated using high performance liquid chromatography (HPLC) coupled with high resolution mass spectrometry.

Results: In total 77 metabolites have been identified of which 30, 28, and 60 were present in plasma, urine, and feces, respectively. In plasma, the major metabolites were the mono-oxidized benzylic alcohol M3, the ACT-541468 aldehyde M1, formed by further oxidation of M3 in the benzylic position, and the doubly oxidized M10, formed by (1) benzylic oxidation of M3 (loss of one molecule of water and one molecule of ammonia) and (2) additional loss of water from the oxidized pyrrolidine ring of M5. Transformation of the pyrrolidine to a 6-membered ring was detected. Metabolites that accounted for more than 5% of total radioactivity in excreta were M2, which is also formed by oxidation at the benzylic position, M4, formed by demethylation of the methoxy-group, M7 and A6, both formed by oxidation of M4, and M10, the only major metabolite detected in urine.

Conclusion: In conclusion, ACT-541468 is extensively metabolized predominantly by oxidative transformations.

Keywords: Absorption, accelerator mass spectrometry, distribution, excretion, first-in-humans, metabolism, microtracer, orexin.

Graphical Abstract

[1]
Ufer, M.; Juif, P-E.; Boof, M-L.; Muehlan, C.; Dingemanse, J. Metabolite profiling in early clinical drug development: Current status and future prospects. Expert Opin. Drug Metab. Toxicol., 2017, 13, 803-806.
[2]
Center for Drug Evaluation and Research (CDER; Revision 1, November 2016). Safety testing of drug metabolites. Guidance for industry. https://www.fda.gov/downloads/Drugs/.../Guidances/ ucm079266.pdf (Accessed June 11, 2018).
[3]
Lappin, G. Microdosing: Current and the future. Bioanalysis, 2010, 2, 509-517.
[4]
Roffel, A.F.; Van Marle, S.P.; Van Lier, J.J.; Hartstra, J.; Van Hoogdalem, E.J. An evaluation of human ADME and mass balance studies using regular or low doses of radiocarbon. J. Labelled Comp. Radiopharm., 2016, 59, 619-626.
[5]
Muehlan, C.; Heuberger, J.; Juif, P-E.; Croft, M.; van Gerven, J.; Dingemanse, J. Accelerated development of the dual orexin receptor antagonist ACT-541468: Integration of a microtracer in a first-in-human study. Clin. Pharmacol. Ther., 2018, 5, 1022-1029.
[6]
Treiber, A.; De Kanter, R.; Roch, C.; Gatfield, J.; Jenck, F. The use of physiology-based PK and PD modeling int the discovery of the dual orexin receptor antagonist ACT-541468. J. Pharmacol. Exp. Ther., 2017, 362(3), 489-503.
[7]
Penner, N.; Xu, L.; Prakash, C. Radiolabeled absorption, distribution, metabolism, and excretion studies in drug development: Why, when, and how? Chem. Res. Toxicol., 2012, 25(3), 513-531.
[8]
De Lecea, L.; Kilduff, T.S.; Peyron, C.; Gao, X.; Foye, P.E.; Danielson, P.E.; Fukuhara, C.; Battenberg, E.L.; Gautvik, V.T.; Bartlett, F.S., 2nd; Frankel, W.N.; Van Den Pol, A.N.; Bloom, F.E.; Gautvik, K.M.; Sutcliffe, J.G. The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA, 1998, 95, 322-327.
[9]
Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R.M.; Tanaka, H.; Williams, S.C.; Richardson, J.A.; Kozlowski, G.P.; Wilson, S.; Arch, J.R.; Buckingham, R.E.; Haynes, A.C.; Carr, S.A.; Annan, R.S.; McNulty, D.E.; Liu, W.S.; Terrett, J.A.; Elshourbagy, N.A.; Bergsma, D.J.; Yanagisawa, M. Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 1998, 92, 573-585.
[10]
Hoever, P.; De Haas, S.; Winkler, J.; Schoemaker, R.C.; Chiossi, E.; Van Gerven, J.; Dingemanse, J. Orexin receptor antagonism, a new sleep‐promoting paradigm: an ascending single‐dose study with almorexant. Clin. Pharmacol. Ther., 2010, 87, 593-600.
[11]
Hoever, P.; Dorffner, G.; Beneš, H.; Penzel, T.; Danker-Hopfe, H.; Barbanoj, M.J.; Pillar, G.; Saletu, B.; Polo, O.; Kunz, D.; Zeitlhofer, J.; Berg, S.; Partinen, M.; Bassetti, C.L.; Högl, B.; Ebrahim, I.O.; Holsboer-Trachsler, E.; Bengtsson, H.; Peker, Y.; Hemmeter, U.M.; Chiossi, E.; Hajak, G.; Dingemanse, J. Orexin receptor antagonism, a new sleep-enabling paradigm: A proof-of-concept clinical trial. Clin. Pharmacol. Ther., 2012, 91, 975-985.
[12]
Black, J.; Pillar, G.; Hedner, J.; Polo, O.; Berkani, O.; Mangialaio, S.; Hmissi, A.; Zammit, G.; Hajak, G. Efficacy and safety of almorexant in adult chronic insomnia: a randomized placebo-controlled trial with an active reference. Sleep Med., 2017, 36, 86-94.
[13]
Citrome, L. Suvorexant for insomnia: A systematic review of the efficacy and safety profile for this newly approved hypnotic - what is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int. J. Clin. Pract., 2014, 68, 1429-1441.
[14]
Kishi, T.; Matsunaga, S.; Iwata, N. Suvorexant for primary insomnia: A systematic review and meta-analysis of randomized placebo-controlled trials. PLoS One, 2015, 10(8), e0136910.
[15]
Hamilton, R.A.; Garnett, W.R.; Kline, B.J. Determination of mean valproic acid serum level by assay of a single pooled sample. Clin. Pharmacol. Ther., 1981, 29, 408-413.
[16]
Flach, S.; Croft, M.; Ding, J.; Budhram, R.; Pankratz, T.; Pennick, M.; Scarfe, G.; Troy, S.; Getsy, J. Pharmacokinetics, absorption, and excretion of radiolabeled revexepride: A Phase I clinical trial using a microtracer and accelerator mass spectrometry-based approach. Drug Des. Devel. Ther., 2016, 10, 3125-3132.
[17]
Boof, M-L.; Ufer, M.; Halabi, A.; Dingemanse, J. Impact of the moderate CYP3A4 inhibitor diltiazem on the single-dose pharmacokinetics of the dual orexin receptor antagonist ACT-541468. Clin. Pharmacol. Ther., 2018, 103(Suppl. 1), S61.
[18]
Cui, D.; Cabalu, T.; Yee, K.L.; Small, J.; Li, X.; Liu, B.; Maciolek, C.; Smith, S.; Liu, W.; McCrea, J.B.; Prueksaritanont, T. In vitro and in vivo characterisation of the metabolism and disposition of suvorexant in humans. Xenobiotica, 2016, 46, 882-895.
[19]
Dingemanse, J.; Hoever, P.; Hoch, M.; Treiber, A.; Wagner-Redeker, W.; Miraval, T.; Hopfgartner, G.; Shakeri-Nejad, K. Elucidation of the metabolic pathways and the resulting multiple metabolites of almorexant, a dual orexin receptor antagonist, in humans. Drug Metab. Dispos, 2013, 41, 1046-1059.
[20]
Niessen, W.M.A. Liquid Chromatography - Mass Spectrometry, 3rd Ed. Taylor & Francis: Boca Raton (USA) 2006.