Small Molecule Natural Products and Alzheimer’s Disease

Page: [187 - 204] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Alzheimer’s disease (AD) is a progressive and deadly neurodegenerative disease that is characterized by memory loss, cognitive impairment and dementia. Several hypotheses have been proposed for the pathogenesis based on the pathological changes in the brain of AD patients during the last few decades. Unfortunately, there is no effective agents/therapies to prevent or control AD at present. Currently, only a few drugs, which function as acetylcholinesterase (AChE) inhibitors or N-methyl-Daspartate (NMDA) receptor antagonists, are available to alleviate symptoms.

Since many small molecule natural products have shown their functions as agonists or antagonists of receptors, as well as inhibitors of enzymes and proteins in the brain during the development of central nervous system (CNS) drugs, it is likely that natural products will play an important role in anti-AD drug development. We review recent papers on using small molecule natural products as drug candidates for the treatment of AD. These natural products possess antioxidant, anti-inflammatory, anticholinesterase, anti-amyloidogenic and neuroprotective activities. Moreover, bioactive natural products intended to be used for preventing AD, reducing the symptoms of AD and the new targets for treatment of AD are summarized.

Keywords: Alzheimer's disease, Acetylcholinesterase inhibitors, Antioxidants, Anti-inflammatory, Neuroprotective, Neurofibrillary.

Graphical Abstract

[1]
Mount, C.; Downton, C. Alzheimer disease: Progress or profit? Nat. Med., 2006, 12(7), 780-784. [http://dx.doi.org/ 10.1038/nm0706-780]. [PMID: 16829947].
[2]
Hebert, L.E.; Scherr, P.A.; Bienias, J.L.; Bennett, D.A.; Evans, D.A. State-specific projections through 2025 of Alzheimer disease prevalence. Neurology, 2004, 62(9), 1645. [http://dx.doi.org/ 10.1212/01.WNL.0000123018.01306.10]. [PMID: 15136705].
[3]
Ashford, J.W. APOE genotype effects on Alzheimer’s disease onset and epidemiology. J. Mol. Neurosci., 2004, 23(3), 157-165. [http://dx.doi.org/10.1385/JMN:23:3:157]. [PMID: 15181244].
[4]
Katzman, R. Alzheimer’s disease. N. Engl. J. Med., 1986, 314(15), 964-973. [http://dx.doi.org/10.1056/NEJM198604103141506]. [PMID: 2870433].
[5]
Blass, J.P. Li-wen Ko, B.V.M.; Wisniewski, H.M. Pathology of Alzheimer’s disease. Psychiatr. Clin. (Basel), 1991, 14(2), 397-420.
[6]
Okura, T.; Plassman, B.L.; Steffens, D.C.; Llewellyn, D.J.; Potter, G.G.; Langa, K.M. Neuropsychiatric symptoms and the risk of institutionalization and death: the aging, demographics, and memory study. J. Am. Geriatr. Soc., 2011, 59(3), 473-481. [http://dx.doi.org/10.1111/j.1532-5415.2011.03314.x]. [PMID: 21391937].
[7]
Gauthier, S.; Cummings, J.; Ballard, C.; Brodaty, H.; Grossberg, G.; Robert, P.; Lyketsos, C. Management of behavioral problems in Alzheimer’s disease. Int. Psychogeriatr., 2010, 22(3), 346-372. [http://dx.doi.org/10.1017/S1041610209991505]. [PMID: 20096151].
[8]
Borisovskaya, A.; Pascualy, M.; Borson, S. Cognitive and neuropsychiatric impairments in Alzheimer’s disease: Current treatment strategies. Curr. Psychiatry Rep., 2014, 16(9), 470. [http://dx.doi.org/10.1007/s11920-014-0470-z]. [PMID: 25023513].
[9]
Goedert, M.; Spillantini, M.G. A century of Alzheimer’s disease. Science, 2006, 314(5800), 777-781. [http://dx.doi.org/ 10.1126/science.1132814]. [PMID: 17082447].
[10]
Kidd, M. Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature, 1963, 197, 192-193. [http://dx.doi.org/10.1038/197192b0]. [PMID: 14032480].
[11]
Šimić, G.; Babić Leko, M.; Wray, S.; Harrington, C.R.; Delalle, I.; Jovanov-Milošević, N.; Bažadona, D.; Buée, L.; de Silva, R.; Di Giovanni, G.; Wischik, C.M.; Hof, P.R. Monoaminergic neuropathology in Alzheimer’s disease. Prog. Neurobiol., 2017, 151, 101-138. [http://dx.doi.org/10.1016/j.pneurobio.2016.04.001]. [PMID: 27084356].
[12]
Zetterberg, H.; Blennow, K.; Hanse, E. Amyloid beta and APP as biomarkers for Alzheimer’s disease. Exp. Gerontol., 2010, 45(1), 23-29. [http://dx.doi.org/10.1016/j.exger.2009.08.002]. [PMID: 19698775].
[13]
Brandt, R.; Hundelt, M.; Shahani, N. Tau alteration and neuronal degeneration in tauopathies: Mechanisms and models. Biochim. Biophys. Acta, 2005, 1739(2-3), 331-354. [http://dx.doi.org/ 10.1016/j.bbadis.2004.06.018]. [PMID: 15615650].
[14]
Zhang, Y.; Tian, Q.; Zhang, Q.; Zhou, X.; Liu, S.; Wang, J.Z. Hyperphosphorylation of microtubule-associated tau protein plays dual role in neurodegeneration and neuroprotection. Pathophysiology, 2009, 16(4), 311-316. [http://dx.doi.org/10.1016/ j.pathophys.2009.02.003]. [PMID: 19410438].
[15]
Craig, L.A.; Hong, N.S.; McDonald, R.J. Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci. Biobehav. Rev., 2011, 35(6), 1397-1409. [http://dx.doi.org/10.1016/ j.neubiorev.2011.03.001]. [PMID: 21392524].
[16]
Trepanier, C.H.; Milgram, N.W. Neuroinflammation in Alzheimer’s disease: are NSAIDs and selective COX-2 inhibitors the next line of therapy? J. Alzheimers Dis., 2010, 21(4), 1089-1099. [http://dx.doi.org/10.3233/JAD-2010-090667]. [PMID: 21504126].
[17]
Tan, M.S.; Yu, J.T.; Jiang, T.; Zhu, X.C.; Tan, L. The NLRP3 inflammasome in Alzheimer’s disease. Mol. Neurobiol., 2013, 48(3), 875-882. [http://dx.doi.org/10.1007/s12035-013-8475-x]. [PMID: 23686772].
[18]
Sultana, R.; Butterfield, D.A. Role of oxidative stress in the progression of Alzheimer’s disease. J. Alzheimers Dis., 2010, 19(1), 341-353. [http://dx.doi.org/10.3233/JAD-2010-1222]. [PMID: 20061649].
[19]
Wyllie, A.H. Apoptosis: Cell death in tissue regulation. J. Pathol., 1987, 153(4), 313-316. [http://dx.doi.org/10.1002/ path.1711530404]. [PMID: 3323435].
[20]
Axelsen, P.H.; Komatsu, H.; Murray, I.V. Oxidative stress and cell membranes in the pathogenesis of Alzheimer’s disease. Physiology (Bethesda), 2011, 26(1), 54-69. [http://dx.doi.org/10.1152/ physiol.00024.2010]. [PMID: 21357903].
[21]
Shimohama, S. Apoptosis in Alzheimer’s disease--An update. Apoptosis, 2000, 5(1), 9-16. [http://dx.doi.org/10.1023/ A:1009625323388]. [PMID: 11227497].
[22]
Bezprozvanny, I.; Mattson, M.P. Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci., 2008, 31(9), 454-463. [http://dx.doi.org/10.1016/ j.tins.2008.06.005]. [PMID: 18675468].
[23]
Kocahan, S.; Doğan, Z. Mechanisms of Alzheimer’s disease pathogenesis and prevention: The brain, neural pathology, N-methyl-D-aspartate receptors, tau protein and other risk factors. Clin. Psychopharmacol. Neurosci., 2017, 15(1), 1-8. [http://dx.doi.org/ 10.9758/cpn.2017.15.1.1]. [PMID: 28138104].
[24]
Weldon, D.T.; Rogers, S.D.; Ghilardi, J.R.; Finke, M.P.; Cleary, J.P.; O’Hare, E.; Esler, W.P.; Maggio, J.E.; Mantyh, P.W. Fibrillar beta-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo. J. Neurosci., 1998, 18(6), 2161-2173. [http://dx.doi.org/10.1523/JNEUROSCI.18-06-02161.1998]. [PMID: 9482801].
[25]
Zhu, X.; Castellani, R.J.; Takeda, A.; Nunomura, A.; Atwood, C.S.; Perry, G.; Smith, M.A. Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the ‘two hit’ hypothesis. Mech. Ageing Dev., 2001, 123(1), 39-46. [http://dx.doi.org/ 10.1016/S0047-6374(01)00342-6]. [PMID: 11640950].
[26]
Smith, M.A.; Nunomura, A.; Zhu, X.; Takeda, A.; Perry, G. Metabolic, metallic, and mitotic sources of oxidative stress in Alzheimer disease. Antioxid. Redox Signal., 2000, 2(3), 413-420. [http://dx.doi.org/10.1089/15230860050192198]. [PMID: 11229355].
[27]
Lim, D.; Iyer, A.; Ronco, V.; Grolla, A.A.; Canonico, P.L.; Aronica, E.; Genazzani, A.A. Amyloid beta deregulates astroglial mGluR5-mediated calcium signaling via calcineurin and Nf-kB. Glia, 2013, 61(7), 1134-1145. [http://dx.doi.org/10.1002/ glia.22502]. [PMID: 23616440].
[28]
Garcez, M.L.; Mina, F.; Bellettini-Santos, T.; Carneiro, F.G.; Luz, A.P.; Schiavo, G.L.; Andrighetti, M.S.; Scheid, M.G.; Bolfe, R.P.; Budni, J. Minocycline reduces inflammatory parameters in the brain structures and serum and reverses memory impairment caused by the administration of amyloid β (1-42) in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 77, 23-31. [http://dx.doi.org/10.1016/j.pnpbp.2017.03.010]. [PMID: 28336494].
[29]
Muñoz-Torrero, D. Acetylcholinesterase inhibitors as disease-modifying therapies for Alzheimer’s disease. Curr. Med. Chem., 2008, 15(24), 2433-2455. [http://dx.doi.org/10.2174/ 092986708785909067]. [PMID: 18855672].
[30]
Haas, C. Strategies, development, and pitfalls of therapeutic options for Alzheimer’s disease. J. Alzheimers Dis., 2012, 28(2), 241-281. [http://dx.doi.org/10.3233/JAD-2011-110986]. [PMID: 21987594].
[31]
Ansari, N.; Khodagholi, F. Natural products as promising drug candidates for the treatment of Alzheimer’s disease: Molecular mechanism aspect. Curr. Neuropharmacol., 2013, 11(4), 414-429. [http://dx.doi.org/10.2174/1570159X11311040005]. [PMID: 24381531].
[32]
McGleenon, B.M.; Dynan, K.B.; Passmore, A.P. Acetylcholinesterase inhibitors in Alzheimer’s disease. Br. J. Clin. Pharmacol., 1999, 48(4), 471-480. [http://dx.doi.org/10.1046/j.1365-2125.1999.00026.x]. [PMID: 10583015].
[33]
Watkins, P.B.; Zimmerman, H.J.; Knapp, M.J.; Gracon, S.I.; Lewis, K.W. Hepatotoxic effects of tacrine administration in patients with Alzheimer’s disease. JAMA, 1994, 271(13), 992-998. [http://dx.doi.org/10.1001/jama.1994.03510370044030]. [PMID: 8139084].
[34]
Cummings, J.L. Treatment of Alzheimer’s disease: current and future therapeutic approaches. Rev. Neurol. Dis., 2004, 1(2), 60-69. [PMID: 16400259].
[35]
Standridge, J.B. Pharmacotherapeutic approaches to the prevention of Alzheimer’s disease. Am. J. Geriatr. Pharmacother., 2004, 2(2), 119-132. [http://dx.doi.org/10.1016/S1543-5946(04)90017-7]. [PMID: 15555488].
[36]
Shal, B.; Ding, W.; Ali, H.; Kim, Y.S.; Khan, S. Anti-Neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease. Front. Pharmacol., 2018, 9, 548. [http://dx.doi.org/10.3389/fphar.2018.00548]. [PMID: 29896105].
[37]
Deng, Y.H.; Wang, N.N.; Zou, Z.X.; Zhang, L.; Xu, K.P.; Chen, A.F.; Cao, D.S.; Tan, G.S. Multi-Target screening and experimental validation of natural products from Selaginella plants against Alzheimer’s disease. Front. Pharmacol., 2017, 8, 539. [http://dx.doi.org/10.3389/fphar.2017.00539]. [PMID: 28890698].
[38]
Farver, D. The use of “natural products” in clinical medicine. S. D. J. Med., 1996, 49(4), 129-130. [PMID: 8936438].
[39]
Anekonda, T.S.; Reddy, P.H. Can herbs provide a new generation of drugs for treating Alzheimer’s disease? Brain Res. Brain Res. Rev., 2005, 50(2), 361-376. [http://dx.doi.org/10.1016/ j.brainresrev.2005.09.001]. [PMID: 16263176].
[40]
Essa, M.M.; Vijayan, R.K.; Castellano-Gonzalez, G.; Memon, M.A.; Braidy, N.; Guillemin, G.J. Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem. Res., 2012, 37(9), 1829-1842. [http://dx.doi.org/10.1007/s11064-012-0799-9]. [PMID: 22614926].
[41]
Morales, I.; Guzmán-Martínez, L.; Cerda-Troncoso, C.; Farías, G.A.; Maccioni, R.B. Neuroinflammation in the pathogenesis of alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front. Cell. Neurosci., 2014, 8, 112. [http://dx.doi.org/10.3389/fncel.2014.00112]. [PMID: 24795567].
[42]
Rees, T.M.; Brimijoin, S. The role of acetylcholinesterase in the pathogenesis of Alzheimer’s disease. Drugs Today (Barc), 2003, 39(1), 75-83. [http://dx.doi.org/10.1358/dot.2003.39.1.740206]. [PMID: 12669110].
[43]
Babic, T. The cholinergic hypothesis of Alzheimer’s disease: A review of progress. J. Neurol. Neurosurg. Psychiatry, 1999, 67(4), 558. [http://dx.doi.org/10.1136/jnnp.67.4.558]. [PMID: 10610396].
[44]
Pappas, B.A.; Bayley, P.J.; Bui, B.K.; Hansen, L.A.; Thal, L.J. Choline acetyltransferase activity and cognitive domain scores of Alzheimer’s patients. Neurobiol. Aging, 2000, 21(1), 11-17. [http://dx.doi.org/10.1016/S0197-4580(00)00090-7]. [PMID: 10794843].
[45]
Pepping, J.; Huperzine, A. Huperzine A. Am. J. Health Syst. Pharm., 2000, 57(6), 530-533-534. [http://dx.doi.org/10.1093/ ajhp/57.6.530] [PMID: 10754762]
[46]
Ha, G.T.; Wong, R.K.; Zhang, Y. Huperzine a as potential treatment of Alzheimer’s disease: An assessment on chemistry, pharmacology, and clinical studies. Chem. Biodivers., 2011, 8(7), 1189-1204. [http://dx.doi.org/10.1002/cbdv.201000269]. [PMID: 21766442].
[47]
Wang, Y.; Tang, X.C.; Zhang, H.Y. Huperzine A alleviates synaptic deficits and modulates amyloidogenic and nonamyloidogenic pathways in APPswe/PS1dE9 transgenic mice. J. Neurosci. Res., 2012, 90(2), 508-517. [http://dx.doi.org/10.1002/jnr.22775]. [PMID: 22002568].
[48]
Wang, C.Y.; Zheng, W.; Wang, T.; Xie, J.W.; Wang, S.L.; Zhao, B.L.; Teng, W.P.; Wang, Z.Y. Huperzine A activates Wnt/β-catenin signaling and enhances the nonamyloidogenic pathway in an Alzheimer transgenic mouse model. Neuropsychopharmacology, 2011, 36(5), 1073-1089. [http://dx.doi.org/10.1038/ npp.2010.245]. [PMID: 21289607].
[49]
Gordon, R.K.; Nigam, S.V.; Weitz, J.A.; Dave, J.R.; Doctor, B.P.; Ved, H.S. The NMDA receptor ion channel: A site for binding of Huperzine A. J. Appl. Toxicol., 2001, 21(Suppl. 1), S47-S51. [http://dx.doi.org/10.1002/jat.805]. [PMID: 11920920].
[50]
Yang, L.; Ye, C.Y.; Huang, X.T.; Tang, X.C.; Zhang, H.Y. Decreased accumulation of subcellular amyloid-β with improved mitochondrial function mediates the neuroprotective effect of huperzine A. J. Alzheimers Dis., 2012, 31(1), 131-142. [http://dx.doi.org/10.3233/JAD-2012-120274]. [PMID: 22531425].
[51]
Camps, P.; Morral, J.; Muñoz-Torrero, D.; Badia, A.; Baños, J.E.; Vivas, N.M.; Barril, X.; Orozco, M.; Luque, F.J.; Luque, F.J. New tacrine-huperzine A hybrids (huprines): highly potent tight-binding acetylcholinesterase inhibitors of interest for the treatment of Alzheimer’s disease. J. Med. Chem., 2000, 43(24), 4657-4666. [http://dx.doi.org/10.1021/jm000980y]. [PMID: 11101357].
[52]
Camps, P.; Muñoz-Torrero, D. Tacrine-huperzine A hybrids (huprines):A new class of highly potent and selective acetylcholinesterase inhibitors of interest for the treatment of Alzheimer’s disease. Mini Rev. Med. Chem., 2001, 1(2), 163-174. [http://dx.doi.org/10.2174/1389557013406972]. [PMID: 12369981].
[53]
Rafii, M.S.; Walsh, S.; Little, J.T.; Behan, K.; Reynolds, B.; Ward, C.; Jin, S.; Thomas, R.; Aisen, P.S. A phase II trial of huperzine A in mild to moderate Alzheimer disease. Neurology, 2011, 76(16), 1389-1394. [http://dx.doi.org/10.1212/WNL.0b013e318216eb7b]. [PMID: 21502597].
[54]
Kulkarni, S.K.; Dhir, A. Berberine: A plant alkaloid with therapeutic potential for central nervous system disorders. Phytother. Res., 2010, 24(3), 317-324. [http://dx.doi.org/10.1002/ptr.2968]. [PMID: 19998323].
[55]
Vuddanda, P.R.; Chakraborty, S.; Singh, S. Berberine: A potential phytochemical with multispectrum therapeutic activities. Expert Opin. Investig. Drugs, 2010, 19(10), 1297-1307. [http://dx.doi.org/ 10.1517/13543784.2010.517745]. [PMID: 20836620].
[56]
Zhu, F.; Qian, C. Berberine chloride can ameliorate the spatial memory impairment and increase the expression of interleukin-1beta and inducible nitric oxide synthase in the rat model of Alzheimer’s disease. BMC Neurosci., 2006, 7, 78. [http://dx.doi.org/10.1186/1471-2202-7-78]. [PMID: 17137520].
[57]
Zhu, F.; Wu, F.; Ma, Y.; Liu, G.; Li, Z.; Sun, Y.; Pei, Z. Decrease in the production of β-amyloid by berberine inhibition of the expression of β-secretase in HEK293 cells. BMC Neurosci., 2011, 12, 125. [http://dx.doi.org/10.1186/1471-2202-12-125]. [PMID: 22152059].
[58]
Yu, G.; Li, Y.; Tian, Q.; Liu, R.; Wang, Q.; Wang, J.Z.; Wang, X. Berberine attenuates calyculin A-induced cytotoxicity and Tau hyperphosphorylation in HEK293 cells. J. Alzheimers Dis., 2011, 24(3), 525-535. [http://dx.doi.org/10.3233/JAD-2011-101779]. [PMID: 21297267].
[59]
Jia, L.; Liu, J.; Song, Z.; Pan, X.; Chen, L.; Cui, X.; Wang, M. Berberine suppresses amyloid-beta-induced inflammatory response in microglia by inhibiting nuclear factor-kappaB and mitogen-activated protein kinase signalling pathways. J. Pharm. Pharmacol., 2012, 64(10), 1510-1521. [http://dx.doi.org/10.1111/j.2042-7158.2012.01529.x]. [PMID: 22943182].
[60]
Durairajan, S.S.; Liu, L.F.; Lu, J.H.; Chen, L.L.; Yuan, Q.; Chung, S.K.; Huang, L.; Li, X.S.; Huang, J.D.; Li, M. Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer’s disease transgenic mouse model. Neurobiol. Aging, 2012, 33(12), 2903-2919. [http://dx.doi.org/10.1016/ j.neurobiolaging.2012.02.016]. [PMID: 22459600].
[61]
Maczurek, A.; Hager, K.; Kenklies, M.; Sharman, M.; Martins, R.; Engel, J.; Carlson, D.A.; Münch, G. Lipoic acid as an anti-inflammatory and neuroprotective treatment for Alzheimer’s disease. Adv. Drug Deliv. Rev., 2008, 60(13-14), 1463-1470. [http://dx.doi.org/10.1016/j.addr.2008.04.015]. [PMID: 18655815].
[62]
Meyerhoff, J.L.; Yoorick, D.L.; Koenig, M.L.; Yourick, D.L. Treatment of central nervous system injuries or diseases comprises administering at least one lipoic acid, 2001, WO200180851A1.
[63]
Oboh, G.; Ademiluyi, A.O.; Akinyemi, A.J. Inhibition of acetylcholinesterase activities and some pro-oxidant induced lipid peroxidation in rat brain by two varieties of ginger (Zingiber officinale). Exp. Toxicol. Pathol., 2012, 64(4), 315-319. [http://dx.doi.org/10.1016/j.etp.2010.09.004]. [PMID: 20952170].
[64]
Rishton, G.M.; Arai, H.; Kai, Z.; Fullenwider, C.L.; Beierle, K Method of inhibiting, treating, or abatement of cognitive decline and Alzheimer's disease in a mammal, comprises administering a derivative of ginger oil to a mammal., 2011.
[65]
Martinez, G.A.; Alonso, G.D.; Dorronsoro, D.I.; Garcia, P.E. De-, Austria; De-, L.C.; Usan, E.P New spiro heterocyclic compounds are calcium channel blockers useful in the manufacture of a medicament for the treatment of brain ischemia, stroke, cognitive disorders, cerebrovascular dementia or neurodegenerative dementing disease. EP1609783A1; WO2005123073A1; EP1761262A1, 2005.
[66]
Bui, T.T.; Nguyen, T.H. Natural product for the treatment of Alzheimer’s disease. J. Basic Clin. Physiol. Pharmacol., 2017, 28(5), 413-423. [http://dx.doi.org/10.1515/jbcpp-2016-0147]. [PMID: 28708573].
[67]
Hardy, J.; Allsop, D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci., 1991, 12(10), 383-388. [http://dx.doi.org/10.1016/0165-6147(91)90609-V]. [PMID: 1763432].
[68]
Priller, C.; Bauer, T.; Mitteregger, G.; Krebs, B.; Kretzschmar, H.A.; Herms, J. Synapse formation and function is modulated by the amyloid precursor protein. J. Neurosci., 2006, 26(27), 7212-7221. [http://dx.doi.org/10.1523/JNEUROSCI.1450-06.2006]. [PMID: 16822978].
[69]
Turner, P.R.; O’Connor, K.; Tate, W.P.; Abraham, W.C. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog. Neurobiol., 2003, 70(1), 1-32. [http://dx.doi.org/10.1016/S0301-0082(03)00089-3]. [PMID: 12927332].
[70]
Duce, J.A.; Tsatsanis, A.; Cater, M.A.; James, S.A.; Robb, E.; Wikhe, K.; Leong, S.L.; Perez, K.; Johanssen, T.; Greenough, M.A.; Cho, H.H.; Galatis, D.; Moir, R.D.; Masters, C.L.; McLean, C.; Tanzi, R.E.; Cappai, R.; Barnham, K.J.; Ciccotosto, G.D.; Rogers, J.T.; Bush, A.I. Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell, 2010, 142(6), 857-867. [http://dx.doi.org/10.1016/ j.cell.2010.08.014]. [PMID: 20817278].
[71]
Haass, C.; Selkoe, D.J. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide. Nat. Rev. Mol. Cell Biol., 2007, 8(2), 101-112. [http://dx.doi.org/ 10.1038/nrm2101]. [PMID: 17245412].
[72]
Nussbaum, J.M.; Seward, M.E.; Bloom, G.S. Alzheimer disease: A tale of two prions. Prion, 2013, 7(1), 14-19. [http://dx.doi.org/ 10.4161/pri.22118]. [PMID: 22965142].
[73]
Pulawski, W.; Ghoshdastider, U.; Andrisano, V.; Filipek, S. Ubiquitous amyloids. Appl. Biochem. Biotechnol., 2012, 166(7), 1626-1643. [http://dx.doi.org/10.1007/s12010-012-9549-3]. [PMID: 22350870].
[74]
Mudher, A.; Lovestone, S. Alzheimer’s disease-do tauists and baptists finally shake hands? Trends Neurosci., 2002, 25(1), 22-26. [http://dx.doi.org/10.1016/S0166-2236(00)02031-2]. [PMID: 11801334].
[75]
Esatbeyoglu, T.; Huebbe, P.; Ernst, I.M.; Chin, D.; Wagner, A.E.; Rimbach, G. Curcumin--From molecule to biological function. Angew. Chem. Int. Ed. Engl., 2012, 51(22), 5308-5332. [http://dx.doi.org/10.1002/anie.201107724]. [PMID: 22566109].
[76]
Aggarwal, B.B.; Sundaram, C.; Malani, N.; Ichikawa, H. Curcumin: The Indian solid gold. Adv. Exp. Med. Biol., 2007, 595, 1-75. [http://dx.doi.org/10.1007/978-0-387-46401-5_1]. [PMID: 17569205].
[77]
Jiang, S.; Han, J.; Li, T.; Xin, Z.; Ma, Z.; Di, W.; Hu, W.; Gong, B.; Di, S.; Wang, D.; Yang, Y. Curcumin as a potential protective compound against cardiac diseases. Pharmacol. Res., 2017, 119, 373-383. [http://dx.doi.org/10.1016/j.phrs.2017.03.001]. [PMID: 28274852].
[78]
Hamaguchi, T.; Ono, K.; Yamada, M. REVIEW: Curcumin and Alzheimer’s disease. CNS Neurosci. Ther., 2010, 16(5), 285-297. [http://dx.doi.org/10.1111/j.1755-5949.2010.00147.x]. [PMID: 20406252].
[79]
Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; Cole, G.M. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem., 2005, 280(7), 5892-5901. [http://dx.doi.org/ 10.1074/jbc.M404751200]. [PMID: 15590663].
[80]
Veldman, E.R.; Jia, Z.; Halldin, C.; Svedberg, M.M. Amyloid binding properties of curcumin analogues in Alzheimer’s disease postmortem brain tissue. Neurosci. Lett., 2016, 630, 183-188. [http://dx.doi.org/10.1016/j.neulet.2016.07.045]. [PMID: 27461789].
[81]
Sahu, P.K. Design, structure activity relationship, cytotoxicity and evaluation of antioxidant activity of curcumin derivatives/analogues. Eur. J. Med. Chem., 2016, 121, 510-516. [http://dx.doi.org/10.1016/j.ejmech.2016.05.037]. [PMID: 27318975].
[82]
Butterfield, D.; Castegna, A.; Pocernich, C.; Drake, J.; Scapagnini, G.; Calabrese, V. Nutritional approaches to combat oxidative stress in Alzheimer’s disease. J. Nutr. Biochem., 2002, 13(8), 444. [http://dx.doi.org/10.1016/S0955-2863(02)00205-X]. [PMID: 12165357].
[83]
DiSilvestro, R.A.; Joseph, E.; Zhao, S.; Bomser, J. Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people. Nutr. J., 2012, 11, 79. [http://dx.doi.org/10.1186/ 1475-2891-11-79]. [PMID: 23013352].
[84]
Pocernich, C.B.; Lange, M.L.; Sultana, R.; Butterfield, D.A. Nutritional approaches to modulate oxidative stress in Alzheimer’s disease. Curr. Alzheimer Res., 2011, 8(5), 452-469. [http://dx.doi.org/10.2174/156720511796391908]. [PMID: 21605052].
[85]
López-Lázaro, M. Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. Chem., 2009, 9(1), 31-59. [http://dx.doi.org/10.2174/138955709787001712]. [PMID: 19149659].
[86]
Seelinger, G.; Merfort, I.; Schempp, C.M. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med., 2008, 74(14), 1667-1677. [http://dx.doi.org/10.1055/s-0028-1088314]. [PMID: 18937165].
[87]
Zhou, F.; Chen, S.; Xiong, J.; Li, Y.; Qu, L. Luteolin reduces zinc-induced tau phosphorylation at Ser262/356 in an ROS-dependent manner in SH-SY5Y cells. Biol. Trace Elem. Res., 2012, 149(2), 273-279. [http://dx.doi.org/10.1007/s12011-012-9411-z]. [PMID: 22528780].
[88]
Liu, R.; Meng, F.; Zhang, L.; Liu, A.; Qin, H.; Lan, X.; Li, L.; Du, G. Luteolin isolated from the medicinal plant Elsholtzia rugulosa (Labiatae) prevents copper-mediated toxicity in β-amyloid precursor protein Swedish mutation overexpressing SH-SY5Y cells. Molecules, 2011, 16(3), 2084-2096. [http://dx.doi.org/10.3390/ molecules16032084]. [PMID: 21368720].
[89]
Zhao, G.; Yao-Yue, C.; Qin, G.W.; Guo, L.H. Luteolin from Purple Perilla mitigates ROS insult particularly in primary neurons. Neurobiol. Aging, 2012, 33(1), 176-186. [http://dx.doi.org/10.1016/ j.neurobiolaging.2010.02.013]. [PMID: 20382451].
[90]
Wruck, C.J.; Claussen, M.; Fuhrmann, G.; Römer, L.; Schulz, A.; Pufe, T.; Waetzig, V.; Peipp, M.; Herdegen, T.; Götz, M.E. Luteolin protects rat PC12 and C6 cells against MPP+ induced toxicity via an ERK dependent Keap1-Nrf2-ARE pathway. J. Neural Transm. Suppl., 2007, (72), 57-67. [PMID: 17982879].
[91]
Xu, B.; Li, X.X.; He, G.R.; Hu, J.J.; Mu, X.; Tian, S.; Du, G.H. Luteolin promotes long-term potentiation and improves cognitive functions in chronic cerebral hypoperfused rats. Eur. J. Pharmacol., 2010, 627(1-3), 99-105. [http://dx.doi.org/10.1016/ j.ejphar.2009.10.038]. [PMID: 19857483].
[92]
Moreno, L.C.G.E.I.; Puerta, E.; Suárez-Santiago, J.E.; Santos-Magalhães, N.S.; Ramirez, M.J.; Irache, J.M. Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimer’s disease. Int. J. Pharm., 2017, 517(1-2), 50-57. [http://dx.doi.org/10.1016/j.ijpharm.2016.11.061]. [PMID: 27915007].
[93]
Lu, J.; Wu, D.M.; Zheng, Y.L.; Hu, B.; Zhang, Z.F.; Shan, Q.; Zheng, Z.H.; Liu, C.M.; Wang, Y.J. Quercetin activates AMP-activated protein kinase by reducing PP2C expression protecting old mouse brain against high cholesterol-induced neurotoxicity. J. Pathol., 2010, 222(2), 199-212. [http://dx.doi.org/10.1002/ path.2754]. [PMID: 20690163].
[94]
Jiménez-Aliaga, K.; Bermejo-Bescós, P.; Benedí, J.; Martín-Aragón, S. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci., 2011, 89(25-26), 939-945. [http://dx.doi.org/10.1016/j.lfs.2011.09.023]. [PMID: 22008478].
[95]
Shimmyo, Y.; Kihara, T.; Akaike, A.; Niidome, T.; Sugimoto, H. Flavonols and flavones as BACE-1 inhibitors: Structure-activity relationship in cell-free, cell-based and in silico studies reveal novel pharmacophore features. Biochim. Biophys. Acta, 2008, 1780(5), 819-825. [http://dx.doi.org/10.1016/j.bbagen.2008.01.017]. [PMID: 18295609].
[96]
Bartolini, M.; Naldi, M.; Fiori, J.; Valle, F.; Biscarini, F.; Nicolau, D.V.; Andrisano, V. Kinetic characterization of amyloid-beta 1-42 aggregation with a multimethodological approach. Anal. Biochem., 2011, 414(2), 215-225. [http://dx.doi.org/10.1016/ j.ab.2011.03.020]. [PMID: 21435333].
[97]
Shimmyo, Y.; Kihara, T.; Akaike, A.; Niidome, T.; Sugimoto, H. Multifunction of myricetin on A beta: neuroprotection via a conformational change of A beta and reduction of A beta via the interference of secretases. J. Neurosci. Res., 2008, 86(2), 368-377. [http://dx.doi.org/10.1002/jnr.21476]. [PMID: 17722071].
[98]
Yang, S.; Liu, W.; Lu, S.; Tian, Y.Z.; Wang, W.Y.; Ling, T.J.; Liu, R.T. A novel multifunctional compound Camellikaempferoside B decreases aβ production, interferes with Aβ Aggregation, and Prohibits Aβ-Mediated Neurotoxicity and Neuroinflammation. ACS Chem. Neurosci., 2016, 7(4), 505-518. [http://dx.doi.org/10.1021/ acschemneuro.6b00091]. [PMID: 27015590].
[99]
Kosmeder, J.W., II; Pezzuto, J.M.; Pezzuto, J.M. Biological effects of resveratrol. Antioxid. Redox Signal., 2001, 3(6), 1041-1064. [http://dx.doi.org/10.1089/152308601317203567]. [PMID: 11813979].
[100]
Li, F.; Gong, Q.; Dong, H.; Shi, J. Resveratrol, A neuroprotective supplement for Alzheimer’s disease. Curr. Pharm. Des., 2012, 18(1), 27-33. [http://dx.doi.org/10.2174/138161212798919075]. [PMID: 22211686].
[101]
Ge, J.F.; Qiao, J.P.; Qi, C.C.; Wang, C.W.; Zhou, J.N. The binding of resveratrol to monomer and fibril amyloid beta. Neurochem. Int., 2012, 61(7), 1192-1201. [http://dx.doi.org/10.1016/ j.neuint.2012.08.012]. [PMID: 22981725].
[102]
Feng, Y.; Wang, X.P.; Yang, S.G.; Wang, Y.J.; Zhang, X.; Du, X.T.; Sun, X.X.; Zhao, M.; Huang, L.; Liu, R.T. Resveratrol inhibits beta-amyloid oligomeric cytotoxicity but does not prevent oligomer formation. Neurotoxicology, 2009, 30(6), 986-995. [http://dx.doi.org/10.1016/j.neuro.2009.08.013]. [PMID: 19744518].
[103]
Turner, R.S.; Thomas, R.G.; Craft, S.; van Dyck, C.H.; Mintzer, J.; Reynolds, B.A.; Brewer, J.B.; Rissman, R.A.; Raman, R.; Aisen, P.S. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology, 2015, 85(16), 1383-1391. [http://dx.doi.org/10.1212/WNL.0000000000002035]. [PMID: 26362286].
[104]
Luo, L.; Huang, Y.M. Effect of resveratrol on the cognitive ability of Alzheimeros mice. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2006, 31(4), 566-569. [Effect of resveratrol on the cognitive ability of Alzheimeros mice]. [PMID: 16951520].
[105]
Kumar, A.; Naidu, P.S.; Seghal, N.; Padi, S.S. Neuroprotective effects of resveratrol against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress in rats. Pharmacology, 2007, 79(1), 17-26. [http://dx.doi.org/10.1159/000097511]. [PMID: 17135773].
[106]
Wight, R.D.; Tull, C.A.; Deel, M.W.; Stroope, B.L.; Eubanks, A.G.; Chavis, J.A.; Drew, P.D.; Hensley, L.L. Resveratrol effects on astrocyte function: relevance to neurodegenerative diseases. Biochem. Biophys. Res. Commun., 2012, 426(1), 112-115. [http://dx.doi.org/10.1016/j.bbrc.2012.08.045]. [PMID: 22917537].
[107]
Karthick, C.; Periyasamy, S.; Jayachandran, K.S.; Anusuyadevi, M. Intrahippocampal administration of ibotenic acid induced cholinergic dysfunction via NR2A/NR2B expression: Implications of resveratrol against Alzheimer disease pathophysiology. Front. Mol. Neurosci., 2016, 9, 28. [http://dx.doi.org/10.3389/ fnmol.2016.00028]. [PMID: 27199654].
[108]
Moussa, C.; Hebron, M.; Huang, X.; Ahn, J.; Rissman, R.A.; Aisen, P.S.; Turner, R.S. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J. Neuroinflammation, 2017, 14(1), 1. [http://dx.doi.org/10.1186/s12974-016-0779-0]. [PMID: 28086917].
[109]
Satake, M.; Murata, M.; Yasumoto, T. Gambierol: A new toxic polyether compound isolated from the marine dinoflagellate Gambierdiscus toxicus. J. Am. Chem. Soc., 1993, 115(1), 361-362. [http://dx.doi.org/10.1021/ja00054a061].
[110]
Alonso, E.; Fuwa, H.; Vale, C.; Suga, Y.; Goto, T.; Konno, Y.; Sasaki, M.; LaFerla, F.M.; Vieytes, M.R.; Giménez-Llort, L.; Botana, L.M. Design and synthesis of skeletal analogues of gambierol: attenuation of amyloid-β and tau pathology with voltage-gated potassium channel and N-methyl-D-aspartate receptor implications. J. Am. Chem. Soc., 2012, 134(17), 7467-7479. [http://dx.doi.org/ 10.1021/ja300565t]. [PMID: 22475455].
[111]
Birinyi-Strachan, L.C.; Gunning, S.J.; Lewis, R.J.; Nicholson, G.M. Block of voltage-gated potassium channels by Pacific ciguatoxin-1 contributes to increased neuronal excitability in rat sensory neurons. Toxicol. Appl. Pharmacol., 2005, 204(2), 175-186. [http://dx.doi.org/10.1016/j.taap.2004.08.020]. [PMID: 15808523].
[112]
Hidalgo, J.; Liberona, J.L.; Molgó, J.; Jaimovich, E. Pacific ciguatoxin-1b effect over Na+ and K+ currents, inositol 1,4,5-triphosphate content and intracellular Ca2+ signals in cultured rat myotubes. Br. J. Pharmacol., 2002, 137(7), 1055-1062. [http://dx.doi.org/10.1038/sj.bjp.0704980]. [PMID: 12429578].
[113]
Schlumberger, S.; Mattei, C.; Molgó, J.; Benoit, E. Dual action of a dinoflagellate-derived precursor of Pacific ciguatoxins (P-CTX-4B) on voltage-dependent K(+) and Na(+) channels of single myelinated axons. Toxicon, 2010, 56(5), 768-775. [http://dx.doi.org/ 10.1016/j.toxicon.2009.06.035]. [PMID: 19589350].
[114]
Oddo, S.; Caccamo, A.; Shepherd, J.D.; Murphy, M.P.; Golde, T.E.; Kayed, R.; Metherate, R.; Mattson, M.P.; Akbari, Y.; LaFerla, F.M. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron, 2003, 39(3), 409-421. [http://dx.doi.org/10.1016/S0896-6273(03)00434-3]. [PMID: 12895417].
[115]
Dräger, U.C. Retinoic acid signaling in the functioning brain. Sci. STKE, 2006, 2006(324), pe10. [PMID: 16507818].
[116]
Duester, G. Retinoic acid synthesis and signaling during early organogenesis. Cell, 2008, 134(6), 921-931. [http://dx.doi.org/ 10.1016/j.cell.2008.09.002]. [PMID: 18805086].
[117]
Niederreither, K.; Dollé, P. Retinoic acid in development: Towards an integrated view. Nat. Rev. Genet., 2008, 9(7), 541-553. [http://dx.doi.org/10.1038/nrg2340]. [PMID: 18542081].
[118]
Theodosiou, M.; Laudet, V.; Schubert, M. From carrot to clinic: An overview of the retinoic acid signaling pathway. Cell. Mol. Life Sci., 2010, 67(9), 1423-1445. [http://dx.doi.org/10.1007/s00018-010-0268-z]. [PMID: 20140749].
[119]
Beckman, M.; Iverfeldt, K. Increased gene expression of beta-amyloid precursor protein and its homologues APLP1 and APLP2 in human neuroblastoma cells in response to retinoic acid. Neurosci. Lett., 1997, 221(2-3), 73-76. [http://dx.doi.org/10.1016/S0304-3940(96)13292-4]. [PMID: 9121703].
[120]
Misner, D.L.; Jacobs, S.; Shimizu, Y.; de Urquiza, A.M.; Solomin, L.; Perlmann, T.; De Luca, L.M.; Stevens, C.F.; Evans, R.M. Vitamin A deprivation results in reversible loss of hippocampal long-term synaptic plasticity. Proc. Natl. Acad. Sci. USA, 2001, 98(20), 11714-11719. [http://dx.doi.org/10.1073/pnas.191369798]. [PMID: 11553775].
[121]
Ding, Y.; Qiao, A.; Wang, Z.; Goodwin, J.S.; Lee, E.S.; Block, M.L.; Allsbrook, M.; McDonald, M.P.; Fan, G.H. Retinoic acid attenuates beta-amyloid deposition and rescues memory deficits in an Alzheimer’s disease transgenic mouse model. J. Neurosci., 2008, 28(45), 11622-11634. [http://dx.doi.org/10.1523/ JNEUROSCI.3153-08.2008]. [PMID: 18987198].
[122]
Jarvis, C.I.; Goncalves, M.B.; Clarke, E.; Dogruel, M.; Kalindjian, S.B.; Thomas, S.A.; Maden, M.; Corcoran, J.P. Retinoic acid receptor-α signalling antagonizes both intracellular and extracellular amyloid-β production and prevents neuronal cell death caused by amyloid-β. Eur. J. Neurosci., 2010, 32(8), 1246-1255. [http://dx.doi.org/10.1111/j.1460-9568.2010.07426.x]. [PMID: 20950278].
[123]
Corcoran, J.P.; So, P.L.; Maden, M. Disruption of the retinoid signalling pathway causes a deposition of amyloid beta in the adult rat brain. Eur. J. Neurosci., 2004, 20(4), 896-902. [http://dx.doi.org/10.1111/j.1460-9568.2004.03563.x]. [PMID: 15305858].
[124]
Kapoor, A.; Wang, B.J.; Hsu, W.M.; Chang, M.Y.; Liang, S.M.; Liao, Y.F. Retinoic acid-elicited RARα/RXRα signaling attenuates Aβ production by directly inhibiting γ-secretase-mediated cleavage of amyloid precursor protein. ACS Chem. Neurosci., 2013, 4(7), 1093-1100. [http://dx.doi.org/10.1021/cn400039s]. [PMID: 23530929].
[125]
Ali, M.Y.; Jannat, S.; Jung, H.A.; Choi, R.J.; Roy, A.; Choi, J.S. Anti-Alzheimer’s disease potential of coumarins from Angelica decursiva and Artemisia capillaris and structure-activity analysis. Asian Pac. J. Trop. Med., 2016, 9(2), 103-111. [http://dx.doi.org/ 10.1016/j.apjtm.2016.01.014]. [PMID: 26919937].
[126]
Ali, M.Y.; Seong, S.H.; Reddy, M.R.; Seo, S.Y.; Choi, J.S.; Jung, H.A. Kinetics and Molecular Docking Studies of 6-Formyl Umbelliferone Isolated from Angelica decursiva as an Inhibitor of Cholinesterase and BACE1. Molecules, 2017, 22(10), E1604. [http://dx.doi.org/10.3390/molecules22101604]. [PMID: 28946641].
[127]
Weggen, S.; Eriksen, J.L.; Das, P.; Sagi, S.A.; Wang, R.; Pietrzik, C.U.; Findlay, K.A.; Smith, T.E.; Murphy, M.P.; Bulter, T.; Kang, D.E.; Marquez-Sterling, N.; Golde, T.E.; Koo, E.H. A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature, 2001, 414(6860), 212-216. [http://dx.doi.org/10.1038/35102591]. [PMID: 11700559].
[128]
Haugabook, S.J.; Yager, D.M.; Eckman, E.A.; Golde, T.E.; Younkin, S.G.; Eckman, C.B. High throughput screens for the identification of compounds that alter the accumulation of the Alzheimer’s amyloid beta peptide (Abeta). J. Neurosci. Methods, 2001, 108(2), 171-179. [http://dx.doi.org/10.1016/S0165-0270(01)00388-0]. [PMID: 11478976].
[129]
Yager, D.; Watson, M.; Healy, B.; Eckman, E.A.; Eckman, C.B. Natural product extracts that reduce accumulation of the Alzheimer’s amyloid beta peptide: selective reduction in A beta42. J. Mol. Neurosci., 2002, 19(1-2), 129-133. [http://dx.doi.org/ 10.1007/s12031-002-0023-5]. [PMID: 12212770].
[130]
Findeis, M.A. The role of amyloid beta peptide 42 in Alzheimer’s disease. Pharmacol. Ther., 2007, 116(2), 266-286. [http://dx.doi.org/10.1016/j.pharmthera.2007.06.006]. [PMID: 17716740].
[131]
Findeis, M.A.; Schroeder, F.; McKee, T.D.; Yager, D.; Fraering, P.C.; Creaser, S.P.; Austin, W.F.; Clardy, J.; Wang, R.; Selkoe, D.; Eckman, C.B. Discovery of a novel pharmacological and structural class of gamma secretase modulators derived from the extract of Actaea racemosa. ACS Chem. Neurosci., 2012, 3(11), 941-951. [http://dx.doi.org/10.1021/cn3000857]. [PMID: 23205187].
[132]
Fuller, N.O.; Hubbs, J.L.; Austin, W.F.; Creaser, S.P.; McKee, T.D.; Loureiro, R.M.; Tate, B.; Xia, W.; Ives, J.L.; Findeis, M.A.; Bronk, B.S. Initial optimization of a new series of γ-secretase modulators derived from a triterpene glycoside. ACS Med. Chem. Lett., 2012, 3(11), 908-913. [http://dx.doi.org/10.1021/ml300256p]. [PMID: 24900406].
[133]
Hubbs, J.L.; Fuller, N.O.; Austin, W.F.; Shen, R.; Creaser, S.P.; McKee, T.D.; Loureiro, R.M.B.; Tate, B.; Xia, W.; Ives, J.; Bronk, B.S. Optimization of a natural product-based class of γ-secretase modulators. J. Med. Chem., 2012, 55(21), 9270-9282. [http://dx.doi.org/10.1021/jm300976b]. [PMID: 23030762].
[134]
Tate, B.; McKee, T.D.; Loureiro, R.M.; Dumin, J.A.; Xia, W.; Pojasek, K.; Austin, W.F.; Fuller, N.O.; Hubbs, J.L.; Shen, R.; Jonker, J.; Ives, J.; Bronk, B.S. Modulation of gamma-secretase for the treatment of Alzheimer’s disease. Int. J. Alzheimers Dis., 2012, 2012, 210756. [http://dx.doi.org/10.1155/2012/210756]. [PMID: 23320246].
[135]
Hubbs, J.L.; Fuller, N.O.; Austin, W.F.; Shen, R.; Ma, J.; Gong, Z.; Li, J.; McKee, T.D.; Loureiro, R.M.; Tate, B.; Dumin, J.A.; Ives, J.; Bronk, B.S. Minimization of drug-drug interaction risk and candidate selection in a natural product-based class of gamma-secretase modulators. Bioorg. Med. Chem. Lett., 2015, 25(7), 1621-1626. [http://dx.doi.org/10.1016/j.bmcl.2015.01.051]. [PMID: 25708617].
[136]
Austin, W.F.H.J.L.; Fuller, N.O.; Creaser, S.P.; McKee, T.D.; Loureiro, R.M.B.; Findeis, M.A.; Tate, B.; Ives, J.L.; Bronk, B.S. SAR investigations on a novel class of gamma-secretase modulators based on a unique scaffold. MedChemComm, 2013, 4, 569-574. [http://dx.doi.org/10.1039/c3md20357c].
[137]
Findeis, M.A.; Schroeder, F.C.; Creaser, S.P.; McKee, T.D.; Xia, W. Natural product and natural product-derived gamma secretase modulators from Actaea racemosa extracts. Medicines (Basel), 2015, 2(3), 127-140. [http://dx.doi.org/10.3390/medicines2030127]. [PMID: 28930205].
[138]
Malik, J.; Karan, M.; Vasisht, K. Nootropic, anxiolytic and CNS-depressant studies on different plant sources of shankhpushpi. Pharm. Biol., 2011, 49(12), 1234-1242. [http://dx.doi.org/10.3109/ 13880209.2011.584539]. [PMID: 21846173].
[139]
Sethiya, N.K.; Nahata, A.; Mishra, S.H.; Dixit, V.K. An update on Shankhpushpi, a cognition-boosting Ayurvedic medicine. J. Chin. Integr. Med., 2009, 7(11), 1001-1022. [http://dx.doi.org/ 10.3736/jcim20091101]. [PMID: 19912732].
[140]
Nahata, A.; Patil, U.K.; Dixit, V.K. Effect of Convulvulus pluricaulis Choisy. on learning behaviour and memory enhancement activity in rodents. Nat. Prod. Res., 2008, 22(16), 1472-1482. [http://dx.doi.org/10.1080/14786410802214199]. [PMID: 19023811].
[141]
Bihaqi, S.W.; Singh, A.P.; Tiwari, M. Supplementation of Convolvulus pluricaulis attenuates scopolamine-induced increased tau and amyloid precursor protein (AβPP) expression in rat brain. Indian J. Pharmacol., 2012, 44(5), 593-598. [http://dx.doi.org/ 10.4103/0253-7613.100383]. [PMID: 23112420].
[142]
Zhang, Q.; Zhao, J.J.; Xu, J.; Feng, F.; Qu, W. Medicinal uses, phytochemistry and pharmacology of the genus Uncaria. J. Ethnopharmacol., 2015, 173, 48-80. [http://dx.doi.org/ 10.1016/j.jep.2015.06.011]. [PMID: 26091967].
[143]
Lake, T.; Snow, A. Treatment of amyloidosis e.g. Alzheimer's in a mammal involves administration of a composition comprising two of the substances selected from uncaria tomentosa extract, Gingko biloba, green tea extract, grape seed extract and curcumin. 2009.
[144]
Cummings, J.; Lee, G.; Mortsdorf, T.; Ritter, A.; Zhong, K. Alzheimer’s disease drug development pipeline: 2017. Alzheimers Dement. (N. Y.), 2017, 3(3), 367-384. [http://dx.doi.org/ 10.1016/j.trci.2017.05.002]. [PMID: 29067343].
[145]
Ballatore, C.; Brunden, K.R.; Huryn, D.M.; Trojanowski, J.Q.; Lee, V.M.Y.; Smith, A.B. III Microtubule stabilizing agents as potential treatment for Alzheimer’s disease and related neurodegenerative tauopathies. J. Med. Chem., 2012, 55(21), 8979-8996. [http://dx.doi.org/10.1021/jm301079z]. [PMID: 23020671].
[146]
Beer, T.M.; Higano, C.S.; Saleh, M.; Dreicer, R.; Hudes, G.; Picus, J.; Rarick, M.; Fehrenbacher, L.; Hannah, A.L. Phase II study of KOS-862 in patients with metastatic androgen independent prostate cancer previously treated with docetaxel. Invest. New Drugs, 2007, 25(6), 565-570. [http://dx.doi.org/10.1007/s10637-007-9068-1]. [PMID: 17618407].
[147]
Brunden, K.R.; Gardner, N.M.; James, M.J.; Yao, Y.; Trojanowski, J.Q.; Lee, V.M.Y.; Paterson, I.; Ballatore, C.; Smith, A.B., III MT-stabilizer, dictyostatin, exhibits prolonged brain retention and activity: Potential therapeutic implications. ACS Med. Chem. Lett., 2013, 4(9), 886-889. [http://dx.doi.org/10.1021/ml400233e]. [PMID: 24900764].
[148]
Furukawa, H.; Singh, S.K.; Mancusso, R.; Gouaux, E. Subunit arrangement and function in NMDA receptors. Nature, 2005, 438(7065), 185-192. [http://dx.doi.org/10.1038/nature04089]. [PMID: 16281028].
[149]
Li, F.; Tsien, J.Z. Memory and the NMDA receptors. N. Engl. J. Med., 2009, 361(3), 302-303. [http://dx.doi.org/10.1056/ NEJMcibr0902052]. [PMID: 19605837].
[150]
Lesné, S.; Ali, C.; Gabriel, C.; Croci, N.; MacKenzie, E.T.; Glabe, C.G.; Plotkine, M.; Marchand-Verrecchia, C.; Vivien, D.; Buisson, A. NMDA receptor activation inhibits alpha-secretase and promotes neuronal amyloid-beta production. J. Neurosci., 2005, 25(41), 9367-9377. [http://dx.doi.org/10.1523/JNEUROSCI.0849-05.2005]. [PMID: 16221845].
[151]
Parameshwaran, K.; Dhanasekaran, M.; Suppiramaniam, V. Amyloid beta peptides and glutamatergic synaptic dysregulation. Exp. Neurol., 2008, 210(1), 7-13. [http://dx.doi.org/10.1016/ j.expneurol.2007.10.008]. [PMID: 18053990].
[152]
Kim, Y.S.; Woo, J.Y.; Han, C.K.; Chang, I.M. Safety analysis of Panax ginseng in randomized clinical trials: A Systematic Review. Medicines (Basel), 2015, 2(2), 106-126. [http://dx.doi.org/ 10.3390/medicines2020106]. [PMID: 28930204].
[153]
Chang, Y.; Huang, W.J.; Tien, L.T.; Wang, S.J. Ginsenosides Rg1 and Rb1 enhance glutamate release through activation of protein kinase A in rat cerebrocortical nerve terminals (synaptosomes). Eur. J. Pharmacol., 2008, 578(1), 28-36. [http://dx.doi.org/ 10.1016/j.ejphar.2007.09.023]. [PMID: 17949708].
[154]
Finger, A.; Kuhr, S.; Engelhardt, U.H. Chromatography of tea constituents. J. Chromatogr. A, 1992, 624(1-2), 293-315. [http://dx.doi.org/10.1016/0021-9673(92)85685-M]. [PMID: 1494009].
[155]
Kakuda, T.; Nozawa, A.; Sugimoto, A.; Niino, H. Inhibition by theanine of binding of [3H]AMPA, [3H]kainate, and [3H]MDL 105,519 to glutamate receptors. Biosci. Biotechnol. Biochem., 2002, 66(12), 2683-2686. [http://dx.doi.org/10.1271/bbb.66.2683]. [PMID: 12596867].
[156]
Di, X.; Yan, J.; Zhao, Y.; Zhang, J.; Shi, Z.; Chang, Y.; Zhao, B. L-theanine protects the APP (Swedish mutation) transgenic SH-SY5Y cell against glutamate-induced excitotoxicity via inhibition of the NMDA receptor pathway. Neuroscience, 2010, 168(3), 778-786. [http://dx.doi.org/10.1016/j.neuroscience.2010.04.019]. [PMID: 20416364].
[157]
Hynd, M.R.; Scott, H.L.; Dodd, P.R. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem. Int., 2004, 45(5), 583-595. [http://dx.doi.org/10.1016/ j.neuint.2004.03.007]. [PMID: 15234100].
[158]
Kim, T.I.; Lee, Y.K.; Park, S.G.; Choi, I.S.; Ban, J.O.; Park, H.K.; Nam, S.Y.; Yun, Y.W.; Han, S.B.; Oh, K.W.; Hong, J.T. l-Theanine, an amino acid in green tea, attenuates beta-amyloid-induced cognitive dysfunction and neurotoxicity: reduction in oxidative damage and inactivation of ERK/p38 kinase and NF-kappaB pathways. Free Radic. Biol. Med., 2009, 47(11), 1601-1610. [http://dx.doi.org/10.1016/j.freeradbiomed.2009.09.008]. [PMID: 19766184].
[159]
Mattson, M.P. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev., 1997, 77(4), 1081-1132. [http://dx.doi.org/10.1152/ physrev.1997.77.4.1081]. [PMID: 9354812].
[160]
Marcus, D.L.; Thomas, C.; Rodriguez, C.; Simberkoff, K.; Tsai, J.S.; Strafaci, J.A.; Freedman, M.L. Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease. Exp. Neurol., 1998, 150(1), 40-44. [http://dx.doi.org/10.1006/ exnr.1997.6750]. [PMID: 9514828].
[161]
Ansari, M.A.; Scheff, S.W. Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J. Neuropathol. Exp. Neurol., 2010, 69(2), 155-167. [http://dx.doi.org/10.1097/ NEN.0b013e3181cb5af4]. [PMID: 20084018].
[162]
Padurariu, M.; Ciobica, A.; Hritcu, L.; Stoica, B.; Bild, W.; Stefanescu, C. Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci. Lett., 2010, 469(1), 6-10. [http://dx.doi.org/ 10.1016/j.neulet.2009.11.033]. [PMID: 19914330].
[163]
Omar, R.A.; Chyan, Y.J.; Andorn, A.C.; Poeggeler, B.; Robakis, N.K.; Pappolla, M.A. Increased Expression but Reduced Activity of Antioxidant Enzymes in Alzheimer’s Disease. J. Alzheimers Dis., 1999, 1(3), 139-145. [http://dx.doi.org/10.3233/JAD-1999-1301]. [PMID: 12213999].
[164]
Matsuoka, Y.; Picciano, M.; La Francois, J.; Duff, K. Fibrillar beta-amyloid evokes oxidative damage in a transgenic mouse model of Alzheimer’s disease. Neuroscience, 2001, 104(3), 609-613. [http://dx.doi.org/10.1016/S0306-4522(01)00115-4]. [PMID: 11440793].
[165]
De Felice, F.G.; Velasco, P.T.; Lambert, M.P.; Viola, K.; Fernandez, S.J.; Ferreira, S.T.; Klein, W.L. Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J. Biol. Chem., 2007, 282(15), 11590-11601. [http://dx.doi.org/10.1074/jbc.M607483200]. [PMID: 17308309].
[166]
Li, F.; Calingasan, N.Y.; Yu, F.; Mauck, W.M.; Toidze, M.; Almeida, C.G.; Takahashi, R.H.; Carlson, G.A.; Flint Beal, M.; Lin, M.T.; Gouras, G.K. Increased plaque burden in brains of APP mutant MnSOD heterozygous knockout mice. J. Neurochem., 2004, 89(5), 1308-1312. [http://dx.doi.org/10.1111/j.1471-4159.2004.02455.x]. [PMID: 15147524].
[167]
Nishida, Y.; Yokota, T.; Takahashi, T.; Uchihara, T.; Jishage, K.; Mizusawa, H. Deletion of vitamin E enhances phenotype of Alzheimer disease model mouse. Biochem. Biophys. Res. Commun., 2006, 350(3), 530-536. [http://dx.doi.org/10.1016/ j.bbrc.2006.09.083]. [PMID: 17026966].
[168]
Dal Prà, I.; Chiarini, A.; Gui, L.; Chakravarthy, B.; Pacchiana, R.; Gardenal, E.; Whitfield, J.F.; Armato, U. Do astrocytes collaborate with neurons in spreading the “infectious” aβ and Tau drivers of Alzheimer’s disease? Neuroscientist, 2015, 21(1), 9-29. [http://dx.doi.org/10.1177/1073858414529828]. [PMID: 24740577].
[169]
Domanski, D.; Zegrocka-Stendel, O.; Perzanowska, A.; Dutkiewicz, M.; Kowalewska, M.; Grabowska, I.; Maciejko, D.; Fogtman, A.; Dadlez, M.; Koziak, K. Molecular Mechanism for Cellular Response to β-Escin and its therapeutic implications. PLoS One, 2016, 11(10), e0164365. [http://dx.doi.org/10.1371/ journal.pone.0164365]. [PMID: 27727329].
[170]
Zhao, J.; O’Connor, T.; Vassar, R. The contribution of activated astrocytes to Aβ production: implications for Alzheimer’s disease pathogenesis. J. Neuroinflammation, 2011, 8, 150. [http://dx.doi.org/10.1186/1742-2094-8-150]. [PMID: 22047170].
[171]
Koziak, K.; Kowalewska, M.; Maciejko, D.; Zegrocka-Stendel, O.; Domanski, D.; Perzanowska, A. Agent used to treat and/or prevent Alzheimer's disease, comprises horse chestnut extract, escins, or their salts and derivatives, 2015, EP3078381A1.
[172]
de Oliveira, M.R. The effects of ellagic acid upon brain cells: A mechanistic view and future directions. Neurochem. Res., 2016, 41(6), 1219-1228. [http://dx.doi.org/10.1007/s11064-016-1853-9]. [PMID: 26846140].
[173]
Tenchov, B.; Abarova, S.; Koynova, R.; Traikov, L.; Dragomanova, S.; Tancheva, L. A new approach for investigating neurodegenerative disorders in mice based on DSC. J. Therm. Anal. Calorim., 2017, 127(1), 483-486. [http://dx.doi.org/10.1007/s10973-016-5749-3].
[174]
Abarova, S.; Koynova, R.; Tancheva, L.; Tenchov, B. A novel DSC approach for evaluating protectant drugs efficacy against dementia. Biochim. Biophys. Acta Mol. Basis. Dis., 2017, 1863(11), 2934-2941. [http://dx.doi.org/10.1016/j.bbadis.2017.07.033]. [PMID: 28778589].
[175]
Ahmed, T.; Setzer, W.N.; Nabavi, S.F.; Orhan, I.E.; Braidy, N.; Sobarzo-Sanchez, E.; Nabavi, S.M. Insights into effects of ellagic acid on the nervous system: A mini review. Curr. Pharm. Des., 2016, 22(10), 1350-1360. [http://dx.doi.org/10.2174/ 1381612822666160125114503]. [PMID: 26806345].
[176]
Ahmad, N.; Feyes, D.K.; Nieminen, A.L.; Agarwal, R.; Mukhtar, H. Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J. Natl. Cancer Inst., 1997, 89(24), 1881-1886. [http://dx.doi.org/10.1093/ jnci/89.24.1881]. [PMID: 9414176].
[177]
Mandel, S.A.; Amit, T.; Kalfon, L.; Reznichenko, L.; Weinreb, O.; Youdim, M.B. Cell signaling pathways and iron chelation in the neurorestorative activity of green tea polyphenols: special reference to epigallocatechin gallate (EGCG). J. Alzheimers Dis., 2008, 15(2), 211-222. [http://dx.doi.org/10.3233/JAD-2008-15207]. [PMID: 18953110].
[178]
Biasibetti, R.; Tramontina, A.C.; Costa, A.P.; Dutra, M.F.; Quincozes-Santos, A.; Nardin, P.; Bernardi, C.L.; Wartchow, K.M.; Lunardi, P.S.; Gonçalves, C.A. Green tea (-)epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia. Behav. Brain Res., 2013, 236(1), 186-193. [http://dx.doi.org/10.1016/ j.bbr.2012.08.039]. [PMID: 22964138].
[179]
Rezai-Zadeh, K.; Shytle, D.; Sun, N.; Mori, T.; Hou, H.; Jeanniton, D.; Ehrhart, J.; Townsend, K.; Zeng, J.; Morgan, D.; Hardy, J.; Town, T.; Tan, J. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J. Neurosci., 2005, 25(38), 8807-8814. [http://dx.doi.org/10.1523/JNEUROSCI.1521-05.2005]. [PMID: 16177050].
[180]
Lee, J.W.; Lee, Y.K.; Ban, J.O.; Ha, T.Y.; Yun, Y.P.; Han, S.B.; Oh, K.W.; Hong, J.T. Green tea (-)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. J. Nutr., 2009, 139(10), 1987-1993. [http://dx.doi.org/10.3945/jn.109.109785]. [PMID: 19656855].
[181]
Lee, Y.J.; Choi, D.Y.; Yun, Y.P.; Han, S.B.; Oh, K.W.; Hong, J.T. Epigallocatechin-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties. J. Nutr. Biochem., 2013, 24(1), 298-310. [http://dx.doi.org/10.1016/j.jnutbio.2012.06.011]. [PMID: 22959056].
[182]
Li, R.; Shen, Y. Estrogen and brain: synthesis, function and diseases. Front. Biosci., 2005, 10, 257-267. [http://dx.doi.org/ 10.2741/1525]. [PMID: 15574366].
[183]
Behl, C.; Skutella, T.; Lezoualc’h, F.; Post, A.; Widmann, M.; Newton, C.J.; Holsboer, F. Neuroprotection against oxidative stress by estrogens: structure-activity relationship. Mol. Pharmacol., 1997, 51(4), 535-541. [http://dx.doi.org/10.1124/mol.51.4.535]. [PMID: 9106616].
[184]
Zec, R.F.; Trivedi, M.A. The effects of estrogen replacement therapy on neuropsychological functioning in postmenopausal women with and without dementia: a critical and theoretical review. Neuropsychol. Rev., 2002, 12(2), 65-109. [http://dx.doi.org/10.1023/ A:1016880127635]. [PMID: 12371603].
[185]
Guo, Q.; Rimbach, G.; Moini, H.; Weber, S.; Packer, L. ESR and cell culture studies on free radical-scavenging and antioxidant activities of isoflavonoids. Toxicology, 2002, 179(1-2), 171-180. [http://dx.doi.org/10.1016/S0300-483X(02)00241-X]. [PMID: 12204553].
[186]
Chan, W.H.; Yu, J.S. Inhibition of UV irradiation-induced oxidative stress and apoptotic biochemical changes in human epidermal carcinoma A431 cells by genistein. J. Cell. Biochem., 2000, 78(1), 73-84. [http://dx.doi.org/10.1002/(SICI)1097-4644(20000701)78:1 <73:AID-JCB7>3.0.CO;2-P]. [PMID: 10797567].
[187]
Kim, H.; Xia, H.; Li, L.; Gewin, J. Attenuation of neurodegeneration-relevant modifications of brain proteins by dietary soy. Biofactors, 2000, 12(1-4), 243-250. [http://dx.doi.org/ 10.1002/ biof.5520120137]. [PMID: 11216492].
[188]
Vallés, S.L.; Borrás, C.; Gambini, J.; Furriol, J.; Ortega, A.; Sastre, J.; Pallardó, F.V.; Viña, J. Oestradiol or genistein rescues neurons from amyloid beta-induced cell death by inhibiting activation of p38. Aging Cell, 2008, 7(1), 112-118. [http://dx.doi.org/ 10.1111/j.1474-9726.2007.00356.x]. [PMID: 18031570].
[189]
Gutierrez-Zepeda, A.; Santell, R.; Wu, Z.; Brown, M.; Wu, Y.; Khan, I.; Link, C.D.; Zhao, B.; Luo, Y. Soy isoflavone glycitein protects against beta amyloid-induced toxicity and oxidative stress in transgenic Caenorhabditis elegans. BMC Neurosci., 2005, 6, 54. [http://dx.doi.org/10.1186/1471-2202-6-54]. [PMID: 16122394].
[190]
Zhao, L.; Brinton, R.D. WHI and WHIMS follow-up and human studies of soy isoflavones on cognition. Expert Rev. Neurother., 2007, 7(11), 1549-1564. [http://dx.doi.org/10.1586/ 14737175.7.11.1549]. [PMID: 17997703].
[191]
Liu, Q.; Zhao, B. Nicotine attenuates beta-amyloid peptide-induced neurotoxicity, free radical and calcium accumulation in hippocampal neuronal cultures. Br. J. Pharmacol., 2004, 141(4), 746-754. [http://dx.doi.org/10.1038/sj.bjp.0705653]. [PMID: 14757701].
[192]
Xie, Y.X.; Bezard, E.; Zhao, B.L. Investigating the receptor-independent neuroprotective mechanisms of nicotine in mitochondria. J. Biol. Chem., 2005, 280(37), 32405-32412. [http://dx.doi.org/10.1074/jbc.M504664200]. [PMID: 15985439].
[193]
Lovell, M.A.; Robertson, J.D.; Teesdale, W.J.; Campbell, J.L.; Markesbery, W.R. Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci., 1998, 158(1), 47-52. [http://dx.doi.org/10.1016/S0022-510X(98)00092-6]. [PMID: 9667777].
[194]
Zhang, J.; Liu, Q.; Chen, Q.; Liu, N.Q.; Li, F.L.; Lu, Z.B.; Qin, C.; Zhu, H.; Huang, Y.Y.; He, W.; Zhao, B.L. Nicotine attenuates beta-amyloid-induced neurotoxicity by regulating metal homeostasis. FASEB J., 2006, 20(8), 1212-1214. [http://dx.doi.org/ 10.1096/fj.05-5214fje]. [PMID: 16627626].
[195]
Srivareerat, M.; Tran, T.T.; Salim, S.; Aleisa, A.M.; Alkadhi, K.A. Chronic nicotine restores normal Aβ levels and prevents short-term memory and E-LTP impairment in Aβ rat model of Alzheimer’s disease. Neurobiol. Aging, 2011, 32(5), 834-844. [http://dx.doi.org/ 10.1016/j.neurobiolaging.2009.04.015]. [PMID: 19464074].
[196]
Petersen, M.; Simmonds, M.S. Rosmarinic acid. Phytochemistry, 2003, 62(2), 121-125. [http://dx.doi.org/10.1016/S0031-9422(02)00513-7]. [PMID: 12482446].
[197]
Shaerzadeh, F.; Ahmadiani, A.; Esmaeili, M.A.; Ansari, N.; Asadi, S.; Tusi, S.K.; Sonboli, A.; Ghahremanzamaneh, M.; Khodagholi, F. Antioxidant and antiglycating activities of Salvia sahendica and its protective effect against oxidative stress in neuron-like PC12 cells. J. Nat. Med., 2011, 65(3-4), 455-465. [http://dx.doi.org/ 10.1007/s11418-011-0519-9]. [PMID: 21424254].
[198]
Bulgakov, V.P.; Inyushkina, Y.V.; Fedoreyev, S.A. Rosmarinic acid and its derivatives: biotechnology and applications. Crit. Rev. Biotechnol., 2012, 32(3), 203-217. [http://dx.doi.org/10.3109/ 07388551.2011.596804]. [PMID: 21838541].
[199]
Alkam, T.; Nitta, A.; Mizoguchi, H.; Itoh, A.; Nabeshima, T. A natural scavenger of peroxynitrites, rosmarinic acid, protects against impairment of memory induced by Abeta(25-35). Behav. Brain Res., 2007, 180(2), 139-145. [http://dx.doi.org/ 10.1016/j.bbr.2007.03.001]. [PMID: 17420060].
[200]
Iuvone, T.; De Filippis, D.; Esposito, G.; D’Amico, A.; Izzo, A.A. The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity. J. Pharmacol. Exp. Ther., 2006, 317(3), 1143-1149. [http://dx.doi.org/10.1124/jpet.105.099317]. [PMID: 16495207].
[201]
Kantar Gok, D.; Ozturk, N.; Er, H.; Aslan, M.; Demir, N.; Derin, N.; Agar, A.; Yargicoglu, P. Effects of rosmarinic acid on cognitive and biochemical alterations in ovariectomized rats treated with D-galactose. Folia Histochem. Cytobiol., 2015, 53(4), 283-293. [http://dx.doi.org/10.5603/fhc.a2015.0034]. [PMID: 26714446].
[202]
Horrocks, L.A.; Farooqui, A.A. Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot. Essent. Fatty Acids, 2004, 70(4), 361-372. [http://dx.doi.org/10.1016/j.plefa.2003.12.011]. [PMID: 15041028].
[203]
Morris, M.C.; Evans, D.A.; Bienias, J.L.; Tangney, C.C.; Bennett, D.A.; Wilson, R.S.; Aggarwal, N.; Schneider, J. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch. Neurol., 2003, 60(7), 940-946. [http://dx.doi.org/ 10.1001/archneur.60.7.940]. [PMID: 12873849].
[204]
Schaefer, E.J.; Bongard, V.; Beiser, A.S.; Lamon-Fava, S.; Robins, S.J.; Au, R.; Tucker, K.L.; Kyle, D.J.; Wilson, P.W.; Wolf, P.A. Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch. Neurol., 2006, 63(11), 1545-1550. [http://dx.doi.org/10.1001/archneur.63.11.1545]. [PMID: 17101822].
[205]
Jicha, G.A.; Markesbery, W.R. Omega-3 fatty acids: potential role in the management of early Alzheimer’s disease. Clin. Interv. Aging, 2010, 5, 45-61. [http://dx.doi.org/10.2147/CIA.S5231]. [PMID: 20396634].
[206]
Lukiw, W.J.; Bazan, N.G. Docosahexaenoic acid and the aging brain. J. Nutr., 2008, 138(12), 2510-2514. [http://dx.doi.org/ 10.3945/jn.108.096016]. [PMID: 19022980].
[207]
Cole, G.M.; Frautschy, S.A. Docosahexaenoic acid protects from amyloid and dendritic pathology in an Alzheimer’s disease mouse model. Nutr. Health, 2006, 18(3), 249-259. [http://dx.doi.org/ 10.1177/026010600601800307]. [PMID: 17180870].
[208]
Hossain, M.S.; Hashimoto, M.; Gamoh, S.; Masumura, S. Antioxidative effects of docosahexaenoic acid in the cerebrum versus cerebellum and brainstem of aged hypercholesterolemic rats. J. Neurochem., 1999, 72(3), 1133-1138. [http://dx.doi.org/ 10.1046/j.1471-4159.1999.0721133.x]. [PMID: 10037485].
[209]
Komatsu, W.; Ishihara, K.; Murata, M.; Saito, H.; Shinohara, K. Docosahexaenoic acid suppresses nitric oxide production and inducible nitric oxide synthase expression in interferon-gamma plus lipopolysaccharide-stimulated murine macrophages by inhibiting the oxidative stress. Free Radic. Biol. Med., 2003, 34(8), 1006-1016. [http://dx.doi.org/10.1016/S0891-5849(03)00027-3]. [PMID: 12684085].
[210]
Winter, J.C. The effects of an extract of Ginkgo biloba, EGb 761, on cognitive behavior and longevity in the rat. Physiol. Behav., 1998, 63(3), 425-433. [http://dx.doi.org/10.1016/S0031-9384(97)00464-2]. [PMID: 9469738].
[211]
Ni, Y.; Zhao, B.; Hou, J.; Xin, W. Preventive effect of Ginkgo biloba extract on apoptosis in rat cerebellar neuronal cells induced by hydroxyl radicals. Neurosci. Lett., 1996, 214(2-3), 115-118. [http://dx.doi.org/10.1016/0304-3940(96)12897-4]. [PMID: 8878097].
[212]
Wei, T.; Ni, Y.; Hou, J.; Chen, C.; Zhao, B.; Xin, W. Hydrogen peroxide-induced oxidative damage and apoptosis in cerebellar granule cells: protection by Ginkgo biloba extract. Pharmacol. Res., 2000, 41(4), 427-433. [http://dx.doi.org/ 10.1006/phrs.1999.0604]. [PMID: 10704267].
[213]
Chen, C.; Wei, T.; Gao, Z.; Zhao, B.; Hou, J.; Xu, H.; Xin, W.; Packer, L. Different effects of the constituents of EGb761 on apoptosis in rat cerebellar granule cells induced by hydroxyl radicals. Biochem. Mol. Biol. Int., 1999, 47(3), 397-405. [PMID: 10204076].
[214]
Bastianetto, S.; Zheng, W.H.; Quirion, R. The Ginkgo biloba extract (EGb 761) protects and rescues hippocampal cells against nitric oxide-induced toxicity: involvement of its flavonoid constituents and protein kinase C. J. Neurochem., 2000, 74(6), 2268-2277. [http://dx.doi.org/10.1046/j.1471-4159.2000.0742268.x]. [PMID: 10820186].
[215]
Bastianetto, S.; Ramassamy, C.; Doré, S.; Christen, Y.; Poirier, J.; Quirion, R. The Ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by beta-amyloid. Eur. J. Neurosci., 2000, 12(6), 1882-1890. [http://dx.doi.org/10.1046/ j.1460-9568.2000.00069.x]. [PMID: 10886329].
[216]
Wu, Y.; Wu, Z.; Butko, P.; Christen, Y.; Lambert, M.P.; Klein, W.L.; Link, C.D.; Luo, Y. Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J. Neurosci., 2006, 26(50), 13102-13113. [http://dx.doi.org/10.1523/ JNEUROSCI.3448-06.2006]. [PMID: 17167099].
[217]
Stackman, R.W.; Eckenstein, F.; Frei, B.; Kulhanek, D.; Nowlin, J.; Quinn, J.F. Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer’s disease by chronic Ginkgo biloba treatment. Exp. Neurol., 2003, 184(1), 510-520. [http://dx.doi.org/10.1016/S0014-4886(03)00399-6]. [PMID: 14637120].
[218]
Quinn, J.F.; Bussiere, J.R.; Hammond, R.S.; Montine, T.J.; Henson, E.; Jones, R.E.; Stackman, R.W. Jr Chronic dietary alpha-lipoic acid reduces deficits in hippocampal memory of aged Tg2576 mice. Neurobiol. Aging, 2007, 28(2), 213-225. [http://dx.doi.org/10.1016/j.neurobiolaging.2005.12.014]. [PMID: 16448723].
[219]
Oken, B.S.; Storzbach, D.M.; Kaye, J.A. The efficacy of Ginkgo biloba on cognitive function in Alzheimer disease. Arch. Neurol., 1998, 55(11), 1409-1415. [http://dx.doi.org/10.1001/ archneur.55.11.1409]. [PMID: 9823823].
[220]
Le Bars, P.L.; Kieser, M.; Itil, K.Z. A 26-week analysis of a double-blind, placebo-controlled trial of the Ginkgo biloba extract EGb 761 in dementia. Dement. Geriatr. Cogn. Disord., 2000, 11(4), 230-237. [http://dx.doi.org/10.1159/000017242]. [PMID: 10867450].
[221]
Kanowski, S.; Hoerr, R. Ginkgo biloba extract EGb 761 in dementia: intent-to-treat analyses of a 24-week, multi-center, double-blind, placebo-controlled, randomized trial. Pharmacopsychiatry, 2003, 36(6), 297-303. [http://dx.doi.org/10.1055/s-2003-45117]. [PMID: 14663654].
[222]
Snitz, B.E.; O’Meara, E.S.; Carlson, M.C.; Arnold, A.M.; Ives, D.G.; Rapp, S.R.; Saxton, J.; Lopez, O.L.; Dunn, L.O.; Sink, K.M.; DeKosky, S.T. Ginkgo biloba for preventing cognitive decline in older adults: a randomized trial. JAMA, 2009, 302(24), 2663-2670. [http://dx.doi.org/10.1001/jama.2009.1913]. [PMID: 20040554].
[223]
DeKosky, S.T.; Williamson, J.D.; Fitzpatrick, A.L.; Kronmal, R.A.; Ives, D.G.; Saxton, J.A.; Lopez, O.L.; Burke, G.; Carlson, M.C.; Fried, L.P.; Kuller, L.H.; Robbins, J.A.; Tracy, R.P.; Woolard, N.F.; Dunn, L.; Snitz, B.E.; Nahin, R.L.; Furberg, C.D. Ginkgo biloba for prevention of dementia: a randomized controlled trial. JAMA, 2008, 300(19), 2253-2262. [http://dx.doi.org/ 10.1001/jama.2008.683]. [PMID: 19017911].
[224]
Russo, A.; Borrelli, F. Bacopa monniera, a reputed nootropic plant: an overview. Phytomedicine, 2005, 12(4), 305-317. [http://dx.doi.org/10.1016/j.phymed.2003.12.008]. [PMID: 15898709].
[225]
Shinomol, G.K. Muralidhara; Bharath, M.M. Exploring the Role of “Brahmi” (Bacopa monnieri and Centella asiatica) in Brain Function and Therapy. Recent Pat. Endocr. Metab. Immune Drug Discov., 2011, 5(1), 33-49. [http://dx.doi.org/ 10.2174/187221411794351833]. [PMID: 22074576].
[226]
Dhanasekaran, M.; Tharakan, B.; Holcomb, L.A.; Hitt, A.R.; Young, K.A.; Manyam, B.V. Neuroprotective mechanisms of ayurvedic antidementia botanical Bacopa monniera. Phytother. Res., 2007, 21(10), 965-969. [http://dx.doi.org/10.1002/ptr.2195]. [PMID: 17604373].
[227]
Uabundit, N.; Wattanathorn, J.; Mucimapura, S.; Ingkaninan, K. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J. Ethnopharmacol., 2010, 127(1), 26-31. [http://dx.doi.org/10.1016/j.jep.2009.09.056]. [PMID: 19808086].
[228]
Bhattacharya, S.K.; Bhattacharya, A.; Kumar, A.; Ghosal, S. Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus. Phytother. Res., 2000, 14(3), 174-179. [http://dx.doi.org/10.1002/(SICI)1099-1573(200005) [PMID: 10815010]
[229]
Limpeanchob, N.; Jaipan, S.; Rattanakaruna, S.; Phrompittayarat, W.; Ingkaninan, K. Neuroprotective effect of Bacopa monnieri on beta-amyloid-induced cell death in primary cortical culture. J. Ethnopharmacol., 2008, 120(1), 112-117. [http://dx.doi.org/ 10.1016/j.jep.2008.07.039]. [PMID: 18755259].
[230]
Sadhu, A.; Upadhyay, P.; Agrawal, A.; Ilango, K.; Karmakar, D.; Singh, G.P.; Dubey, G.P. Management of cognitive determinants in senile dementia of Alzheimer’s type: therapeutic potential of a novel polyherbal drug product. Clin. Drug Investig., 2014, 34(12), 857-869. [http://dx.doi.org/10.1007/s40261-014-0235-9]. [PMID: 25316430].
[231]
Gohil, K.J.; Patel, J.A.; Gajjar, A.K. Pharmacological Review on Centella asiatica: A Potential Herbal Cure-all. Indian J. Pharm. Sci., 2010, 72(5), 546-556. [http://dx.doi.org/10.4103/0250-474X.78519]. [PMID: 21694984].
[232]
Veerendra Kumar, M.H.; Gupta, Y.K. Effect of different extracts of Centella asiatica on cognition and markers of oxidative stress in rats. J. Ethnopharmacol., 2002, 79(2), 253-260. [http://dx.doi.org/ 10.1016/S0378-8741(01)00394-4]. [PMID: 11801389].
[233]
Brinkhaus, B.; Lindner, M.; Schuppan, D.; Hahn, E.G. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella asiatica. Phytomedicine, 2000, 7(5), 427-448. [http://dx.doi.org/10.1016/S0944-7113(00)80065-3]. [PMID: 11081995].
[234]
Veerendra Kumar, M.H.; Gupta, Y.K. Effect of Centella asiatica on cognition and oxidative stress in an intracerebroventricular streptozotocin model of Alzheimer’s disease in rats. Clin. Exp. Pharmacol. Physiol., 2003, 30(5-6), 336-342. [http://dx.doi.org/10.1046/ j.1440-1681.2003.03842.x]. [PMID: 12859423].
[235]
Sharma, J.; Sharma, R. Radioprotection of Swiss albino mouse by Centella asiatica extract. Phytother. Res., 2002, 16(8), 785-786. [http://dx.doi.org/10.1002/ptr.1069]. [PMID: 12458490].
[236]
Huang, S.S.; Chiu, C.S.; Chen, H.J.; Hou, W.C.; Sheu, M.J.; Lin, Y.C.; Shie, P.H.; Huang, G.J. Antinociceptive activities and the mechanisms of anti-inflammation of asiatic Acid in mice. Evid. Based Complement. Alternat. Med., 2011, 2011, 895857. [http://dx.doi.org/10.1155/2011/895857]. [PMID: 21584194].
[237]
Allegra, C. [Comparative capillaroscopic study of certain bioflavonoids and total triterpenic fractions of Centella asiatica in venous insufficiency]. Clin. Ter., 1984, 110(6), 555-559. [Comparative capillaroscopic study of certain bioflavonoids and total triterpenic fractions of Centella asiatica in venous insufficiency]. [PMID: 6238770]
[238]
Chen, C.L.; Tsai, W.H.; Chen, C.J.; Pan, T.M. Centella asiatica extract protects against amyloid β1-40-induced neurotoxicity in neuronal cells by activating the antioxidative defence system. J. Tradit. Complement. Med., 2015, 6(4), 362-369. [http://dx.doi.org/ 10.1016/j.jtcme.2015.07.002]. [PMID: 27774420].
[239]
Borek, C. Antioxidant health effects of aged garlic extract. J. Nutr., 2001, 131(3s), 1010S-1015S. [http://dx.doi.org/ 10.1093/jn/ 131.3.1010S]. [PMID: 11238807].
[240]
Borek, C. Garlic reduces dementia and heart-disease risk. J. Nutr., 2006, 136(3)(Suppl.), 810S-812S. [http://dx.doi.org/ 10.1093/ jn/136.3.810S]. [PMID: 16484570].
[241]
Qu, Z.; Mossine, V.V.; Cui, J.; Sun, G.Y.; Gu, Z. Protective Effects of AGE and Its Components on Neuroinflammation and Neurodegeneration. Neuromolecular Med., 2016, 18(3), 474-482. [http://dx.doi.org/10.1007/s12017-016-8410-1]. [PMID: 27263111].
[242]
Nillert, N.; Pannangrong, W.; Welbat, J.U.; Chaijaroonkhanarak, W.; Sripanidkulchai, K.; Sripanidkulchai, B. Neuroprotective Effects of aged garlic extract on cognitive dysfunction and neuroinflammation induced by β-amyloid in rats. Nutrients, 2017, 9(1), 24. [http://dx.doi.org/10.3390/nu9010024]. [PMID: 28054940].
[243]
Wu, H.; Devaraj, N.K. Advances in tetrazine bioorthogonal chemistry driven by the synthesis of novel tetrazines and dienophiles. Acc. Chem. Res., 2018, 51(5), 1249-1259. [http://dx.doi.org/10.1021/acs.accounts.8b00062]. [PMID: 29638113].